
PC-BASED OPEN ARCHITECTURE SERVO CONTROLLER
FOR CNC MACHINING

Surya Kommareddy, Yamazaki Kazuo, Kagawa Yoshihito
IMS-Mechatronics Laboratory, UC-Davis, Davis CA 95616,

surya@ucdavis.edu.

Abstract

There is an ever-increasing demand from the Industry for a flexible, modular and a cost-
effective CNC machine servo controller. The primary aim of this research is to develop a real-time
PC-based servomotor control system. Such a machine controller is not only required to perform
control functions but also do other functions like database maintenance, tool path planning and
optimization, and operator interface among many other useful functions. In realizing this objective,
the environment is not only designed keeping in view the Open Architecture Controller (OAC)
specifications but also to launch a platform for total factory automation. Good fault-tolerance,
factory floor networking and flexibility in terms of software are considered in designing the system.

RT-Linux has been chosen as the suitable real-time platform with Windows NT as the
front-end for the system. RT-Linux is very reliable and gives a good performance with a worst case
scheduling latency of 12µsec and a worst case interrupt latency of 10µsec on a 650MHz Pentium III
processor. The rationale behind choosing various other components of the system that makes it
possible to meet the OAC specifications and the functional requirements is elaborated in this paper.
In addition, system working environment and some of its good features will be discussed. This open
source based CNC servo control platform is a promising technology for the future of factory
automation.

Introduction

There is an eve-increasing demand from the
industry for an Open Architecture Controller (OAC)
which is flexible, modular and cost effective. PC-based
control offers such flexibility and openness. Apart from
realizing a PC-based servo control system, the PC can
be integrated to several other intelligent manufacturing
functions so as to realize a platform for total factory
automation. In order to implement a controller inside
the PC, there is a need for an appropriate operating
system that functions in real-time. There are many real-
time platforms based on which the controller can be
designed, but most of them either fail to meet the
functional requirements or the demands of the
Manufacturing industry. The primary aim of this
research is to develop a Real-time PC-based servomotor
control system for CNC machining in conformance with
the OAC specifications. The principal functional
constraint on this system is on the implementation of the
multi-axis feedback loops, with a fastest frequency of
20-50 µsec. In realizing this objective, the environment
is not only designed keeping in view the OAC
specifications but also to launch a platform for total
factory automation. Good fault-tolerance, factory floor
networking and flexibility in terms of software are
considered in designing the system.

Background

There is a large exodus in the industry from the
popular PLC control to PC-Based control. PC-Based
control [1], [2] offers great advantages like faster design
cycles, lower downtime using diagnostics and
simulation tools, increased productivity and decreased
maintenance costs. Today’s increasing processor speeds
and decreasing costs lure us to program most of the
conventional hardware controller functions inside a
personal computer. Such an approach can not only
overcome problems like inflexibility, large physical
space, time and costs of up-gradation present in
conventional hardware controllers; but also provide us
with a better user interface and multi-programming.
With the present day high speed PCs loaded with one of
the popular desktop Operating Systems like Windows
NT would make a good control center for a CNC
machine. There are many PC-based machine tool
controllers for CNC available in the market today, but
they are proprietary and the customer needs to depend
on the software vendor for maintenance and support.
Again these software solutions are volatile, costly and
do not usually conform to the OAC specification [3]. So
there is no need for open source platforms that can
perform well and offer the user greater flexibility and
accessibility. There area many open source real-time

platforms available but the choice has to be made
carefully considering the design requirements.

The main objective of this research is to develop an
OAC platform and implement position, velocity and
current feedback loops for multi-axis real-time actuator
control, on a PC with Windows NT as the front-end
Operating System (OS). Technically speaking, this
would mean that the control tasks have to be
implemented in a real-time fashion, along with many
other usual, less priority tasks. Such a system is
expected to service interrupts generated by current,
velocity and position feedback loops with periodicity of
20-50 µsec, 100-500 µsec and 500-1000 µsec
respectively [4]. The remaining time can be used for
actuator path interpolation, database management,
system monitoring and many other less priority tasks
performed by the NT machine. In addition, the
condition that the system so designed should not be
affected by any up-gradations or changes in the
Windows environment is to be met. Keeping these
objectives in view, a platform was designed to
implement a real-time servo control system complying
with the Open Architecture Controller (OAC)
specifications put up by the Industry.

