
PICARD on RT-Linux: a component software architecture for the

real-time control system

Osok Song, Yunho Jeon, Dong-Young Kim, and Chong-Ho Choi

School of Electrical Engineering, Seoul National University, Korea

fosok, yunho, young, chchoig@csl.snu.ac.kr

Abstract

This paper presents an architecture and design methods for rapid development of real-time control

systems such as CNC or robot controllers. PICARD (Port-Interface Component Architecture for Real-

time system Design) is a software architecture and environment which is aimed to reduce development

time and cost of real-time control systems. With PICARD, a control engineer can construct a control

system software by assembling pre-built software components using interactive graphical development

environment. PICARD has been used to implement a prototype PC-based CNC controller successfully.

PICARD consists of PICARD Virtual Machine(PVM), a component library, and PICARD Con�guration

Editor(PICE). PVM is a real-time engine of the PICARD system which runs control tasks on a real-time

operating system. The component library is composed of components which are called as taskblocks.

PICE is a visual editor which can con�gure control tasks by creating data-ow diagrams of taskblocks

or ladder diagrams for sequential logics. PICARD has been implemented on several operating systems

including QNX, WindowsNT (non-real-time), Linux (non-real-time), INtime, and RT-Linux. Compared

to other operating systems, there are some di�erences in RT-Linux implementation in which real-time

tasks should be written as kernel modules. For the communication between a PVM on a target system

and PICE on a host computer, a simple protocol was devised because RPC or CORBA cannot be used in

RT-Linux. By using description of communication functions in the Python language, function stubs are

automatically generated. Experiences on using the C++ language in kernel modules are also discussed.

1 Introduction

Thanks to the rapid improvement of the PC hard-

ware and real-time operating systems on PCs, the

adoption of PCs for real-time systems, which tradi-

tionally used dedicated hardware devices, is becom-

ing more common. For example, the controllers of

CNC (Computerized Numerical Control) machines

which handle user interaction while generating tra-

jectories and controlling multiple servo motors are

being replaced with PCs with real-time operating

system.

While using PC hardware for such tasks reduces

hardware cost, the cost increase due to diÆculties

of building reliable and eÆcient software can o�set

this advantage. The use of a real-time operating sys-

tem only provides a basic means to build real-time

software. Although there have been extensive studies

on real-time system design methodology or software

engineering, building robust and complex real-time

software is still diÆcult even for experienced software

engineers. What makes the problems worse is that

parts of control system software are often written

and maintained by control or mechanical engineers,

who usually have neither enough knowledge nor ex-

perience on real-time system issues such as priority

inversion, race condition or deadlock.

In order to facilitate designing control systems and

maintaining their related software, PICARD (Port-

Interface Component Architecture for Real-time sys-

tem Design) has been developed. It is a software ar-

chitecture and environment for rapid development of

control systems such as CNC or robot controllers,

which are traditionally implemented with PLCs

(Programmable Logic Controllers), DSPs (Digital

Signal Processors) and proprietary embedded con-

trollers. The aim of PICARD is to make it easy to

create eÆcient and reliable hard real-time software,

using pre-built software components.

Software components are units of software which

can be reused without modifying or recompiling the

source code of the software. While a few widely used

software component standards exist, they are not

suitable for hard real-time systems. Software com-

ponents for real-time systems should be eÆcient and

deterministic. They should also provide mechanisms

to deal with problems such as race conditions, prior-

ity inversions and to predict and limit the maximum

blocking time of time-critical task. PICARD solves

this problem by limiting what a component is allowed

to do at run-time and by exposing the data ow in-

formation between components to the con�guration

system. The con�guration system can apply various

validation and optimization methods without inter-

vention of a human by using the information on the

data ow between components as well as the infor-

mation of the components. An interactive, graphical

editor has been also developed to assist rapid devel-

opment of control systems.

