EMPLOYING REAL-TIME LINUX IN A TEST BENCH FOR
ROTATING MICRO MECHANICAL DEVICES

Peter Wurmsdobler
Centre de Transfert des Microtechniques
39, avenue de I'observatoire, 25000 Besancon, FRANCE
peter.wurmsdobler@ctm-france.com

Abstract

This paper describes a testing stage based on RTLinux for characterising rotating micro mechanical
devices in terms of their performance, quality and power consumption. In order to accomplish this, a kernel
module employs several real time threads. One thread is used to control the speed of a master rotating up
to 40000 rpm by means of an incremental coder and a PCI counter board with the corresponding interrupt
service routine. Another thread controls the slave motor to be tested, synchronised to the coder impulses
using voltage functions saved in shared memory. The measurement thread is then responsible to acquire
date synchronously to the rotor angle and stuffs data on voltages, currents, torque and speed into different
FIFOs. Finally, a watchdog thread supervises timing and wakes up a users space program if data have
been put in the FIFOs. This GTK+ based graphical users space application prepares control information
like voltage functions, processes data picked up from the FIFOs and displays results in figures.

1 Introduction

Rotating mechanical devices such as micro motors
and micro actuators, or passive components like mi-
cro ball bearings and spiral springs can nowadays be
found in a variety of consumer goods. Before they
can be used and implemented, however, their perfor-
mance and quality has to be assessed, already during
development and later on, in the production line. In
the framework of a European project, CTM (Centre
de Transfert des Microtechniques), a research cen-
tre in the field of micro technology, has developed a
testing stage for characterising such micro mechani-
cal devices.

Generally speaking, characterising a micro motor or
any electric motor is based on a profound under-
standing of the electro-mechanical system in terms
of the energy flow and transformation. Depending
on the motor principle different approaches have to
be applied, e.g. a piezoelectric motor has to be sup-
plied with sinusoidal voltages near its eigen frequency
whereas the rotor speed will be a function of the volt-
age amplitude. The measurement principle for an
asynchronous motor is different again, and for a DC
or a synchronous motor, too. How can the torque-
speed characteristic be determined for a variety of
different motors?

The common sense approach will be to control the
motor with the appropriate voltage and to use a
brake to achieve a certain speed, i.e. the rotor speed
is a result of the brake effort applied. Then the
motor torque, speed and current can be measured,
which yields the power consumption and hence the
efficiency if the entire speed domain is scanned by
changing the brake effort. This approach shows al-
ready that there must be a constitutive relation be-
tween speed and torque one of which can be fixed.
The torque testing stage presented here employs the
inverse principle to accomplish this characterisation
task: it imposes a speed whereas the resulting torque
depends on the the motor control. Here Real Time
Linux comes into play, because this type of motor
control has to be done in real time. Before the mea-
surement principle is explained in detail, however,
the test system used is presented.

2 Experimental setup

Figure 1 shows how the experimental setup looks
like. The essential parts of the system, the com-
puter, a rack containing control electronics, and the
mechanical setup itself are shown.

FIGURE 1:
setup (middle) and computer.

FIGURE 2:
setup.

The test rig with its vertical

2.1 Mechanical setup

Figure 2 gives a more precise idea of the mechanical
setup. The micro mechanical device to be tested is
held by a clamping device which is directly mounted
on the torque sensor (a cylindrical shiny box). This
torque sensor maps a torque of +50 uNm applied to
it to a linear displacement by means of a linear silicon

Micro torque testing stage with electronic rack (left), mechanical

spring inside the shiny box and laser triangulation.
This sensor is then mounted on another sensor, the
ATT force sensor. The entire setup is fixed on a zyz
translation table to make the correct alignment to
the master motor on top of the setup. This mas-
ter motor is equipped with an incremental coder of
360 impulses per revolution and drives the micro me-
chanical device using a special micro coupling being
rigid for torsion, but elastic for all other degrees of
freedom. In case of an active probe device, a con-
nector for 3 channels is mounted on the right of the
setup.

2.2 FElectronic interface

All electronics necessary to drive the sensors and ac-
tuators is built into a rack. It contains the amplifier
of the torque signal converting the laser spot dis-
placement to £5V, an amplifier for the ATI torque
sensor mapping forces to 0 — 5V. Additionally, the
coil currents of a micro motor are measured mapping
+1000mA to £5V, or the induced voltages with a
gain of 1. Furthermore, the rack comprises the power
stage for the master motor mapping +£5V to +4A as
current setpoint, and the power stage for the micro
motor with three channels of £12V output voltage
mapped to a £5V setpoint. All signals are available
on connectors on the rack.

