
A COMING OF AGE FOR GPS: A RTLINUX BASED GPS RECEIVER

Brent Ledvina − Cornell University − Ithaca, NY
ledvina@cornell.edu

Francisco Mota − UFRN − Brazil
fmota@ee.cornell.edu

Paul Kintner − Cornell University − Ithaca, NY
paul@ee.cornell.edu

Abstract
The Global Positioning System, or GPS, is a key technology for both the civilian and scientific research
markets. GPS provides users with precise geodetic positioning and time determination. Most GPS receivers
require specialized hardware and complex software to operate. One receiver, originally designed to run in
DOS, will be the focus of a code migration to RTLinux. The major aspects of the migrated code are an
interrupt service routine, multiple threads, and TCP connectivity. Following the migration we noticed that not
only did receiver stability increase dramatically, but also errors in positioning decreased. To provide insight
into code migration from DOS to RTLinux, we will focus on the specific difficulties, discoveries, and
enlightenments encountered.

1. Introduction

Once the focus of many "realtime" computing applications,
the DOS operating system has not followed a fruitful
evolutionary path. With the ability for software to directly
access hardware and its ubiquiteness, DOS levied an
important niche in inexpensive realtime computing
platforms. Today, DOS is dead, supplanted by various
formulations of Windows. Windows succesfully nullifies the
attributes which made DOS attractive to realtime
computing, by providing a platform that responds slowly to
interrupts, limits direct access to hardware and responds
slowly and unreliably to interrupts. On the other hand,
Linux, when modified to perform realtime computing, is an
ideal candidtate for inexpensive realtime applications [3].

With intentions toward migrating realtime code from DOS
to Linux, this paper provides a general guideline for those
interested. Sacrificing extensive details over general ideas,
this is an attempt to provide insight to those involved in such
a task. Additionally, highlights of running realtime code in
Linux are discussed.

2. GPS Basics

2.1. System Basics
GPS is a navigational system that provides precise
determination of position on or near Earth. Currently,
consisting of 27 satellites in medium Earth orbit, GPS
allows users to ascertain their position to within

approximately 20 meters [2]. Since its inception on Janurary
5th, 1980, GPS has continued to grow in popularity, while
the breadth of appliations using GPS has increased
dramatically. Indeed, it is common to find GPS’s influence
in navigational systems designed for geographic surveying,
hiking, and even driving a car.

To take advantage of GPS, a user requires a receiver.
Receiver designs vary significantly depending upon
intended use, but are fundamentally similar.

2.2. Receiver Basics
The original design of GPS dates back to the early 1970’s.
Due to the lack of computational speed at this time, receiver
design considerations were in favor of simplicity, in terms of
hardware and software requirements. Most modern receivers
take an approach that places a large portion of the receiver
in hardware, which implies an embedded system with a
proprietary operating system that executes code to track the
satellites, produce a navigation solution (determination of
position and time) and interact with the user. There is
typically another layer of software that takes the form of
mapping or navigational utilites for the user.

For a GPS receiver to function, it needs to lock onto satellite
signals. Each satellite broadcasts two signals at
1.57542GHz and 1.2276GHz, denoted as L1 and L2,
respectively. A satellite specific code, known as the course
acquisition (C/A) code, is used to discern satellites.
Correlation of the transmitted codes against local codes is
needed to locate satellites in frequency space. The 1023 bit

C/A code modulates the L1 at 1.023MHz, repeating every
millisecond. Accumulation of this 1000Hz data is required
for a receiver to operate.

2.3. The Development Receiver
The receiver that we focus our attention on was orginally
part of the GPSBuilder−2 development kit created by GEC
Plessy and now owned by Mitel. This devlopment kit,
released in 1995, was intended to provoke innovative
designs that take advantage of the chipset. This receiver is
unique in a number of ways. First, it is open source.
Hardware descriptions along with the source code were
provided for a development fee. Second, the system is split
into two components. There is a chipset which resides on an
ISA card for a PC, while all the software runs on a Intel x86
computer. Since its inception, another version designed as
an embedded system using the same chipset and an ARM
processor, was released by Mitel. This receiver along with
more mature software is known as the GPS Architect. Due
to the modern code and fact that both receivers rely upon the
same chipset, we chose to combine the two, using the ISA
card from the GPSBuilder−2 and the software from the GPS
Architect.