PICARD has been implemented on several operat-

ing systems, including WindowsNT (non-real-time),

Linux (non-real-time), QNX, INtime, and RT-Linux

[1]. Among these, RT-Linux shows good hard real-

timeness and provides enough features which are re-

quired for PICARD such as networking and dynamic

object �le loading.

The rest of this paper is structured as follows:

Section 2 is about the reviews of previous related

studies. Section 3 introduces the architecture and

some unique features of PICARD system. Section

4 is about issues on implementing PICARD on RT-

Linux. Section 5 presents example systems which is

built by using PICARD. Finally, concluding remarks

are made in section 6.

2 Related Works

2.1 Component software

The component software technology is closely re-

lated to the object-oriented programming and is of-

ten mentioned without clear distinction. While both

technologies use modularity (or encapsulation) to in-

crease re-usability, component software emphasizes

the ability to be deployed independently using well-

de�ned, easily accessible interface. Many of the

widely used component software standards, such as

COM from Microsoft and JavaBean from Sun Mi-

crosystems, o�er mechanisms to retrieve informa-

tion on a component's interface without access to

its source code or additional documentation. Com-

bining this property with implementation techniques

that allow dynamic loading of pre-compiled software

modules, it becomes possible for third-party vendors

to supply independently developed components with-

out worrying that their proprietary algorithm might

be disclosed.

One drawback of using component software is that

it introduces overhead both in size and speed. This

becomes a more important issue for control applica-

tions where memory size and processor speed are lim-

ited. In order to use the component software for con-

trol applications, the components should be eÆcient

and have deterministic behavior. Furthermore, there

should be a mechanism to manage access to shared

resources from multiple tasks with minimal and de-

terministic inuence on real-time performance. Tra-

ditional methods such as the priority ceiling protocol

(PCP) or immediate priority ceiling protocol (IPCP)

[2, 3] cannot be used eÆciently because the PCP re-

quires information about the entire system which is

not available when each component is developed and

compiled. For these reasons, the standard compo-

nent models are not adequate for real-time control

applications.

2.2 Models of computation

An important issue in component software for con-

trol systems is the selection of the model of compu-

tation. Many di�erent models of computation for a

control system have been used and studied. One of

the popular approaches is the data-ow model. Rep-

resented by objects and (endless) streams of data

owing between them, the data-ow model looks

similar to a hardware system familiar to many con-

trol engineers. This model has been successfully

used in many application domains such as simula-

tion (e.g. Simulink from The Math-Works), signal

processing (e.g. Ptolemy: [4, 5]), data acquisition

and analysis (e.g. LabView from National Instru-

ments) and scienti�c visualization (e.g. Visualization

Data Explorer from IBM), to name a few. The data-

ow model is usually used in a visual programming

environment and has an advantage for control sys-

tems with tight real-time requirements because the

model reveals sensor-to-actuator data paths explic-

itly. Hence, the data-ow model is used in PICARD

to decompose a control system function into multi-

ple components and construct a control system using

them.

Another popular model used for control systems is

Finite State Machines (FSMs) and its variations.

FSM is well suited to describe and analyze complex

sequential control logic, but compared to the data-

ow model, it is more diÆcult to deal with hard real-

time requirements of feedback controllers. Thus, it

is used together with the data-ow model in some

control systems (e.g. [6]).

In the following, software methodologies closely re-

lated to PICARD are briey introduced.

TaskBlock Editor

Ladder Diagram Editor

MMI Editor

MMI

Meta code
generator

PICE (PIcard Configuration Editor)

���
���
���

���
���
���

������

Picard VM

PVM I/F

TaskBlock
Library

Runtime Support

c/c++ source

component library

compile

 Byte Code

obj file

meta obj

Layer

O/S

H/W

Communication

Figure 1: The overall architecture of PICARD

2.3 IEC 61131-3 standard

The IEC 61131-3 standard [7] de�nes common

elements and programming languages for pro-

grammable logic controllers (PLCs) or similar sys-

tems in industrial automation.