System Concept

In a PC-based control system, the real-time kernel
is the essential component and care must be taken in
designing the OS. The design constraint imposed in the
objective of this research is that Windows NT should be
used as primary OS for performing the main machining
center operations. In order to qualify as a real-time
Operating System (RTOS), an OS needs to have a
minimum set of requirements. These requirements are
necessary but not sufficient:
• The OS needs to be multi-threaded and pre-

emptable.
• The notion of threaded priority had to exist.
• The OS has to support predictable thread

synchronization mechanisms.
• A mechanism for priority inheritance must be

available.
• The OS behavior should be known and predictable

(interrupt latencies, scheduling latencies, etc.)
Windows NT is a popular desktop OS, but there are

several reasons what NT cannot be used as an RTOS
[5], [6]. Some of the reasons are:
• The number of available priorities in the real-time

class is too low for real-time applications.
• The problem of the priority inversion is not solved

(for the real-time class process).
• Device drivers can take a lot of time in DPC and no

preemption by other is possible.

• Virtual memory implementation involves address
translation, swapping which is unacceptable for
RT-process.

In view of the above arguments against NT, we can
conclude that it is not suitable for ‘hard real-time’
applications. However, it can function as a ‘soft RTOS’
and is reported to be very unpredictable at heavy loads.
NT can be made real-time by making some
modifications or by some extensions to it.

There are four types of solutions to keep the
advantages offered by NT and real-time capabilities to
the system:
1. NT can be used as is by enhancing the interrupt

handling mechanism by intercepting interrupts. One
vendor, LP-Electronik, uses this method and
intercepts the non-maskable interrupt (NMI). It is
not encouraged to follow this procedure since it is
risky as all the intercepts are disabled during the
NMI.

2. The second solution would be to implement a
Win32 API library on top of a commercial RTOS.
The drawbacks of this solution is that standard NT
applications cannot be executed any more and the
huge set of device drivers can’ t be used.

3. The third idea is to make coexist NT and a RTOS
on one processor. This is a solution pursued by
many vendors like VenturCom Inc. (RTX 4.1) [7],
Radisys (INTime 1.20) [8] and Imagination
Systems Inc. (Hyperkernel 4.3) [9]. A comparison
study of the performances of these products can be
found in the report [10] published by Powertrain
Group.

4. The final idea is to extend the previous to a multi-
processor environment. Here each operating system
can be run on a processor independently.

A detailed study on the different solutions is
presented in article [5] and [11]. The first and second
solutions, does not serve our purpose directly. The
fourth solution seems to be simple, but it is what we are
trying to get away from; since in multi-processor
environment the interrupt behavior of the inter-
processor communication channel (VME or PCI or
PMC) is not predictable and sometimes needs a
customized board design. The third solution is the most
popularly pursued by many vendors, i.e. provide real-
time extensions to Windows NT. There are two ways to
accomplish this:
1. To modify the Hardware Abstraction layer (HAL)

by intercepting interrupts and including a small
scheduler or RTOS.

2. To run NT as one of the tasks on top of a
(supervisor) RTOS.

The HAL has to be modified or at least intercepted.
Those HAL modifications such as manipulating clock
and interrupt processing mechanism represent an
unprecedented and unproved use of HAL. Interception
of HAL is also possible via Intel processor tricks. These
implementations are therefore only available on Intel
based machines. All implementations under this
solution need modifications of NT of some kind. Since
the required design objective is to have freedom from
the software vendor we follow the later method, i.e.
running Windows NT as a task under an RTOS.

System Design and Implementation

Using the OAC specifications prescribed by the
OMAC advisory group [3], a system engineering
analysis with a popular tool called Quality Function
Deployment (QFD) analysis, was done to design the
system.

The use needs that are obtained from OMAC
advisory group, classified into categories like
infrastructure, discrete event control, information base
management, task coordination, motion control, human
interface, sensor interface etc. along with the functional
constraints on the control feedback loops is used to
derive at the requirements of each of the components of
the system.

As required by the design constraints, all the
control functions will be implemented in software, i.e.
on the PC. Therefore, the component selection of PC for
real-time performance is vital for a good OAC design.
The essential controller characteristics obtained from
the QFD matrix analysis are the real-time programming
capability, GUI functionality, networking and non-Real-
time programmability. Keeping in view these
requirements and the performance requirements of the
system RT-Linux is chosen as the Real-time Operating
system, since it has short scheduling and interrupt
latencies and further more it is an open source platform.
Since RT-Linux comes with normal Linux OS, we have
all the functionality of a normal desktop operating
system. The functionality includes the networking, GUI,
programming and several other functions. The other
advantage of choosing Linux is that there are methods
of communication with Windows machines built in the
form of Samba file server. It offers a method of sharing
files and other services available over network. For in-
depth understanding of the working of RT-Linux, a
number of pointers are available at
http://www.rtlinux.org. References [12], [13] give a
good introductory material on RT-Linux
implementation.