2.3 Computer requirements

In order to output 4 signals, one for motor current
setpoint and three for the coils of the micro mo-
tor, respectively, the ICPDAS 12bit output board pi-
oda4 has been used with approximately 4.8 us time

consumption per channel output. A ICPDAS pci-
das1800 DAQ board has been employed to measure
the torque, three currents, three voltages, the mo-
tor speed and the ATI forces at 12bit resolution and
with 3 us conversion time. Unfortunately, each time
a single value is measured, the board has to be pro-
grammed with the channel and the channel’s gain
which takes approximately 30 us. Without changing
channels and gain getting a single value takes 5.6 us.
Concerning the computer, a P200 was used with
64MB RAM, a 3Com3C905 Ethernet adapter, Ma-
trox Mystique PCI, and everything usually built in
a desktop computer as mouse, etc. On the OS side,
FSMLab’s RTLinux 2.0 using kernel 2.2. 10 has eas-
ily been compiled for this system, with xsvga3.3.3
and fvwm2 running as graphical user interface.

3 Measurement Principle

Figure 3 gives a simplified view of what is going on
in the test bench. At a given rotor speed the incre-
mental coder will produce TTL impulses (1) which
are conveyed to the counter board (2). Note that
the resulting frequency is 240kHz at 40000 rpm for
360 impulses per revolution which is too much to be
treated by the computer in real time, at least for the
computer used. For this reason the counter board is
programmed to count from a speed dependent value
(later on called “down sampling factor”) down to
zero and triggers an interrupt afterwards (3). The
computer measures the time between two such inter-
rupts which is a measure for the rotor speed, and out-
puts the necessary master motor current (4) by the
analog output board (5) and the amplifier which fi-
nally drives the master motor (6). This is the master
motor speed control loop which guarantees a desired
motor speed.

The measurement principle will then depend on the
motor type. For example, a synchronous motor
is usually driven by sinusoidal functions creating a
rotating magnetic field which takes the permanent
magnet with it. The angle between both, the so-
called load angle, will determine the torque pro-
duced. If the computer outputs these voltage func-
tions perfectly synchronised to the rotor angle during
rotation (7,8,9), the load angle will remain constant.
Thus, aload to the probe motor is simulated and this
angle can simply be changed by changing an offset
of a pointer to the functions to be output. At the
same time the coil currents can be measured which
together with the output voltage gives the power in-
put into the motor.

In the case of an evaluation of a passive component
which is driven by the master motor, a friction torque
will make the sensor to output a signal proportional

to the torque, too. In any case, the produced torque
can be measured synchronously to the external coder
impulses (10,11,12) which are equivalent to the rotor
angle. The power losses and hence the efficiency can
then be calculated.

It can easily be seen that this kind of testing ap-
proach is versatile and can be adapted to many types
of motors and measurement, like the measurement
of the EMF for synchronous motors. However, the
concept needs to be implemented in a real time op-
erating system in order to guarantee synchronisation
and predictability. How this is done using RTLinux
is explained in the next section.

incremental 1

2 3

coder piod48
6 I
master
motor .
£ 11 : 12

couplin E‘ pcil800
) <
micro
motor

5[4
torque pioda4
sensor 8 [IIITTTTT 7
FIGURE 3: The measurement princi-
ple.

4 The test bench software im-
plementation

The software for the torque testing stage is broken
into two parts, a graphical interface as user space
application, and a real time module responsible for
measurement and control (Micro-Couple-Metre =
Micro torque testing stage):

e xmcm, the X-Windows Micro-Couple-Metre in-
terface,

e rtl_mcm.o, the RTLinux Micro-Couple-Metre
kernel module.

The logical structure from a software point of view
is explained in Figure 4 with the user space applica-
tion xmem, the board specific objects, rt_pci1800.0
for the ICPDAS pcil800L DAQ board, rt_pioda4.o
for the ICPDAS piodad4 output board, rt_piod48.o
for the ICPDAS piod48 counter board, and the real
time measurement functions in rt_mcm.o.

Given that the kernel has been compiled with the
real time option by FSMLab’s RTLinux [1], four
modules are insmoded, the shared memory module
mbuff.o [2] for all data being output, rtl_fifo.o
for FIFO buffers, rt1_time.o and rtl_sched.o for
timing and scheduling, respectively.

Linux user space

events and data | | control data
RT-Linux kernel rtl_fifo.o mbuf f . o
PIODA48 PCI1800 PIODA4

T 1 T (I
-._> electronic part

FIGURE 4: Principle structure of the
torque measurement system with flow of
data and signals.

4.1 Real time module - user space ap-
plication interface

The only way the user space application can talk
to the kernel modules is by means of device files,
i.e. /dev/mbuff concerning shared memory and
/dev/rtf* as for the FIFO buffers. In fact, it is
the kernel module allocating these resources, and
the user space application mapping it. Concerning
shared memory data structures with its variables are
defined in a header file for the use of both user and
kernel space.