The Function Block Diagram (FBD) is one of the

programming languages de�ned in the standard. The

FBD is a graphical programming language which

looks like electronic circuit diagrams. Function

blocks can be thought of as software components

which can be used in FBD, though no standard dis-

tribution format is de�ned by the IEC 61131-3 stan-

dard. This representation is very natural when one

thinks of function blocks as ICs (Integrated Circuits)

or other electrical hardware components familiar to

control engineers. Compared to the Ladder Diagram

(LD), another graphical programming language pri-

marily used to process binary values, the FBD deals

with other data types in a more general way. Us-

ing the FBD, a control system can be constructed

by connecting function blocks.

2.4 Chimera

The Chimera [8, 9, 10] is a real-time operating sys-

tem developed to control recon�gurable robots. The

Chimera Methodology is proposed as a solution to

create dynamically recon�gurable real-time software

using components which communicate using their

ports. Similarly to function blocks of IEC 61131-

3, port-based objects (PBO) of Chimera communi-

cate with the outside only through their well-de�ned

ports. PBOs are con�gured and connected to form a

control system. Each PBO is an independent concur-

rent process that can execute at any frequency. One

of the key features of Chimera is the way PBOs com-

municate with each other. In Chimera, each PBO

keeps its local state variable table, which the PBO

can access without synchronization. There is also a

global state variable table, which is a union of all lo-

cal tables. Consistency between the global and local

tables is maintained by copying the contents in the

critical section at the beginning and the end of each

period. Because access to the global table is syn-

chronized by a single global lock [8] or by disabling

interrupts [9] there is no possibility of deadlock or

priority inversion. It is assumed that the size of the

data to copy in each period is not large in most con-

trol software so that copying them as a whole in a

critical section does not a�ect real-time performance

of the system.

3 PICARD Architecture

Three main components of PICARD are taskblocks,

PICARD Virtual Machine(PVM)and PICARD Con-

�guration Editor(PICE). PVM is a real-time engine

of the PICARD system which executes control tasks

on a real-time operating system. The component li-

brary is composed of components which are called

taskblocks. PICE is a visual editor which a sys-

tem designer can use to con�gure control tasks by

creating data-ow diagrams of taskblocks or ladder

diagrams. PICE includes an editor to compose Java-

Input port Output port

Config port

Taskblock

(a) Taskblock (b) Conditional block

Conditional input

Figure 2: Graphical representation of taskblocks

based MMI program. Figure 1 shows the overall ar-

chitecture of PICARD's implementation.

3.1 Taskblock

Taskblock is a basic software component in PICARD.

Figure 2 (a) shows a graphical representation of a

taskblock. It interacts with other taskblocks through

well-de�ned interfaces called ports. Three port types

are de�ned: input port, output port and con�gura-

tion port. Input and output ports are used to trans-

fer values between taskblocks. Con�guration ports

are used to set various operation parameters such as

number of axes of machine tools and gains of feed-

back controllers. A taskblock class is implemented as

a C++ class inherited from a common base class and

all ports of taskblock can be used as normal variables

in member functions.

The properties of a taskblock and its ports are de-

scribed in a taskblock interface description �le which

is C++ header �le with extended macros. It is

parsed by the meta code generator to create meta

code automatically. The meta code is compiled and

linked together with the code that describes the be-

havior of the taskblock. The information of the

taskblock such as names of ports, their data types

and HTML documentations can be extracted and

used by the run-time system when a system designer

designs a control system. An example of taskblock

description �le is depicted below.

#include "basicTB.h"

class taskblock : public class BasicTB

{

PICARD_TASK_BLOCK taskblock

(doc="sample taskblock");

PICARD_INPUT_PORT<double> input

(doc="input port", default=0);

PICARD_OUTPUT_PORT<double> output

(doc="output port", default=0);

public:

virtual int ready();

virtual int fire();

}

PICARD_FILE "*.html", "*.gif"

At least two functions should be de�ned in taskblock.

