
Remote Data Acquisition and Control System for Mössbauer

Spectroscopy Based on RT-Linux

Zhou Qing Guo∗∗ , Huang Chun Hong , Zhou Rong Jie

(Applied Magnetics Key Lab of Education Ministry, Depar tment of Physics,

Lanzhou University, Lanzhou, 730000, P.R.China)

Abstract
 In this paper a remote data acquisition system for Mössbauer Spectroscopy based
on RT-Linux is presented. More precisely, a kernel module is in charge of collecting
the data from the data acquisition card which is self-made based on ISA, sharing the
data with the normal Linux process through the module of mbuff, carrying out the
remote control and returning the results to the client by building a simple and
effectual communication model. It's a good sample to deal with the communication
between the real time process and the normal process. This user application can
access to this system by the browser, or Java program to implement the real time
observation and control.

∗ Corresponding to author: e-mail: zhouqg@lzu.edu.cn

1. Introduction.

1.1 Mössbauer spectroscopy
 Mössbauer spectroscopy is a
nuclear spectroscopy that has an energy
resolution sufficient to resolve the
hyperfine structures of nuclear levels.
for example 57Fe ,it reaches 1012 (

�
E/E).

It has used in many domain, such as:
Material science, chemistry, biology,
archaeology, and so on. Rudolph L.
Mossbauer in 1958 discovered that when
the emitting nucleus is bound into a
lattice there is a chance that the nucleus
experiences no recoil . This is the case
when the recoil -energy is smaller than
the required energy for phonon creation.
It is this recoill ess emission which is
called the Mossbauer effect. And
Rudolph was granted the Nobel Prize on

physics for this effect in 1961.
A typical Mössbauer spectroscopy
system structure is shown in Figure 1.
The radioactive source is moved by a
triangular of the frequency 100 Hz. The
spectra are recorded as a function of
velocity, using a 486DX PC. The scan
through all channels is controlled by a
digital waveform generator, which
produces the velocity reference signal
driving radioactive source and two
digital pulses: the multi scaling start
(STA) and the channel advance (CHA).
W ������� � -ray has passed through the
absorber is detected, a pulse (COUNT)
is produced and accumulated in the data
collection card as the counts of this
channel. When the next CHA is coming,
the counts are collected by the PC.

Fig.1 Mössbauer spectroscopy system structure
In this way each channel will receive
	�

����� � �������������!
"#�� %$'&)(*&)(,+-"#�.��('&.(�/0"1�

the narrow velocity range assigned to it,
and the channel number is directly
proportional to the velocity. Many
pulses are detected and stored during
each cycle of the motion, and successive
cycles over a long period of time allow
the spectrum to build up as a whole. At
velocities where resonance absorption
occurs the accumulation rate will be
slower.

1.2 System Overview
The system is the model of the
client/server. It is composed of three
parts: Real time collect data module,
Cron process module, Client part. They
are designed as module. Its structure
graphic is shown in Fig.2.
1.Cron process module:

It includes web server process, and the
cron process which executes listening
the port, verifies the login users, and
monitors status of the system. They are
concurrent processes.

2.Real time collect data module:
It executes the instructions sent by the
client, simultaneously deals with the
hardware IRQ and run the ISR.

3.client part:
There are two methods which the
authorization user could control the
system and visit the data. The user
could do this by the browser which is
supported Java virtual machine .If they
have not, they also can use the Java
application program written in
particularly.

To the system, only the authorization
user could control the equipment by

Velocity

servo

ampli fier

Dr ive

coil

Pick up

coil

source Detector Pulse

ampli fier

Single-c

hannel

analyser

(SCA)

Waveform

ampli fier

Waveform

generator

2

Mössbauer spectra data collect card (ISA)

PC

CHN STA

COUNT

Client 3 Server 3

 Java application

 Java applets

 (Browser 4

Fig.2 The gr aphic of the system st r uctur e

sending the instructions through the
INTERNET. For example, there is a
simple corresponding: The client sends
the instruction request, and the cron
process captures the request and verifies
it. And then execute the corresponding
task and return the system status to the
client.