FIFOs are used for both messages and data. Mes-
sages defined by the appropriate header file can be
passed to and from the real time module causing a
message handler to be executed both in the real time
module and the user application. Data acquired in
the real time module are stuffed into the FIFOs and
picked up from by the user space application.

4.2 Real time module

As the DAQ board related modules (rt_pci1800. o0,
rt_piod48.o0 and rt_pioda4.o) are concerned, the
basic functions being called from the measurement
object rt_mcm.o are:

extern void rt_pci1800_aget(
unsigned short int channel,
unsigned short int *value);

extern void rt_pioda4_aset(
unsigned short int channel,
unsigned short int value);

extern void rt_piod48_bitset(
unsigned short int channel,
unsigned short int value);

Based upon these functions, rt_mcm.o is responsi-
ble for the data and control flow by employing four
threads and an interrupt service routine with de-
scending priority:

e isr, the interrupt service routine calculates the
time difference between two interrupts used by
the probe motor control thread and wakes up
some threads if necessary, especially the probe
motor control thread for a synchronous motor.

e watchdog, a watchdog to check “down sam-
pling factor”, update certain values and send
UPDATE to the user space if a certain number
of values are in the FIFOs.

e pm_control, the probe motor control thread
which outputs voltage functions either woken
up by the interrupt service routine or sched-
uled in order to generate a rotating field of a
given speed at a certain sample frequency in
the case of an asynchronous motor. Addition-
ally, it measures voltages and currents if de-
sired by the user space application.

e mm_control, the master motor control thread
running at constant sampling time for open
and closed loop master motor speed or brake
control. If wanted for display, the speed is put
into the corresponding FIFO.

e measure, the measurement thread woken up
by some instance if timing can afford it, i.e. if
there is sufficient time available. This thread
will stuff torque and force values into the cor-
responding FIFOs.

If the module receives a START message, the message
handler will prepare all initial data, start the neces-
sary threads and enable the interrupt on the coder
interrupt line. The combination and interaction of
all threads depends on the master motor, the probe
type which can also be a either an active or a passive
component, the signals to be measured or output,
like torque, forces or induced voltages and currents.
For the synchronous motor mentioned above Fig. 5
explains the necessity of synchronisation and real
time interrupt treatment. The CPU is loaded ei-
ther with the interrupt service routine waking up
the probe motor thread pm_control, or the measure-
ment task measure, or if there is some time left with
other kernel or user tasks, 0THER. With RTLinux, the
treatment of the interrupts for staying synchronised
can be guaranteed to high frequencies, even at high
load or if some measurement is going on. This is nec-
essary in order to output the driving signal for the
micro motor synchronously.

CPU load trace

Coder signal

OTHER

pm _control |/
neasur e

0 time [us] 200

voltage output functions

The watchdog of the real time module sends a mes-
sage to the non real time process by an event FIFO
saying UPDATE. From this point, a routine gets the
values form the FIFOs, converts them to physical
values and calculates some mean values for a given
speed. These values are appended to a already mea-
sured values and displayed on the screen in “human
scale real time”, i.e. the time constraints or deadlines
imposed by the human eye are met.

If the user presses the stop button, a stop message
STOP is sent. This message will be received by the
real time module and the appropriate function will
stop interrupt generation an disable motors and the
like. Then the user can print the deserved torque
versus speed plots.

channel A

channelB |- T

channelC L-----oo ot

L
T -

0 angle [deg] 3éO
FIGURE 5: Principle of measurement
and output synchronisation, in terms of
time (top) and angle (bottom,).

4.3 User space application

As the visible main application, xmcm (Fig. 6) pro-
vides in general a main window with some sub-
windows showing the inputs and outputs of the mi-
cro torque testing stage, some control buttons in or-
der to start and stop measurement and to start and
stop calibrating, and some text fields in order to en-
ter rotation speed, select motor types etc. This X-
Windows interface is programmed using the GTK+
widget set library [3] in combination with a scientific
plot widget [4]. In addition a widget for displaying
scientific style figures has been programmed for all
inputs and outputs, like voltage functions (Fig. 7).
All language specific texts are defined in a separate
header file such that other languages can be compiled
easily (necessary, because this is a European project
funded by the European government).