� ready():

The actions which should be performed before

a control system starts to run is de�ned in a

ready() function such as variables and hard-

ware initialization.

� fire():

When a taskblock is executed, this function

of the taskblock is called in every period. A

behavior which can cause blocking is not al-

lowed in the fire() function. For example, if

a taskblock is required to perform a �le or net-

work I/O, it should use asynchronous API to

open and read the device and poll it in each

period.

One or more taskblock binary �les are linked to build

a taskblock library . According to the operating sys-

tem on which PVM is running, the taskblock libraries

are statically linked to PVM or dynamically loaded.

There are other kinds of taskblocks which are im-

plemented with PICARD bytecode�, instead of us-

ing taskblock classes and building binary �les. They

appear as taskblocks in PICE and are used in the

same way as ordinary taskblocks when a system is

designed. They are:

*PICARD bytecode will be explained in section 3.2.4

� Composite taskblock : A composite taskblock is

an encapsulation of one or more taskblocks and

connections between their ports. It is used as

a taskblock and avoids repetition of the same

con�guration.

� Conditional taskblock: A conditional taskblock

in PICARD corresponds to `if' or `switch'

statements of textual programming languages.

Using a conditional taskblock, groups of

taskblocks can be activated or deactivated ac-

cording to the value of a conditional port.

Chimera achieves similar e�ect by allowing

real-time switching between multiple con�gu-

rations, and IEC 61131-3 provides a state pro-

gramming language for this purpose. In PI-

CARD, the change of con�guration caused by

a conditional taskblock is more localized to a

small part of the control system. Figure 2 (b)

shows an example of a conditional taskblock.

� Delay taskblock: A delay taskblock is a special

taskblock which is assumed to have no tempo-

ral dependency between its input and output

ports when the execution order is determined.

At run time, a value presented at its input port

is transfered to its output port in the next pe-

riod. A delay taskblock is used for resolving

loops in a data-ow of a taskblock diagram.

� Inline taskblock: Taskblocks which have simple

run-time behavior can be constructed using PI-

CARD bytecode. For example, taskblocks for

adding two integers and for converting a real

number to an integer are directly converted to

bytecodes, not using taskblock objects. They

allow to make taskblocks with simple algorithm

without compiling C++ source code.

� Queue block: While most tasks in a control sys-

tem are periodic in nature or can be processed

periodically using polling, the periodic trans-

fer of a �xed amount of data between tasks

of di�erent periods is often inadequate. In a

CNC controller for machine tools, for example,

a G-code interpreter and an interpolator typi-

cally run in a task with a relatively long period,

while a position control taskblock runs in a task

with a short period. If only a �xed amount of

data can be transferred between the interpola-

tor task and the control task, then the interpo-

lator has to run at the same frequency as the

control task, or the control task should have a

bu�ering mechanism. Because situations like

this are quite common in control applications,

a queue is provided as a general solution.

The internal code of the taskblock can examine

the amount of space left in the queue and push

or pop data as much as is required in a sin-

gle period. A queue can be connected to mul-

tiple output ports of taskblocks running with

di�erent periods, but only one input port of a

taskblock can be connected to it. A queue in

PICARD is similar to multiple-input, single-

output queues which are provided by many op-

erating systems. A major di�erence is that a

queue in PICARD does not cause the calling

task (or thread) to be blocked to limit the ex-

ecution time of the taskblock which attempts

to put data to the queue.

3.2 PVM

PVM is a base platform for real-time task execu-

tion. It is responsible for loading taskblock libraries,

communicating with PICE and MMI, running real-

time tasks, and synchronizing data between real-time

tasks. PVM is designed as simple as possible with

minimal functionality for run-time execution so that

it can �t into a small embedded system. All complex

algorithms such as checking consistency of a con�g-

uration of a system and optimization methods are in

PICE.

3.2.1 Execution of a task

A task is a set of one or more taskblocks and internal

connections between their ports. A task is mapped

to a process or a thread of the underlying operating

system. Tasks are executed periodically and have

�xed priorities which are determined by rate mono-

tonic scheduling policy (RMS) [11, 12].