3.GPS Architect Code Structure

The GPS Architect code is broken into task switching
operating system , an interrupt service routine and five tasks.
The operating system provides task sceduling and mutex
operations. The interrupt service routine (ISR) performs two
basic functions. It maintains the GPS Architect operating
system and processes raw accumulation data from the
hardware to maintain the signal tracking loops [1]. The ISR
runs with a 900µs period and has a higher priority of
execution than all the tasks. Additionally, the ISR is non−
reentrant and it is important that its processing time does not
inhibit other tasks. The remaining five tasks work together
to provide I/O and compute the navigation solution. Figure
3.1. provides a visual description of the code structure,
showing the interactions between the active task, operating
system, ISA card and CPU.

Figure 3.1. Structure of GPS Architect Code

3.1. Thoughts about the Code Structure
The Architect’s structure is modular: it can be divided into
two parts. First, there is the application code, which
contains an ISR and various tasks used to track the satellites
and compute the navigation solution. Second, there is the
user interface, which interacts with the application code and
user, providing user control and displaying information.

The DOS version of the code has several drawbacks; the
first one is that the application code and the user interface
are together in the same piece of code, and adding a new
service would imply changing all of the receiver code. The
other problem is that task parallelism is implemented inside
the receiver code, that is, task timing and mutexes are all
controlled by assembly code.

In the Linux version we chose to divide the code, so that the
application code runs in kernel space and the user interface
runs in user space. The main advantage of this is the level of
abstraction between the two codes. For example, the user
interface could be improved without (or with minor)
changes in the receiver code itself; similarily changes in the
receiver code will not interfere in the interface.

3.2. The Linux Application Code
In the Linux version, the code consists of five periodic
threads, an ISR and a FIFO handler, all running in the kernel
space under RTLinux v2.3. The threads exchange data using
global variables while communication with the user
interface occurs via FIFOs. The ISR executes the tracking
loops and is executed every 800µs (but could be any time
between 505µs and 900µs). The five threads, having periods
ranging from 0.1 to 1 seconds, operate cooperatively to
calculate the navigation solution. The FIFO handler is used
to process user commands and is activated when there is
data pending in the command FIFO. To implement this we
changed the DOS code in the following ways:

1) Exclusion of all assembly code. The original DOS code
used assembly code to implement task switching and
mutexes. Since RTLinux implements these functions,
removal of the assembly code was allowed, greatly
increasing portability.

2) ISR definition. Since the DOS ISR contained a hefty
amount of code, we created a minimalist ISR,
transferring extraneous code to other tasks.

3) Thread definition syntax/scheduling. Specific changes to
the task definitions were made to follow that of periodic
theads.

4) Mutex definition. The DOS code implemented (in
assembly) a recursive mutex; since RTLinux implements
binary mutexes, we defined a function that makes a
binary mutex behave like a recursive mutex.

5) User input command processing modifications. The user
commands are now processed by a FIFO handler instead
of the ISR.

3.3. Comments about the Migration
Using Linux was possible only due to the realtime
extensions; RTLinux provides the necessary timing for the
ISR, that could not be fulfilled with standard Linux [3].
From the viewpoint of technical work, this was relatively
easy, but we should mention that this was possible only due
to the similarity between the concept of task (as is was
defined in the DOS code) and threads (specially "periodic
pthreads", as it is defined in RTLinux). Had the DOS code
not been split into several tasks, the translation would have
been very difficult, if not impossible. Some technical issues
appeared during the translation; but, in general, they were
solved easily. Only one issue took more time to be solved:
the implementation of a recursive mutex in RTLinux v2.3.
This version of the code only supports binary mutexes.
Since the synchronization between the threads in DOS code
used recursive mutexes, we worked around this problem
defining a function that uses the thread id as parameter to
implement a recursive mutex from a binary one. Beyond
this, other changes to the code were mostly of the "cut and
paste" type.

4. User Interface

The user interface interacts with the application code via
FIFOs. This bidirectional interation can take many forms,
but generally the user interface displays current information
and allows the user to control the application code. For
example the user interface may provide the user’s position,
time, date and allow the user to adjust receiver operating
parameters.

4.1. Investigations into User Interface Designs
The generic user interface mentioned above can certainly be
augmented. To extend the concepts of abstraction and
modularity we designed a TCP server that reads from the
FIFOs and forwards the data to clients connected over
sockets. Adding the TCP server allows flexibility in the
locality and type of user interface. Figure 4.1. depicts the
possible layers of code for the receiver, showing that the
application code can run independently of the user interface
or in conjunction with a local client or with one or more
remote clients.

