REAL TIME LINUX: TESTING AND EVALUATION

Phil Wilshire
Lineo, Education Services
email address philw@lineo.com

Abstract

This paper discusses the different benchmarking tools used to evaluate the performance of Linux and
their suitablilty for evaluating Real Time system Performance.

The author will then present an Open Source Test and Evaluation Suite toolkit which rapidly allows
system performance to be monitored and calibrated in a manner to allow a user to define the relative

merits of each proposed system.

1 Introduction

Linux is capable of truly exceptional performance on
even modest platforms. It can respond to an inter-
rupt in a few microseconds under certain, ideal cir-
cumstances.

This performance can quickly disappear when the
load on the test system is increased. The process of
sharing the cpu between different tasks causes a grad-
ual but, significant, performance degradation. Real
Time Linux provides a separate, preemptable, run
time environment that does not suffer from the same
performance losses.

Testing for Real Time performance can very quickly
become complicated and heated discussions are soon
started. The introduction of external measurement
tools introduces another level of system disturbance
due to the Input / Output Performance of typical
x86 based systems.

The call for a simple, effective test method that can
test the software performance and capability is often
heard.

This document will describe a simple test suite that
can obtain results from any pentium based system.
The actual test performed is somewhat basic but the
suite can be extended to use more complex tests as
required.

2 Established Benchmarks and
problems
There are a number of well know established bench-

marks [1] used to evaluate Linux and other operating
systems. These concentrate on different features of

the operating system and are used to focus on partic-
ular areas of performance. Larry McVoy’s lmbench is
probably the most respected performance measure-
ment tool published today.

see http://www.bitmover.com/lmbench/

Other examples can be found at this site:-
http://www.kernelbench.org/links.html

When testing Imbench I found a significant varia-
tion in the results obtained from the same suppos-
edly ”"unloaded” system. The variation in the test
results sometimes exceeded the actual value being
monitored.

However, tools are excellent when used determining
the raw capablilty of a system they tend to be less
useful for Real Time performance measurement.
The speed of a context switch or of memory ac-
cess provides important data but, with a Real Time
system, there are other equally important measure-
ments.

3 Real Real Time ?

Real Time systems require many of the same per-
formance characteristics as Non Real Time Systems.
There is, in addition, one special requirement unique
to Real Time. The requirement to absolutely meet a
hard deadline under a wide range of use cases.

It could be argued that all the other Operating sys-
tems characteristics can be reduced to this simple
problem.

The task switching and interrupt response times can
be usefully represented by stating the system’s abil-
ity to meet a scheduled deadline.

Such a deadline need not be executed very quickly
as long as the execution time and any variation or
jitter can be bounded and defined.

This characteristic is called ” Periodic Scheduling Ac-
curacy” for the purposes of this paper.

3.1 Periodic Scheduling Accuracy

A simple test task is run which collects a number of
data samples. The task measures the time at which
it starts to run.

The system is placed under different loads for differ-
ent test runs. The results are tabulated.

The three load conditions selected are :-

e No load - The system is idle with cron turned
off and no other tasks running

e Ping - The system pings another node in the
network.

e Disk - the system continually writes a disk file

3.2 Ping Code
The background task for the Ping test.

#!/bin/sh

#
$Id: run.ping,v 1.2

2000/08/29 08:26:17 gss Exp $
#

#

shell script to exercise the network system

if [! -d "$1"]; then
echo run.ping needs a directory parameter

exit 1
fi
if [-z $2]
then
PNODE="192.168.2.101";
else
PNODE=$2
fi

sh run.ping
./savepid ./run.ping $1

while (true) do

ping -f -c 10000 $PNODE #> /dev/null
done

3.3 Disk Code
The background task for the Disk Access test.

#!/bin/sh

$Id: run.disk,v 1.1

2000/08/28 23:56:18 gss Exp $

shell script to exercise the disk system
sh run.disk

if [! -d "$1"]; then
echo run.disk needs a directory parameter
exit 1

fi

./savepid ./run.disk $1

while (true) do
dd if=/dev/zero of=/tmp/disk.dummy bs=1024 \
count=4096 #> /dev/null
sync
sync
done

4 Time Measurement

Having decided that some form of measurement of
periodic scheduling accuracy is a suitable metric to
apply to real time systems we are left with the prob-
lem of measuring the time that the task actually
started its execution.