Taskblocks contained in a task are executed sequen-

tially in each period, and the order of execution is de-

termined by their topological order, as in IEC 61131-

3, to minimize the latency from sensors to actuators.

The following is a brief introduction of some unique

features of PVM.

3.2.2 LVT/GVT Coherence Protocol

Values of all ports in a task are stored in the task's lo-

cal variable table (LVT). To make an output port ac-

cessible to other tasks, the port should be exported.

When a port is exported, it occupies an entry in

the global variable table (GVT) and can be accessed

from other tasks by import ing it. Only one task can

export (write) a port, but more than one task can

import (read) it. The contents of LVT and the GVT

should be kept coherent so that a change of value in

an LVT entry can be propagated to corresponding

entries of other LVTs. When a task begins execution,

export

1 32

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

����
����
����
����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����������������������������

���
���
���

���
���
���

import export

preemptedexecution

task 1

task 2

task 3

import

GVT

Task 1 Task 2 Task 3

LVT

Taskblock 11

Taskblock 12

LVT

Taskblock 31Taskblock 21

LVT

Figure 3: LVT/GVT coherence protocol

the values in the GVT corresponding to imported

ports of the task are copied to the related LVT. At

the end of the execution, the values of the LVT cor-

responding to exported ports are copied back to the

GVT. Figure 3 shows example of a simple system

which is consisted of three tasks. The up arrows of

the lower part indicate release of each tasks.

The copying operation is executed in a critical sec-

tion (by disabling interrupts), which are marked

black in the �gure, so that the variable tables al-

ways maintain consistency by preventing the copying

operation from being preempted by higher-priority

tasks. This protocol is similar to the communica-

tion method of Chimera. One di�erence is that in

PICARD, taskblocks running at the same frequency

are grouped as a task and the contents of all ports

which are exported by a task are copied all at once

in a critical section to maintain consistency.

One drawback of this protocol is that the blocking

time due to the critical section increases as the num-

ber of import/export ports of a task increases. Meth-

ods to reduce this time is discussed in following sec-

tion.

3.2.3 Minimizing jitters

As a control system gets more complicated and the

number of variables shared between tasks increases,

it takes more time to synchronize LVT/GVT. The

performance of a time-critical task in a control sys-

tem such as a high-speed servo motor control task

can be a�ected by scheduling jitter due to the block-

ing from the synchronization of LVT/GVT.

Based on the idea of priority ceiling protocol, the

following methods can reduce the maximum block-

ing time of a system using the data ow information

between components [13]. Simpli�ed description of

the algorithm for the export ports is as follows.

At con�guration time in PICE:

1. Determine priority ceiling values of export

ports.

2. Sort and group the export ports of the task by

their priority ceiling values in ascending order

when the location of export ports are allocated

in the shared memory.

At run time in PVM:

1. At the end of each period, copy values of ex-

port ports from LVT to GVT , of which priority

ceiling value is less or equal to the priority of

the task, Pi.

2. For copying the next group of export ports of

which priority ceiling value is higher than Pi,

raise Pi to priority ceiling value of the group of

export ports and copy the data of that group

from LVT to GVT.

3. Reset Pi to the original value and reschedule

tasks.

The same procedure is also used for import ports.

With this algorithm, the blocking time of high pri-

ority task can be signi�cantly reduced. This method

can be easily applied in the PICARD system in which

the usage of shared memory of tasks is known to the

con�guration system.

3.2.4 PICARD bytecode

The run-time behavior of a task is de�ned by the

PICARD bytecode. The bytecode is generated

by the con�guration system in PICE and trans-

fered into PVM. The set of PICARD bytecode in-

cludes RUNTB for calling taskblock's �re() func-

tion, COND JUMP for implementation of condi-

tional block, and memory management commands

such as READ N and WRITE N.