RT-Linux offers low-level interface to the basic
input/output peripherals. The I/O functions in the RT-

Linux are performed as kernel modules, so it is very fast
but has the limitation of not being able to perform heavy
float point calculations. For a true real-time
performance, the data from the I/O ports has to be
collected and stored into some buffers, which can be
accessed from the non-real-time Linux and processed
when wanted. The RT-Linux offers two mechanisms in
terms of FIFO and shared memory for data queuing and
transfer through the FIFO or the shared-memory, data is
accessed by a non-real-time application, processed and
put back into another FIFO or shared-memory for the
RT-Linux application to read. Some standard has to be
established as to be consistent in approach in database
management across various platforms. Shared memory
can be used for faster exchange of data, since DMA can
be used and it is faster. Finally, the data that needs to be
stored is done so in files for later use for database
management purposes.

Since we need to have Windows NT as the front-
end OS, as required by the design constraint, we make it
possible using the VMware virtual platform. Using this
platform we can have multiple operating systems
running on the same processor concurrently. VMware
virtual platform can run multiple instances of the same
operating systems (with same file system) under some
restrictions. This makes it possible to have a fault
tolerant system and failure detection of Windows NT,
which is prone to crashes very frequently. This
implementation can be extended to other versions of
Windows OS as VMware platform supports wide range
of popular operating systems present in market today.
Further information on VMware virtual platform can be
obtained in the reference [14].

Parallel Virtual Machines (PVM) [15] has been
chosen as a way of implementing diagnostic functions
and distributed computing in this design. PVM is a
distributed Computing Environment which can be

Figure: 1 The proposed system schematic.

programmed in a variety of languages (Java, C, C++,
FORTRAN) and can be run on different types of
operating systems (primarily Linux and Windows NT).
It also has some good features like failure detection and
recovery functions, which are not commonly found in
other alternatives like MPI. PVM transparently handles
all messages routing, data conversion, and task
scheduling across a network of incompatible computer
architectures. This distributed computing environment
can be used for coordinated factory floor manufacturing
operations.

Web based Human Machine Interface (HMI) has
been chosen as the method of obtaining HMI-GUI
functionality for the controller. Since Windows NT is
the front-end and it has to interface with the RT-Linux,
which is the base, a network-based application is needed
for data communication and other interactive functions.
This web-based HMI is implemented in the form of
client-server program, using Java and PERL scripts, and
can be used in network computing and interfacing as
well. The client-server implementation can be
programmed with different functionality for access to
the common database maintained in the PC, for the
controller. This database can be used in conjunction
with controllers of other machines to do system level
control and management functions.

The control functions are implemented in Linux,
which interfaces with the controller database for the
system state data. There is always a delay in scheduling
a task or in capturing the interrupt and running its
service routine. These are considered as delays in the
control system, when modeling the digital control
system. The delay through the system can be calculated
from the knowledge of the continuous time transport
delay and the sample interval. The general expression
for the time delay τd is given by

τd = k τs – m τs

Where, τs is the sampling interval with k as an integer
and m is a fraction. The influence of the partial delay
‘m’ is to introduce an extra zero in the numerator of the
z-transform of the process. The position of this extra
zero will vary with m, for certain values of m the extra
zero will be outside of the unit circle in the z-plane, and
thus instability is introduced. The stability of the system
with the worst-case delay should be calculated and
verified before implementing any control scheme. This
is the limitation of this design, though in most of the
applications this latency or delay can be ignored. In
applications where the delay is critical, a self-tuning
control scheme can be employed for strict control.
Alternatively, with the knowledge of the time delays
that occur on the scheduling or interrupt servicing we
can change the command signal to the controller
obtained from the path-planning algorithm.

System Performance Tests

All the components in the proposed design were
integrated and tested for workability. Failure detection
of Windows NT, which is running as a guest OS on
VMware virtual platform, was successfully
programmed using PVM. A PVM diagnostic application
would detect the failure of windows NT as it is or an
application under Windows NT and take appropriate
corrective action. The property of PVM to dynamically
configure its virtual machine by adding machines to it is
used to take fault tolerant measures in case of failure.

The RT-Linux machine was tested for real-time
performance at various loads. The determinacy was
very good, even at heavy loads, but the task switching
latency increased as the load increased. The typical task
switching latency was found to be around 5-15 µsec.
The worst case scheduling latency was found to be 25
µsec on a 300Mhz Pentium-II machine (with 256K
cache and 128MB RAM). A similar test on a 650MB
dual-processor machine with a worst case latency of 10
µsec is shown in Fig.2. This graph (and the subsequent
ones) shows, the periodic cycle time of each sample, so
the latency would be the difference between the mean
and an individual reading. This test was done without
the VMware virtual machine loaded. The same test was
repeated with VMware loaded with a Windows NT
guest operating system. The scheduling latencies
remained the same, as the RT-Linux scheduler would
distinguish CPU time requests from a RT-task and a
non-RT task, which in this case is the VMware guest
operating system.