At start-up this applications maps the shared mem-
ory in its space, and opens the FIFO buffers. After
this, all GTK+ widgets are created, like the start
button or the figures for the torque to be measured.
The user can now calibrate the sensors, enter some
values like the voltage amplitude or the speed set-
point, and select the channels he is interested in,
torque, currents or more. If the user then presses
the start button, some values are calculated and put
into shared memory. Afterwards, a START is sent
to the real time module and the user application is
waiting.

| |
=1 Hicro Torgue Heter (=
File Calibrate Options Display Help
Master motor: .. Off # 0On # Right « Left
Speed control Motor speed [rpm] (0.0 5“
« Brake control Brake current [ma] (0.0 {}
Frobe motor: < Off Ea] - Right w Left
- pltage contraol Amplitude W] 1.0 "}
« Current control Amplitucle [mad] 1.0 A_,
« DT motaor
A Multiphaze motor Pale RATIO [-] [1 ‘5“
Field angle Fhase number [-] |3 ‘(‘:‘,
+ Rotor angle Field speed [rpm] (0.0 é
w Time functions Phase andgle [Heg] (0.0 ‘5“

Start [Stap |

FIGURE 6: Test bench user interface.

4i—P| Output voltages over field angle | /i)

File Help

TN LN LA

0& £

>
7
o
04 =
i
4
'
'

—— Channel 0
— Channel 1
—— Channel 2

e

/ /
Fi ;
/ 4

i / /
/| i /1

!
I /
I
Il
i
: i ~ —
L I 4 S
i - S
_ I g £
0.8 = >
[, S v
.
0.0 400 @00 1200 1600 2000 2400 280.0 352000 S60.C
Field angle [deg]

1
=
=

Voltages [-]

'
o
=

FIGURE 7: Voltage functions.

5 Experimental results

Some tests for assessing the performance of all
threads and the interrupt service routine have been
carried out before any real measurements. For exam-
ple, a signal generator with a square wave of 5V was
used to simulate coder impulses. Using a FIFO for
passing the time differences to user space for debug-
ging, the maximum interrupt frequency was approx-
imately 50kHz, i.e. 20 us. In terms of rotor speed,
this would be 8333 rpm for 360 points per revolution,
or the necessary down sampling factor of approxi-
mately 5 which means 72 points for one revolution for
the maximum speed of 40000 rpm. Of course, taking
into account the measurement time per channel, the
number of measured values will decrease depending
on the number of channels selected.

Another test was performed with creating a rotat-
ing field using three sinusoidal voltage functions with
360 interpolation points per revolution. Running
the simple probe motor thread without any measure-
ment, the CPU could schedule this task at 20 kHz,
i.e. 50pus. Using no down sampling, this yields
55.5Hz or 3333rpm. In order to obtain the maxi-
mum speed of 40000 rpm, a down-sampling factor of
12 is needed, i.e. 30 interpolation points per revolu-
tion. Since the time for one single output is approx-
imately 5 s, this time delay could be seen between
the channels on the scope.

Finally, for the use in real measurements, the sam-
pling frequency for the watchdog thread was set to be
10 Hz, the master motor control frequency to 200 Hz.

=1 Torque over field angle [z

File: Help

: ‘
! \
| 1

{—— channein|

CooooooooooooooooooooDooo
L]

I I I I I I I I I
400 800 1200 1600 2000 Z40.0 2800 S520.0 360C
Field angle [deg]

=
S T T T T T T T T T T T T T T T T T

FIGURE 8: Measured torque over field
angle for speed equal to zero.

As an example for a measurment, the test bench
has been used for testing a synchronous motor con-
tributed by a project partner within the HAFAM

project. The setup as described above creates a ro-
tating field at 60 rpm, but controls the rotor speed to
be zero. With a typical tri-phase voltage functions
of 1V amplitude applied to it, the torque depending
on the phase angle between permanent magnet and
field vector can be seen in Fig. 8 for a rotor speed
equal to zero.

6 Conclusion

Rotating micro mechanical devices as they are widely
used in consumer goods have to be evaluated, a task
which can easily be carried out using common pro-
prietary software for simple types of measurement,
because real time is done by the the DAQ board.
If more sophisticated measurement techniques are
used, however, e.g. accurate synchronisation of in-
put and output and single measurements on demand,
then RTLinux constitutes a good and reliable means
to accomplish the task. Especially, programming
time critical control and measurement tasks being
very close to computer hardware as small and sim-
ple threads running on top of a real time executive,
makes the entire application predictable and trans-
parent. The measurement software shown here uses
four small of these thread with very little code. Most
data pre and post processing can be deferred into
user space.

Acknowledgements

This work has been carried out within the HAFAM
project (Handling and Assembly of Functionally
Adapted Microcomponents), funded by the Euro-
pean Government in the Research Network of Train-
ing and Mobility for Young Researchers, contract NR
ERB FMRX-CT97-0141.

References

[1] RTLinux, FSMLab’s Real Time Linux.
http://www.rtlinux.org,
http://www.fsmlabs.com/

[2] mbuff, the shared memory module.
http://crds.chemie.unibas.ch/

[3] GTK+, the graphical toolkit.
http://www.www.gtk.org/

[4] GTKplot, a widget for scientific plots.
http://www.ifir.edu.ar/grupos/gtk/