Bytecodes for changing priority of a current task and

for calling the OS scheduler to reschedule the task

set. These bytecodes are used for implementing jit-

ter minimization algorithm.

In the bytecodes, the addresses are stored as han-

dles. Before executing the bytecodes for the �rst

time, handles are converted to real addresses by pre-

processing process.

3.3 PICE

PICE is a graphical editor on the non real-time host

computer. It is programmed with Java language. It

consists of three editors with di�erent functionalities.

3.3.1 Taskblock diagram editor

The taskblock diagram editor is used to compose a

periodic task by connecting pre-built taskblocks as

shown in Figure 4. When PICE starts to run, it

is connected to a PVM via network (TCP/IP, se-

rial bus, etc.), and get the the meta information of

taskblocks from PVM. A control designer can exam-

ine the properties and documentations of taskblocks

with property window.

A task is represented as a white workspace. By

drag-and-drop of taskblocks and connecting ports of

taskblocks, run-time behavior of the task is easily

con�gured.

3.3.2 Ladder diagram editor

PICE provides another way to design and describe

a task as shown in Figure 5. The ladder diagram

editor used a LD language de�ned in IEC61131-3

standard. Besides the taskblocks for functions and

function blocks de�ned in IEC61131-3 standard are

provided, normal Taskblocks can be also integrated

into the ladder diagram seamlessly. Variables in a

ladder diagram can be exported and imported to and

from GVT to communicate with other tasks in the

system. A LD program is interpreted to PICARD

bytecode and executed in the same way as tasks de-

scribed with taskblock diagram. This editor can be

used for constructing PLC task which can replace

PLC based on proprietary hardware.

3.3.3 MMI editor

Figure 6 shows the MMI editor for developing Java

MMI program of control system. The MMI editor

provides JavaBeans components for monitoring and

controlling system as the form of JavaBeans. These

components include input components reading data

from variables in PVM such as switches and output

components writing data into variable in PVM such

as gauges and graph.

Constructed MMI program can be executed as a Java

applet or a Java application. If a target system on

which PVM is running has a HTTP daemon pro-

gram, the MMI program of the form of Java applet

can be stored in a target system and a web browser

can be used for executing MMI.

4 Implementing on RT-Linux

First version of PICARD was developed on Linux

and QNX. For its good real-time performance and

functionalities, RT-Linux was chosen as the main

development platform of PICARD. There are some

di�erences on RT-Linux implementation from other

implementations because real-time tasks should be

written as kernel modules.

4.1 Communication between PVM

and PICE

A simple protocol was devised for the communica-

tion between PVM and PICE. There are two ways

for communication: synchronous and asynchronous.

Synchronous communication is a blocking function

Figure 4: The Taskblock diagram editor of PICE

Figure 5: The ladder diagram editor of PICE

Figure 6: The MMI editor of PICE

Java VM

Communication Program
User address space

Kernel address space

Picard VM

RT-Linux Kernel

Task block
Library Module

RT-Linux system

PICE Ladder Diagram Editor MMI Editor

Non Real-time system

Figure 7: PICARD on RT-Linux

call to PVM from PICE or MMI program. The com-

munication functions are described in Python lan-

guage as follows.

API("readMem", # name

[Handle("hMemory"), Int32("offset"),

Int32("size"), Int32("num")],

arguments

StringZ("data"))

return value

The API generation tool parses this description and

creates function stub �les both for PICE in the Java

language and for PVM in the C++ language.

Asynchronous communication is used for tasks in

PVM to send data to PICE or MMI program at run-

time. This method can be used for real-time data

logging and error reporting.

In RT-Linux, PVM is divided into two programs as

shown in Figure 7. Communication program in user

address system is responsible for receiving and send-

ing data from and to programs in a host computer.

Synchronous communication between user space pro-

gram and real-time part of PVM is done via de-

vice �le while asynchronous one uses real-time FIFO

which is provided by RT-Linux.