In previous experiments external equipment has been
attached to a system and pulses produced on the par-
allel port were used to provide timing data.

Test System
Parallel Port [= Fluke 1953A
e
Time
FIGURE 1: An Example Test System

Work by John Storrs [2] and others has indicated
that significant delays can be introduced by the PC
I/0 architecture to severely disrupt this mechanism.
A I/0 delay of 10’s of Microseconds can severely dis-
turb a measurement of under 10 uSeconds.

A system originally used by

Universidad Nacional de La Plata, Argintina
http://www fisica.unlp.edu.ar/

provides some useful data.

But since this uses an output device on the I/O bus
the measurement will be subjected to I/O delays.
The Pentium Processor comes to our help.

This device contains a program cycle counter that
can be readily accessed by software.

/* Inline function to return CPU cycle count */

static inline long long rtrdtsc(void)
{
long long time;
__asm__ __volatile__("rdtsc" : "=A" (time));

return time;

}

All that remains is the measurement of the actual
cpu clock to translate these cycle counts into a real
time measurement. The following code will provide
a good measurement of the actual Cpu Clock.

4.1 Clock Calibration Code

This is the code used to calibrate the clock. It runs
together with the RTAT Real Time Linux Extensions.
Similar code could be prepared to run under RTL.

/% This code requires a version of RTAI to be loaded to give access to

Real Time timers */
#define MODULE

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <asm/io.h>

#include <rtai.h>
const int SECS = 5;
MODULE_PARM(SECS, "i");
static int RESET_COUNT;

static void calibrate(void)

{

static int count = 0, gcount = -1;

static RTIME tbase;

long linux_cr0O, fpu_reg[27];

double freq;

union {unsigned long long time;

unsigned long time_1h[2]; } tsc;
tsc.time = rd_CPU_ts();
if (gcount < 0) {
tbase = tsc.time;

}

geount++;

if (++count == RESET_COUNT) {
tsc.time -= tbase;
__asm__ __volatile__("movl %%cr0,%%eax": "=a" (linux_cr0): : "ax");
__asm__ __volatile__("clts; fnsave /0": "=m" (fpu_reg));
freq = (double)tsc.time_lh[1]*(double)0x100000000LL + (double)tsc.time_1h[0];
count = (freq*CLOCK_TICK_RATE)/(((double)gcount)*LATCH) + 0.4999999999999;
__asm__ __volatile__("frstor %0" : "=m" (fpu_reg));
__asm__ __volatile__("movl Y%%eax,%lkcrQ": (linux_cr0): "ax");
printk("\n->>> MEASURED CPU_FREQ: %d (Hz) (/d s) <<<-\n", count, gcount/100 + 1);
count = 0;

}

rt_pend_linux_irq(0);

}

int init_module(void)

{

RESET_COUNT = SECS*100;
rt_mount_rtai();

rt_request_global_irq(TIMER_8254_IRQ, calibrate);
printk("\n—>>> HERE WE GO (PRINTING EVERY %d SECONDS) <<<-\n\n", RESET_COUNT/100);

return 0;

}

void cleanup_module(void)

{
rt_free_timer();
rt_free_global_irq(TIMER_8254_IRQ) ;
rt_umount_rtai();

}

5 Test Method

There are two types of simple measurement tasks
used. One is for Real Time and the other is for Non
Real Time applications.

5.1 Non Real Time

The System runs a simple task that will sleep for a
given period of time. When the task wakes up it will
take a measurement of the CPU cycle count. The
time between this and the last wake up period is
then saved in a memory array. When the test is over
the data in the array is printed to a file.

The code for the non real time task is given.

LI1771777777107717777777

//

// $Id: pthsqlsamp.c,v 1.2 2000/08/29 19:37:28 gss Exp $
//

//

// Uses code from:-

// Andris Pavenis <pavenis@lanet.lv>
// to get the timer data

//

// Heavily based Original Work from :-

// Departamento de Fsica

// Universidad Nacional de La Plata
//

// compile with the -02 optimisation
//

HITILITIIIITII0T 7000770777007 7700777077770777717777177771777117777171771777

// sqlsamp.c used to measure processor sched accuracy uses the cpu clock.

// Copyright (C) 2000 Zentropic Computing, Inc.
//

// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License

// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

// GNU General Public License for more details.

