
TELEMETRY USING SOFT

REAL−TIME

TELEMETRY BASED ON SOFT REAL−TIME

DEVICE DRIVER

 Dipl. Ing. Jürgen Keidel
 EADS Deutschland GmbH

 Military Aircraft Business Unit
 MT5 Flight Test

 wizant.keidel@01019freenet.de
juergen.keidel@m.dasa.de

www.01019freenet.de/wizantkeidel

A B S T R A C T

Telemetry requires only soft realtime, i.e. receiving data at a fixed high rate without
loss . These data must be processed in time and delivered to several different applica−
tions. The requirement for being real time is weak, as seen by human eye. Therefor
standard LINUX is used with a special driver. The driver uses a SBS−4422 decom−
mutation board and delivers data blocks in real time into user−space using cyclic
buffer and DMA. The associated application is forced into RT−scheduling
(SCHED_FIFO) and uses a standard read to synchronize and to get the buffer pointer.
Measurements show that at actual data rates the rt−jitters stays in the range of 1 ms,
with some exceptions, which are covered by the ring buffer. At the actual data rates
(512 words every 2 ms) no data are lost, even if the remaining system is heavily
loaded.

I N T R OD U C T I O N

Telemetry has a wide area of applications.
Within this document, telemetry is done
for flight test, so transferring data rates up
to 4 Mbit per second as PCM data stream.
Herein the data are packed into so called
frames of fixed size, each one identified
by a sync−pattern and a subframe id.
Within the frame the data are transferred
with a fixed word size. So at first, the
incoming bits have to be synchronized and
packed into a frame, then the data words
need a lot of processing as calibration,
combining and splitting. The last part
delivers the final data to all the applica−
tions, which will display them. In fact,
delivering data deals with more than
tenthousand different measurement data.
The first part, synchronizing the pcm−
stream is done by some special hardware.
The second and most time consuming part
was done in former times by special hard−
ware, but now it is a job for software as
well as the third part. At the point, where
the hardware has constructed a frame and
delivers it to the application, realtime is
requested as the data packages won’ t ever
wait for a user. But calibration forces this
job into user space, as it needs floating
point operations.

PR E V I O U S T E L E M E T R Y
SY ST E M

The system, being used since years was
based on special hardware from Aydin
Monitor, a Silicon Graphics server, reflec−
tive memory from Vmic and several
workstations from Silicon Graphics.

Going into detail: The incoming PCM−
data stream, a serial bitstream, is prefor−
matted in the first module of the "Front−
end", the bitsynchronizer and fed into the
decommutator which synchronizes the bit
stream and breaks it down to "frames",
feeding now the single words, which are
completed with a unique identifier into the
"Signal−processor", a fast bit−sliced proc−
essor which calibrates, combines and splits
the data into their final format. Finally
these data reach the i/o−processor, which
pushes them either into reflective memory
or into normal memory for disc output.

PROBL EM S

Now, since the system is more than
nine years old, several problems arise.
First of all The "Front end"; it is
impossible to get spare parts or to
upgrade it. Second the explosion in
computer speed results in a similar
explosion in data rates. And third the
costs. The actual system, just calcu−
lating the "front end" and the server,
sums up to something like 250 000 $
and up.
So what could be done?

There is standard hardware on the
market fulfilling some of the tasks, the
actual "Front end" is doing.
Modern PC’s are powerful and fast
enough to serve as Signal−processor as
well as as data server.

This hardware would be much cheaper
and all the basic software, application
and control software would be still
usable in most cases "as is".

SOL UTI ON

Choosing LINUX as operating system
resulted in the possibility to write the
necessary drivers ourselves and, as it is a
"unix", continue with all the existing soft−
ware. During that time, there was no
discussion about various RT−versions of
LINUX, but the standard linux was at least
a good start.

 L I N U X B A SE D
T E L E M E T R Y SY ST E M

.

Hardware

Industrial dual pentium 600 MHZ
 128 MB ram
SBS_4422_pci decommutator/bitsync/...
Vmic reflective memory

3com T100 network card
adaptec SCSI

All parts are standard products, and
may be replaced at any time be new,
better or faster ones. The amount of
money is about 40 000 $ max for the
front−end and server side.

SOFTWARE

Actual used is SusE Linux 6.4 with
kernel version 2.2.14.
No changes to the operating System
Only Drivers are needed, written as
loadable modules.

All applications could be used "as is"
after recompiling.
Only the control programs for the new
hardware had to be developed.

Dr i ver def i n i t i ons

The driver has several different regions of

functionality.

1) control of hardware (done via IOCTL)

2) I/O (READ)

3) RT−control to guarantee the data rate.