4.2 Implementation of jitter mini-

mization method

To apply jitter minimization method in section 3.2.3

e�ectively, the time for changing task's priority

should be very short. For operating systems such

as QNX, for example, changing priority of a task in-

volves context switching and takes tens of microsec-

onds, which makes this method ineÆcient.

In RT-Linux, the current task's priority can be in-

creased simply by writing a new priority value into

the task's context data structure directly. This

method is very eÆcient for RT-Linux or similar op-

erating systems in which an application program can

change a task's priority quickly.

4.3 The problem related to using

C++

In RT-Linux, a real-time program should be written

as a kernel module. Normally, C language is used

to write a kernel module, but C++ language was

used to implement PVM and taskblock libraries of

PICARD.

To use C++ for creating kernel modules, several

problems should be solved.

� Global object construction and destruc-

tion

When the linker and the startup code does not

support C++, constructors of global variables

are not called. There are several solutions for

this problem, such as dynamic allocation of all

objects and explicit call of constructor by using

a 'placement new' operator[14]. The simplest

one is linking C++ startup and exit code to

the kernel module, then calling functions for

global object construction and destruction, in

init module() and cleanup module() respec-

tively. which are do global ctors aux()

and do global dtors aux() in case of g++.

� Exporting functions of taskblock

In RT-Linux, a taskblock library is loaded to

the RT-Linux kernel as a kernel module after

PVM is loaded. Each taskblock in a library

has a set of interface functions, and these func-

tions are called by PVM to get the meta in-

formation of the taskblock, initialize and ex-

ecute taskblock. The interface functions of

taskblocks should be registered in PVM when

they are loaded to the kernel, which is the

member functions of C++ classes.

Because the kernel module cannot export the

member functions of C++ class directly, wrap-

per functions in standard C are exported and

registered at a function table in PVM.

The operator new and delete should be de�ned ex-

plicitly as well to use kernel memory management

functions.

5 Example : CNC controller

By using PICARD, PC-based CNC controller which

is named SNU-NC has been built. To develop SNU-

NC, the functionalities of CNC controller was decom-

posed to several tasks: main task for interpreting G-

code and tool-path generation, control task and PLC

task. Taskblocks for each task are also designed and

developed. These taskblocks have well-de�ned inter-

face so they can be reused for developing di�erent

controllers for other systems. SNU-NC successfully

replaced the existing proprietary CNC controller and

proved the e�ectiveness of PICARD. The taskblock

diagram of main task and MMI are shown in Figure

8 and Figure 9 respectively.

6 Conclusion

In this paper, PICARD, a component software archi-

tecture for control systems is introduced. By using

software components which provide well-de�ned in-

terface and run-time accessible documentation, the

e�ort for the development of real-time control sys-

tem and maintenance is reduced.

PICARD is implemented on several operating sys-

tems including RT-Linux. For implementing PI-

CARD on RT-Linux, several modi�cations were re-

quired. Most of them were related to converting user

address space programs to kernel modules.

RT-Linux was chosen as the main development plat-

form of PICARD. It is because RT-Linux shows good

performance and provides enough features to imple-

ment PICARD.

References

[1] M. Barabanov, \A linux-based real-time operat-

ing system," M.S. thesis, New Mexico Institute

of Mining and Technology, 1997.

[2] R. Rajkumar, L. Sha, and J.P Lehoczky, \An

experimental investigation of synchronisation

protocols," Proceedings of 6th IEEE Workshop

on Real-Time Operating Systems and Software,

1989, pp. 11{17.

[3] L. Sha, R. Rajkumar, and J. Lehoczky, \Prior-

ity inheritance protocols: An approach to real-

time synchronization," IEEE Transactions on

Software Engineering, pp. 1175{1185, 1990.

[4] J. T. Buck, S. Ha, Lee E. A., and D. G. Messer-

schmitt, \Ptolemy: A framework for simulating

and prototyping heterogeneous systems," Int.

Journal of Computer Simulation, pp. 155{182,

1994.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A.