2. Communication Model

In this section the simple and effectual
communication model is presented
briefly. In the right (Fig.3), it's the
communication model of the system.
There are three types of data being
exchanged between the normal
process and real time module. There
are the commands from the client, the
result of the command being executed,
and the collecting data. The first two
are of the char data type. The last is of
the block data type. So dealing with
the first two just use the pipes and real
time FIFOs. In this model it requires
creating an in pipe and an out pipe,

and is also the real time FIFO. One is
used as receiving the commands, the
other is used as returning the result.
The collecting data is exchanged
between Reserve and Rtcollect.o by
Mbuff.o.

Fig.3 The Communication Model

Users Cron Process

Real time collect process

internet

Mössbauer spectra data

collect card

Mössbauer spectroscopy

Linux User
Space Reserve

Linux
Kernel
Space

Rt_FIFO.o Mbuff.o

Rtcollect.o

Command
pipe

Result

pipe

Data in shm

Command Status

Data

In

shm

In the following, the Java-code of the
client and the C-code of the server on
communication are presented below.
1.The Client (In Figure 4):
To free the application user, the client
part is writing in Java. It is composed of
four parts. One is the bullet of the
Commands which user could send to the
server through the sockets. The other is
the bullet of displaying the data which
comes from the shared memory buffer.
Another is the utili ty bullet for simple
dealing with the data of the displaying
bullet. The fourth is a label to display
the message when a action occurs.
Here given the network communication
of the client (written in Java).

if(socket==null){
 setMsg("Connecting to
SERVER---" + Address + ":" + Port);

 socket=new
Socket(Address,Port);

 socket.setSoTimeout(50000);
 setMsg("Successfully

Connected to SERVER---" + Address +
":" + Port);

 tempStatus=status;
 status=11;

 }
 DataOutputStream out=new

DataOutputStream(socket.getOutputStre
am());

 DataInputStream in=new
DataInputStream(socket.getInputStream

());
 while(in.available()>0)
in.readByte();

2.The Server:
 This part is divided into two parts, a
cron program as running background

and listening the client request from
network, and a real time module
responsible for dealing with IRQ,
executing ISR and the command from
the client. 5

Reserve, the cron program running
background as the normal Linux
process. 6
Rtcollect.o, the real time module
initializing the real time thread.

User space cron process--Reserve

In the system, Reserve is the main
program running as the normal process
in the user address space. This part is a
cron process to create the network
socket, dealing with the request of
network connect, verifying users and
multiusers's instructions, and transiting
the command and returning the status
information after executing the
command, etc. For example, explaining
the system how to verify multiusers's
instructions. In this system, there are
several particular commands, such as:
START, STOP, CLEAR, REFESH,
SAVE. To run these commands, the
normal Linux process and the real time
process need to involve in at the same
time. The procedure is li st. First, the
normal Linux process "fork" a child
process to read the data of the RT_FIFO
coming from the real time module in the
circle. Here is the code:

if (!f ork())
 /*Create the child process* /
{

FILE * fp;
char id[5],sta;
while(1)

{
rt= open(RTRFIFO,O_RDONLY));

 /*Read the information of
RT_FIFO* /

read(rt,id,4);
read(rt,&sta,1);
close(rt);
id[4] = '\0';
/* id means the normal FIFO 7 * /
fp = fopen(id,"w");
fprintf(fp,"%c",sta);
fclose(fp);
 }

 return 1;
}

The normal Linux process also "fork" a
child process to wtite the data to the
RT_FIFO coming from the pipe created
by Reserve in the circle. The code is
below:
ctl=open(RTWFIFO,O_WRONLY);
if(!f ork())
{
….
umask(0);
mknod(pipe,S_IFIFO|0664,0);

write(ctl,ss,7);
/*writing the data to the RT_FIFO* /

readstatus(new_fd,pipe);

while(filter(new_fd,ss,user,pipe));
 remove(pipe);
 exit(0);
 }
 else close(new_fd);
 }
 close(sock_fd);
 fclose(logfp);
 exit(0);

}
Shared memory buffer:
The shared memory module mbuff.o is
for data being exchanged between

Reserve and Rtcollect.o. Here presented
the two sidesof the source code are:
On Reserve's side:
#include <mbuff.h>
long *buffer;
….
buffer=
(long)
mbuff_attach("RTBuffer",MAXCHANNEL*4);

On Rtcollect.o's side:
#include <mbuff.h>
static long * buffer;
static long
bufferA[MAXCHANNEL],bufferB[MAXCHANNEL

];

if

((buffer =

mbuff_attach("RTBuffer",MAXCHANNEL*sizeof(bu

fferA[0]))) == NULL)

 {

 rtl_printf("RT_Collect:allocates memmory

failure.\n");

 return(1);

 }

#ifdef debug

 rtl_printf("RT_Collect:the init_module reports

the buffer pointer is %ld\n",(long)buffer);

#endif

 When a client request arrives,
"Reserve" forks a child process, and this
process is responsible to the client
request. Now there are three processes in
the system, which are the parent process
(Reserve), the child process, the real
time process (Rtclloect.o).