HA RDW A RE CONT RO L

As the sbs−4422 board has several
different functions, the IOCTL is split into
so called "subdevices", one per function.
This gives a bit more safety, as the
different functions use their own region of
registers. So using "subdevices" each
function register can be checked for
validity. All parts of the 4422−board will
be programmed and set up via IOCTL,
even all control memory. It would be
possible to do the same using "mmap" for
registers and on board memory, but unfor−

tunately here is a problem with endia−
ness on board. Together with the hard−
ware control, IOCTL handles several
RT−preparing functions, as creating the
ring−buffer and starting the I/O.

I /O REA D

The sbs_4422 has several options for
transferring the actual data to users
application. It operates internally with a
double buffer method, so presenting a
new frame of data in a new buffer. This
actual buffer can be mapped into user
space, but it will be swapped to new
data without notice. In addition, as the
sbs_4422 is based on a PLX_9080, the
board has its own DMA engine. So it is
possible to get an interrupt, as soon as a
frame is filled into buffer, start DMA
and get another interrupt at DMA−
done. Creating a circular buffer in user
space and presenting it via IOCTL to
the driver, will prepare it for use via
DMA. The driver will control the
pointers to that buffer and may chain
the DMA to fire continuously data into

the ring without user intervention. The
information, where the frame of data was
stored, is available either via IOCTL or as
return value from a read. Now the read
will block until new data are received, so
freeing from high priority, or return
immediately if new data are already avail−
able. It is also possible to use "SIGIO" and
to react only on that signal, while the
DMA runs cyclic through the buffer, but
here the way through the system takes
more time, than the "read" method.

RT−CONT RO L

When a program is running and receiving
data from sbs_4422, it will loop around a
"read" system call. As long, as the data
rate won’ t be to high or the data proc−
essing takes to much time, the read will
free the cpu at least for some microsec−
onds. On the other hand, the task must be
ready to process new data when a new
frame is received. This behavior is typi−
cally for a task scheduled as
SCHED_FIFO. But this setting needs
superuser privileges. Now the driver
switches the process into SCHED_FIFO
together with a fixed priority as soon as
the start−command (via IOCTL) is given.
The priority is calculated in a way, that
running more than one board won’ t use
the same level more than once. The stop
command (again via IOCTL) will imme−
diately force the task back to
SCHED_OTHER with default priority.
In addition, at creation of the ring buffer,
this memory in user space is reserved as
kernel memory to protect it against being
swapped out.

Flow of Controls and Data

The picture tries to demonstrate the
data and control flow of an application
using the sbs−RT−driver. Colors show

the increasing priority.

The application starts, setting up the
different subdevices, loading the

board’s memory. As next step, the
application allocates enough memory
for the ring buffer and presents this
buffer via IOCTL to the driver. The

driver now generates the DMA tables,
saves the physical memory addresses

and reserves the buffer as kernel
memory, so protecting it against being

swapped. From this point on, every
preparation is done. So, whenever the

data are ready, the driver is commanded to
start data transfer. At this point the appli−

cation is forced into RT−priority
(SCHED_FIFO) with a high priority. The
task itself goes into a loop, using a "read"
to get the latest buffer pointer and waits

until the next frame of data is stored.
During the loop, all sorts of calculations

may be done, as well as disc I/O etc.. The
task is running in user space and so able to

use floating point arithmetic and to use
system calls. The application cannot influ−
ence the kernel and need not run as root,

so protecting the whole system.

Finally, whenever the job should be
finished, the data are stopped via an
IOCTL call, resetting the priority to
normal (SCHED_OTHER, RT−priority 0).
Of course this and the release of the ring−
buffer is done at "close" as well.

M EASUREM ENT S

A sbs−4417 Dac board, needed for the
normal telemetry job, was used to get

timing measurements. The driver raised
a line when entered through the "read"

and lowered it again, when leaving the
read. Another line was raised at receiving
the "frame" interrupt and lowered when
receiving the DMA−done. So plugging a
scope at the DAC−outputs an exact meas−
uring of timings was possible.

Looking at the printout from the scope,
the timing is shown.
The same dac channels were used to get a
longer printout of the pulses via paper
recorder, showing the stability.

The pulses from interrupts are totally
stable at their expected 2 ms rate. The
application uses different times for
different frames, this is natural, as data are
different.

The second diagrams shows clearly, that
the time, used for calculation by the appli−
cation, is not influencing the behavior of
data receiving, only the application itself.
The third diagram shows the case, where
the application is nearly overloaded. It
enters the read sometimes, but most of the
time, it tries to work with the old buffers,
it runs behind the data, not synchronous
anymore. Of course, after a while, some
data blocks will be lost. On the other hand,
as long as the application is able to keep
track, the data are processed synchro−
nously in respect to the real time rate on
which they are received from the aircraft.

R E F E R E N C E S

[1] Alessandro Rubini / Linux Device
Drivers
 O’Reilly
[2] Linux kernel programming
 Addison Wesley

[3] Mbuff
 Tomasz Motylowski
moty@stan.chemie.unibus.ch

[4] SBS Technologies, Inc
 http://www.sbs.com

[5] PLX Technology
 http://www.plxtech.com