Figure 4.1. Conceptual Layered View of the Receiver

As a demonstration of concepts and to showcase flexibility
of the receiver we devloped three unique interfaces. First,
there is a graphical user interface designed with the open
source library Qt. Second, there is an ncurses version. Third,
a java applet.

The first interface, designed with the GPL’d Qt graphics
libraries, provides a visually enhanced design that is flexible
in terms of graphic possiblities and user friendliness. Using
the Qt classes, we can easily design 3−D plotting routines,
real time analysis of data, advanced mapping utilities, and a
user friendly interface that runs on a myriad of platforms.
This version can directly write to and read from the FIFOs
or connect to the server over a TCP connection. Control of
the application code is implemented with dialog boxes.

The next interface uses the ncurses libraries commonly
found in Linux and other UNIX−like operating systems, to
generate a text based display. This user interface
communicates over TCP sockets to the server, provides
command line control of the application code and presents
minimal information to the user.

Third, to exemplify the internet connectivity of this receiver
we wrote a java applet which runs in a web browser. It
displays the receiver’s position, date, time and a graph of the
error in position with respect to a reference position. This
interface is only for monitoring the receiver’s operation.

Each interface provides a different level of sophistication,
highlighting modularity while providing different modes of
user interaction.

4.2. Uses of this Receiver
Due to RTLinux’s platform options and the modular
receiver design, considerable flexibility is available for
applications of this receiver. The receiver will be part of
ionospheric monitoring stations in equatorial regions of the
world. It will also be incorporated into a course on GPS
taught at Cornell University. There is also the possibility
that this code will be added to embedded systems used in
sounding rockets and satellites.

5. Summary of Advantages Regarding Migration

Our goals in migration were centered around insufficiencies
in DOS. Choosing Linux provides a modern operating
system, while the RTLinux extensions provide hard realtime
support required by a GPS receiver. These choices allow for
many of the shortcomings of DOS to be circumvented.

5.1 Linux Advantages
Exiting the dark ages, so to speak, is the result of migrating
from DOS to Linux. In the DOS regime, due to the lack of
concurrect processing, the receiver is the only application
that can run. With Linux, the computer is capable of
running multiple other applications. For example we are
able to run the receiver concurrently with a distributed.net
client, Netscape and a whole slew of other programs.

Another feature of Linux is its intimicy with networking. In
DOS, networking options are limited, but in Linux, doors
swing wide open regarding possibilites of network
connectivity. For example, attempts to implement a TCP
server in DOS is a daunting, if not impossible, task, but is
straightforward in Linux.

5.2 RTLinux Advantages
Since RTLinux provides hard realtime computing [3], the
1000Hz interrupts are guarenteed serviceable and with
minimal delay. Guarantee of this servicing is required in a
realtime system like GPS and for this reason receiver
operation is more reliable. The DOS version frequently lost
data due to delays in processing interupts. This loss is not
fatal, but is cause for potentially unreliable behavior.

In the GPSBuilder−2 specifications, the interrupt period is
505us, whereas the RTLinux code uses a 800us period. By
using a more frequent interrupt rate, DOS has a greater
likelihood of actually servicing the interrupt within the 1 ms
window. With RTLinux, interrupt servicing has incredibly
low latency, thus it is allowable to increase the interrupt

period, thereby reducing loading of the processor.

Another advantage gained by using RTLinux is its support
of scheduling and mutexes. As previously mentioned,
RTLinux’s support of these features provides for an
implementation that is platform independent and due to the
exclusion of assembly code, easier to code from a
programmer’s point of view.

Finally, RTLinux support for FIFOs allows for a layer of
abstraction between the application code and user interface.

5.3 Other Advantages
Quantification of stability is a difficult task. When an
application crashes frequently, it is considered unstable,
while infrequent crashes render a notion of stability. From
our experiences, the use of RTLinux provides for an
incredibly stable receiver. The DOS version is plagued with
hardware initialization problems and frequent crashes, while
the RTLinux version runs uninhibitted for weeks.

6. Acknowledgements

This work was supported in part by the Office of Naval
Research grant ONR 00014−92−J−1822.

7. References

[1] Mitel Corporation, GPS Architect Software Design
Manual,Mitel Corporation, 1999
[2] Parkinson and Spilker, Global Positioning System:
Theory and Applications, American Insitute of Aeronautics
and Astronautics Inc, 1996
[3] Yodaiken, Victor, The RTLinux Manifesto, New Mexico
Institute of Technology, 1999