//

See the

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

//
// AUTHOR: Phil Wilshire <philw@lineo.com>
// DATE : Mon Jun 6 2000

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <time.h>

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sched.h>

#define DEF_PERIOD 50 /* every 50 milli Seconds */
#define DEF_COUNT 50 /* 50 samples */
#define DEF_RESTYPE "psaidle";

// Inline function to return the CPU clock counter
//
static inline long long lrdtsc(void)

{

long long time;

asm volatile__("rdtsc" : "=A" (time));

return time;

}

static void usage (char * prog) {
printf (" useage :- \n");
printf(" %s cpu_freq [num_samples] [cycle_delay]\n",prog);
return;

}

int main(int argc , char * argv[]) {

struct timespec ts;
struct timespec tsr;
long count, mcount, mperiod, value;

unsigned long long t1;
unsigned long long t2;

double * tdr;
double cpu_freq;

char * restype;
struct sched_param mysched;

mysched.sched_priority = sched_get_priority_max(SCHED_FIFO) -1;

if (sched_setscheduler (0,SCHED_FIFO, &mysched = -1) {
printf ("Error in steting the scheduler \n ");
perror("errno");
exit(0);

}

// There are two required parameters
if (argc < 2) {

usage (argv[0]);
exit(0);
}

// The CPU frequency in MHz is a required parameter
sscanf (argv[1], "/Llf",&cpu_freq);
printf ("#cpu freq = %f \n",cpu_freq);

// The sample count is a required parameter
sscanf (argv[2], "%1d",&mcount);
printf ("#mcount = %1d \n",mcount);

// period in mSecs -- convert to usecs
mperiod = DEF_PERIOD;
if (arge > 3) {
sscanf (argv[3], "%1d",&mperiod);
printf ("#period = %1d \n",mperiod);
}
mperiod *= 1000;

// restype IDLE, DISK or PING
restype = DEF_RESTYPE;
if (arge > 4) {

restype = argv[4];

printf ("#restype = /s \n",restype);
}

printf ("#\n");

mlockall (MCL_CURRENT | MCL_FUTURE);
tdr = (double *) malloc(mcount * sizeof (double));
if (tdr == NULL) {
exit(0);
}

for(count=0 ; count<=mcount ; count++) {

ts.tv_sec = 0;

ts.tv_nsec = mperiod * 1000;
tsr.tv_sec = 0;

tsr.tv_nsec = 0;

tl = lrdtsc();
nanosleep(&ts,&tsr) ;
t2 = lrdtsc();

// The elasped cycles over the frequency in MHz is usecs.
tdr[count] = ((t2-t1) / cpu_freq);

// Don’t use the first measurement
// Note that 10ms--the standard Linux lag on nanosleep
// have been factored out of the error time
for(count=1 ; count<=mcount ; count++) {
value = (long) (tdr[count] + (double)0.5);

printf("insert into data (results_id,data,rawdata) ");
printf ("VALUES (%sRES_ID,%1d,%1d);\n", restype, value-mperiod-10000,
}

value) ;

free((char *) tdr);
return 0;

* Local variables:

* compile-command: "gcc -Wall -Wstrict-prototypes -02 -o pthsqlsamp pthsqlsamp.c "
* c-indent-level: 4

* c-basic-offset: 4

* tab-width: 4

* End:

5.2 Real Time data to a user task for saving in the memory array.

When the test letes the data i inted to a file.
A task is run under a real time scheduler to measure efl the test complietes the data 15 prifited 1o a e

the Processor Cycle count. This task delivers the The Real Time code follows:-

IITTLITIIIITI00 7000770777007 7 7007770777 7077771777717777177771777717777177171777
// $1d: rttask.c,v 1.2 2000/09/14 19:38:57 gss Exp $

// rttask.c

//

LIIITTTI000077 770007777 700077777777777777777717777777771777777777717777777771777
//

// Copyright 2000 Zentropic Computing LLC.

//

// Permission is hereby granted, free of charge, to any person obtaining a

// copy of this software and associated documentation files (the "Software"),

// to deal in the Software without restriction, including without limitation

// the rights to use, copy, modify, merge, publish, distribute, sublicense,

// and/or sell copies of the Software, and to permit persons to whom the

// Software is furnished to do so, subject to the following conditions:

//

// The above copyright notice and this permission notice shall be included in

// all copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 1IN NO EVENT SHALL
// ZENTROPIC COMPUTING LLC BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

// DEALINGS IN THE SOFTWARE.