Figure: 2 Scheduling latency test at 80% CPU load on
a dual processor machine.

The typical worst-case interrupt latency was found
to be 10 µsec for RT-Linux, when the VMware virtual
platform was not running as shown in Fig.3 on both
single and dual processor machines.

Figure: 3 Interrupt latency test at ~90% CPU load
without VMware running on a dual processor
machine.

These latencies will theoretically decrease with the
processor speed. The worst-case interrupt latency was
as high as 70 µsec in the presence of VMware virtual
platform, on a single processor machine. The VMware
attributes this to the occasional locking of the kernel
when it is initialized, which cannot be avoided. The
work around for this is to run on a dual processor
computer and run VMware confined to a single
processor to overcome the kernel lockout period. This
strategy paid off a bit and the interrupt latencies reduced
to around 10-12 µsec, as shown in Fig.4. There is still a
kernel lockout period when the VMware initializes itself
into the memory. Further research has to be done to
reduce this.

The Windows NT environment was very slow (on a
300 MHz Pentium processor), since it is running as a
guest OS on the VMware virtual platform (which is
executing on the VMware virtual platform which in turn
is executing on the host Linux OS). This problem can be
partially solved by stopping all unnecessary tasks both
in Linux and Windows NT and by programming
important tasks in NT as real-time tasks. The
performance in general improves with a faster processor
or a second processor.

Concluding Remarks

The system so proposed is still under testing and
improvement. This system is modular with greater
flexibility with the choice of its components. The choice
of the components makes it possible to meet all of the
design, functional constraints and cost factor.

Figure: 4 Interrupt latency test at ~80% CPU load
with VMware running on a dual processor
machine.

With the proposed system, two sets of programs
have to be written, one running on the RT-Linux and the
other on the Linux/NT. Real-time applications run
under RT-Linux with the control applications and other
diagnostic or path planning functions running either in
Linux or in Windows NT. A good communication
mechanism has to be established for data transfer
between RT-Linux and NT. This mechanism should be
fault proof, such that auto channeling of data is done in
case of failure. Proper shutdown of the system should
be possible in case of NT failure. Much of this
functionality can be implemented using the PVM
software.

The interrupt latency problem in presence of
VMware virtual platform has to be solved for better
performance. There are still problems with the kernel
locking while initializing VMware virtual machine.
There was some implementation problems with ‘CPU
TLB stuck’ on some motherboards. This problem has
been reported to the RT-Linux mailing list. Having a
second processor is not a cost-effective solution again
though it solves the problem partially.

A thorough testing of the system with a variety of
scheduling requirements, task interaction and failure
modes on a fully functional system has to be done.
Right now only scheduling delays of the real-time tasks
has been considered, but inter task communication
delays with all sorts of real-time and non-real-time
applications running should also be tested.

References

1. Steeplechase Handbook, practical guide to PC-
based control and flow-chart programming,
Steeplechase Software inc. 1999, ISBN: 0-
9655406-1-8.

2. PC-based instrumentation and control, Tooley
Michael, Oxford, 1991, ISBN: 0750620935.

3. Requirements of OMAC1.1, a white paper available
at http://www.arcweb.com/omac.

4. A study on flexible and integrated servo controller
for actuators in mechatronic systems, 1989, D.
Eng. Thesis presented by Frank de Schepper at the
Toyohashi University of Technology, Japan.

5. Windows NT as a real-time OS, M. Timmerman &
J.C.Monfret, Real-time Magazine, issue 97-2.

6. Inside Windows NT, Davis A. Solomon, 1998,
Microsoft Press, ISBN: 1572316772.

7. Venturcom Inc. homepage at http://www.vci.com.
8. Radisys homepage at http://www.radisys.com.
9. Imagination Systems at http://www.radisys.com.
10. Hard real-time extensions of Windows NT

evaluation report available at
http://www.vci.com/products/vci_products/rtx/rtx_
nt_arc_test_results.html.

11. Windows NT real-time extensions: an overview, M.
Timmerman & J.C. Monfret, Real-time Magazine,
97-2.

12. RT-Linux, White paper, Victor Yodaiken,
Department of Computer Science, New Mexico
Institute of Technology, available at
http://www.rtlinux.org/documents.

13. RT-Linux as embedded operating systems, an
article by Jerry Epplin in the October 97 issue of
Embedded Systems Programming magazine.

14. Technical White paper on VMware virtual
platform, Feb’99, available in PDF format at
http://www.vmware.com/pdf/whitepaper.pdf.

15. PVM, A User’s guide and tutorial for networked
parallel computing, Al Geist, Adam Beguelin, and
et.al. The MIT Press, 1994. ISBN: 0-262-57108-0.