Lee, \Synthesis of embedded software from syn-

chronous dataow speci�cations," Journal of

VLSI Signal Processing Systems, 1999.

[6] S. A. Schneider, V. W. Chen, G. Pardo-

Castellote, and H. H. Wang, \Controlshell:

A software architecture for complex electrome-

chanical systems," The International Journal of

Robotics Research, pp. 360{380, 1998.

[7] International Standard IEC 1131-3, Part 3.

Programming languages, IEC, 1993.

[8] D. B. Stewart, R. Volpe, and P. Khosla, \Design

of dynamically recon�gurable real-time software

using port-based objects," IEEE Trans. on Soft-

ware Engineering, pp. 759{776, 1997.

[9] M. Hassani and D. B. Stewart, \A mecha-

nism for communicating in dynamically recon-

�gurable embedded systems," Proc. High As-

surance Software Engineering Workshop, 1997,

pp. 215{220.

postTrans

halt

P

K

ctrlX

ctrlY

ctrlZ

ctrlW

outF

regularDir

numCtrl

X

Y

Z

ref

numRef

outCount

busy

qout

Interpolator

Queue Block

Delay

Delay

Delay

Delay

Delay

reset

halt

absX

absY

absZ

P

numCtrl

numKnot

K

I

R

CodeNo

BlockName

EOP

moveSelector

busy

X

Y

Z

McodeRun

ScodeRun

ProgramEnd

J

E

F

S

Interpreter

manual

start

pause

stop

systemState

mode

halt

reset

ProgramMode

codeNo

run

S_forward

S_reverse

S_stop

Coolant_on

Coolant_off

Mcodeprocessor

sCodeRpm

run

Scodeprocessor

Delay

Delay

Delay

halt

INk

INctrlX

INctrlY

INctrlZ

INfeed

P

K

ctrlX

ctrlY

ctrlZ

ctrlW

outF

regularDir

numCtrl

numKnot

G01

halt

INk

INctrlX

INctrlY

INctrlZ

INfeed

P

K

ctrlX

ctrlY

ctrlZ

ctrlW

outF

regularDir

numCtrl

numKnot

G02

R

outputvinput

sinput

TransVector

outputvinput

sinput

TransVector

outputvinput

sinput

TransVector

numKnot

halt

codeNo

prevCtrlX

prevCtrlY

prevCtrlZ

prevCtrlW

prevNumCtrl

ctrlY

ctrlZ

ctrlX

numCtrl

CrdSysTrans

pstTrans

preTrans

nexAbsPos

Union port

CtrlX

CtrlY

CtrlZ

CtrlW

NumCtrl

CtrlX

CtrlY

CtrlZ

CtrlW

NumCtrl

R

halt

INk

INctrlX

INctrlY

INctrlZ

INfeed

P

K

ctrlX

ctrlY

ctrlZ

ctrlW

outF

regularDir

numCtrl

numKnot

G03

halt P

K

ctrlX

ctrlY

ctrlZ

ctrlW

outF

regularDir

numCtrl

numKnot

Gstop

Selector

Figure 8: The Taskblock diagram of main task in SNU-NC

Figure 9: The MMI of SNU-NC

[10] D. B. Stewart, \Designing software components

for real-time applications," Embedded Systems

Conference, 1999.

[11] C. L. Liu and J. W. Layland, \Scheduling al-

gorithms for multiprogramming in a hard-real-

time environment," Journal of the Association

for Computing Machinery, pp. 46{61, 1973.

[12] J. Lehoczky, L. Sha, and Y. Ding, \The rate

monotonic scheduling algorithm: Exact char-

acterization and average case behavior," Proc.

IEEE Real-Time Sys. Symp., 1989, pp. 166{171.

[13] Yunho Jeon and Chong-Ho Choi, \Minimization

of blocking time in componenent-based software

architecture for control systems," Control En-

gineering Practice, submitted for publication.

[14] B. Stroustruup, The C++ programming lan-

guage, third edition, Addison-Wesley, 1997.