// Except as contained in this notice, the name of the Zentropic Computing LLC
// shall not be used in advertising or otherwise to promote the sale, use or

// other dealings in this Software without prior written authorization from the
// Zentropic Computing LLC

//

// Authors: Phil Wilshire

// Original date: Wed May 31, 2000

// Id: Q(#)$Id: rttask.c,v 1.2 2000/09/14 19:38:57 gss Exp $
//

// Description: This code collects data for the histogram

// application

//

HITTLITTIIITI00 07007770777 01007 77077707077 71777777777717777177771777717777177771/

LITI111707077070777770777

// Data and declarations common to user/kernel

HILTILITTILITI00 7700770007 0007 77107770077 7100777777777177771077717777177717177777

#define HIST_FIFO 0

[171777/7777/777777
//

// kernel module code

//
L111777701777
#include <linux/module.h>

#include <asm/io.h>

#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#include <math.h>

int PERIOD; // task period in microseconds
MODULE_PARM(PERIOD,"i");

#define T_FREQ 5 // task frequency Hz

int task_ticks = 0;
RT_TASK task_str;

// Inline function to return CPU cycle count
//
static inline long long rtrdtsc(void)
{
long long time;

asm volatile__("rdtsc" : "=A" (time));

return time;

}

// The real-time task which puts the current CPU clock count
// into the FIFO, then goes back to sleep

//

static void periodic_func(int arg)

{

long long this_time;

while(1)
{
rt_task_wait_period();
this_time = rtrdtsc();
rtf_put(HIST_FIFO, &this_time, sizeof(long long));
}
}

// Kernel task init. Create the FIFQ to use plus a task
// (periodic_func()) that runs based on PERIOD.
//

int init_module(void)

int err;
RTIME small_delay;

if(PERIOD <= 0)
PERIOD = 200000;

rt_set_oneshot_mode();
task_ticks = nano2count (PERIOD * 1000);

small_delay = nano2count(100000) ;

printk(" task_ticks = /d \n",task_ticks);
start_rt_timer(task_ticks);
rt_linux_use_fpu(l);

// initialise the fifo used to wake up the master user timer
if ((err = rtf_create(HIST_FIF0, 5000)) < 0)
{ printk("rtf_create: rtfifo /d :errmo = %d\n", HIST_FIFO, err);
return -1;
}
printk(" warning fixed period here \n");
rt_task_init(&task_str, periodic_func, O, 3000, 4, 1, 0);
rt_task_make_periodic(&task_str, rt_get_time()+small_delay, task_ticks);

return 0;

}

// Kernel task cleanup.

//

void cleanup_module(void)

{
stop_rt_timer();
rt_task_suspend (&task_str) ;
rt_task_delete(&task_str);
rtf_destroy (HIST_FIF0);

}

/*

*

Local variables:
compile-command: "gcc -DMODULE -D__KERNEL__ -I /usr/src/rtai/include \
-Wall -Wstrict-prototypes -02 -c -o rttask.o rttask.c"

*

* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4

* End:

*/

Some user space code to record the execution times measured by the real time task.

HITILITILIITILITT 0007100770077 7 0077707777077 7707777177771777117777171771777
//

// rtdata.c
// User space task used to receive the realtime data from the fifo
//

LILITTTIILL077777077777000077777770077777777777777777717777777771777777771777
//
// Copyright (C) 2000 Zentropic Computing, Inc.

//

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU General Public License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software

// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//

// AUTHOR: Phil Wilshire <philw@lineo.com>

// DATE : Wed Jun 7 2000

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>

#include <rtai_fifos.h>
#define DEF_PERIOD 50 /* every 50 milli Seconds */

#define DEF_COUNT 50 /* 50 samples */
#define DEF_RESTYPE "psaidle";

static void usage (char * prog) {

printf (" useage :- \n");
printf(" %s cpu_freq [num_samples] [cycle_delay]\n",prog);
return;

}

int main(int argc , char * argv[])
{

int £40;

long long lsamp;

double cpu_freq;

long count, mcount, mperiod, diff;
double * tdr;

double tdf;

char * restype;
struct sample { long long idata; } samp;

// At least 2 parameters are required
if (argc < 2) {

usage (argv[0]);

exit(0);
}

// CPU frequency is a required parameter
sscanf (argv[1], "/1lf",&cpu_freq);
printf ("#cpu freq = %f \n",cpu_freq);