Real time module:
 This is the key part of the system. The
data source produces the interrupt signal
every 20 8 S, so the interrupt service

should be finished in the time between
the interval of the twice IRQ, otherwise
could not protect the reliable data.
First, interrupt initialization. When the
real time task is loaded into kernel
address space to execute as the
Executable and Linkable Format. The
procedure is li sting below:
int init_module(void)
{
 rtl_hard_disable_irq(IRQ);
 rtf_create(FIFO_Ro,1000);
 rtf_create(FIFO_Wo,1000);
 outb(0xBF,PORT_D);
 /* set 8255 A&B port in mode 1,PC7 in
read mode*/
 outb(0x09,PORT_D);
/* enable INTEA*/
 outb(0x04,PORT_D);
/*disable INTEB*/
 signal1 = STOP;
 signal2 = STOP;
 status.port[0] = STOP;
 status.port[1] = STOP;
 if
(rtl_request_irq(IRQ,rt_handler) ==
-EBUSY)
 {rtl_printf("RT_Collect:Irq %d is
busy. Maybe this programm is already
running.\n",IRQ);
 return(1);
 }
 rtf_create_handler(FIFO_Ro,&fifo_
handler);
if
((buffer=
mbuff_attach("RTBuffer",MAXCHANN
EL*sizeof(bufferA[0]))) == NULL)
 {

rtl_printf("RT_Collect:allocates
memmory failure.\n");

 return(1);
 }
#ifdef debug
 rtl_printf("RT_Collect:the
init_module reports the buffer pointer is
%ld\n",(long)buffer);
#endif
 rtl_hard_enable_irq(IRQ);
 return(0);
}

3. System Hardware

In this system, there is a 486 PC whose
CPU is 486DX, with 24M memory, a
ISA based data acquisition card, and a
NE2000 network card. In the designing,
the system could be visited by the ten
clients at the same time through Internet.
Mössbauer spectra data collect card is
composed of a 8255 chip, counting unit,
logic circuit. The 8255 chip is the
interface between the counting unit and
pc, and it works under mode one.
It could meet the performance request as
below:

1.Channel range: 0-1024
2.Maximum driver frequency: 100

HZ
3.Maximum counting frequency(the

limit of 74LS393 Chip): 2×106 /S
 4.The worst case: 20 9 S

4. Results

The remote data acquisition and control
system has been developed at Applied
Magnetics Key Laboratory of the
Education Ministry, Lanzhou University.
Especially in order to realize that the
experimenter could do the test in the

Fig.4 The result of the sample (Ni0.5Zn0.5Fe2O4 Nano Particle)

home through the Internet. From this
system, it could prove that real time
Linux is a good means to carry out this
job and is a very good hard real time OS.
And as known, the source is radioactive
isotope which should be harm people.
But now they could do the experiment
anywhere if they want, just through the
network, better than go to the laboratory.
Here presented the result of the sample
(Ni0.5Zn0.5Fe2O4 Nano Particle) above.
The x-coordinate is the open channel,
and the y-coordinate is the count
corresponding to the channel.

Acknowledgements

This work has been carried out within
the help of the RTLees in the real time
Linux maill sit, especially the help from
Nicholas Mc Guire.

 References

[1] Rongjie.Zhou,Jinbo.Yang,Fashen.Li,

Journal of Lanzhou University,31(2) 1995

46

[2] Motylevski, Thomasz (1999).mbuff,a kenel

shared memory drivers,

http://crds.chemie.unibas.ch/

[3] Yodaiken, Victor (1999). RTLinux, real

time linux, FMSLab, Soccoro, New Mexico,

USA

http://www.rtlinux.org/

http://www.fsmlabs.com/