// Test run count is a required parameter
sscanf (argv[2], "%1d",&mcount);
printf ("#mcount = %1d \n",mcount);

// Task frequency in msecs -- convert to usecs
mperiod = DEF_PERIOD;
if (arge > 3) {
sscanf (argv[3], "%1d",&mperiod);
printf ("#period = %1d \n",mperiod);
}
mperiod *= 1000;

// restype IDLE, DISK or PING
restype = DEF_RESTYPE;
if (arge > 4) {

restype = argv[4];

printf ("#restype = /s \n",restype);
}

// Allocate space for data
tdr = (double *) malloc(mcount * sizeof(double));

if (tdr == NULL) {
exit(0);
}

// Open the FIFO to read

if ((£d0 = open("/dev/rtf0", 0_RDONLY)) < 0) {
fprintf(stderr, "Error opening /dev/rtf0O\n");
exit(1);

}

// Read the first few value so we can start getting differences
for(count=0 ; count<5 ; count++) {

read(fd0, &samp, sizeof (samp));

fflush(stdout) ;
}

lsamp = samp.idata;

for(count=0 ; count<mcount ; count++) {
// Read a sample, calculate and save difference from previous sample
read(fd0, &samp, sizeof (samp));

tdf = (double) ((samp.idata-lsamp) / cpu_freq);
lsamp = samp.idata;

tdr[count] = tdf;

fflush(stdout) ;

printf("# cpu_freq = %f MHz count = %1d per = %1d usec\n", cpu_freq, mcount, mperiod);

// Print rounded differences as error and raw value
for (count=0 ; count<mcount ; count++) {
diff = (long) (tdr[count] + (double)0.5);

printf("insert into data (results_id,data,rawdata) ");
printf ("VALUES (%sRES_ID,%1d,%1d);\n", restype, diff-mperiod, diff);

}
free((char *) tdr);

return 0;

}

/*
* Local variables:
* compile-command: "gcc

-02 -o rtdata rtdata.c "

* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4

* End:

*/

-Wall -Wstrict-prototypes -I/usr/src/rtai/include \

Worst Case Accuracy
Target Software Cateqgory Load
1z 100mz 1oms dmz 100us 1dus 0
RTAI1.3 Hard Realtime | Disk Load 17us [
RIL 2.3 Hard Realtime | Disk Load 19u: [
Red Hat 6.2 Low Latency | Low-Latency |Disk Load | 4053us [N
Red Hat 6.2 SCHED FIFC |Disk Load | 9706us [N
hontatista 1.0 Low-Latency |Disk Load | 43065us NN

FIGURE 2:

FExample Test Results

Full bar shoses 1005

Q

FIGURE 3: Fzample Test Histogram

5.3 Post processing.

The output from the code is ”almost” an SQL file.
This, after some substitutions, is suitable for placing
into a database.

The timing data is then stored in a database and
extracted and plotted on a web page.

6 Statistics

When running a test such as this some means of pre-
dicting the probability of extending the results ob-
tained under test conditions to the conditions present
in the Real World is required.

A histogram of the results provides a useful indica-
tion of the quality of the test results.

A 1 sigma measurement will determine a range
within which 68% of all samples are predicted to fall
within (for a true Normal Distribution). You get
99.99% for a 4 sigma.
More details on the use of Statistics can be found
here.
http://biology.nebrwesleyan.edu/

empiricist /sources/tips/statsl.html
and here
http://www.statsoftinc.com/
textbook /esc.html
(Why the ”Normal distribution” is important)
When designing a Real Time System the 3 or 4 sigma
figure could be used as a worst case estimate.
You still need to handle the occasions where such a
deadline is missed but you will be assured that the
probability of missing the deadline is much reduced.

7 Conclusion

A simple system has been developed and presented
that allows a measurement of real time performance

and capability.

The results clearly show that , in the presence of
system activity , the Real Time extensions to Linux
do make a considerable difference. There is also a
marked difference between the capability of Soft Real
Time and Hard Real Time options currently avail-
able.

References

[1] Sources for System Benchmarks,
http://www.anime.net/

goemon/benchmarks.html
http://www.byte.com/bmark/bmark.htm
http://www.math.vanderbilt.edu/

mayer /linux/results.html
http://www.kernelbench.org/
http://www.zentropix.com/

products/support/testdata.html

[2] Real Time Workshop
http://www.thinkingnerds.com/
projects/rtl-ws/presentations.html

1999 ,

