ROBOT CONTROL USING REAL-TIME LINUX

Pavel Andris
Institute of Control Theory and Robotics
Slovak Academy of Science
Dubravska cesta 9, 842 37 Bratislava, Slovakia
E-mail: utrrandr@savba.sk

Abstract

Robot control software is a typical application applying real-time Linux as a hard real-time operating
system. The author’s software was originally running under MS-DOS. Problems of adapting it for real-
time Linux are presented. This paper describes internal structure of the software as it had to be divided
into a hard real-time part (a kernel module) and a standard Linux process part.

1 Introduction

Institute of Control Theory and Robotics has devel-
oped an Integrated Programming System for Robot
Cells Control. The system is used for computer con-
trol of flexible production systems and robot cells
[1].

It is adaptable to various kinds of the robot cells
hardware (control panels, servo-drives, robot ef-
fectors with various kinematic structures). A si-
multaneous control of several effectors is possible.
ROBOL, a higher robot programming language, is
implemented in the system. It is suitable for pro-
gramming of a large number of various technological
applications of robot cells, e.g. welding in a pro-
tective atmosphere, assembly, manipulation, laser or
water ray cutting, gluing etc.

As the official name of the system is rather long, the
name ROBOL is used either for the robot activity
programming language or for the whole Integrated
Programming System. Only the latter meaning is
referred to in this paper.

In 1997-1998 ROBOL was implemented on a stan-
dard industrial robot PUMA 560. To avoid ma-
jor hardware work, some ideas and software from
RCCL/RCI robot control package [7, 6, 8] were used.
Network interface was added to allow sending a
model of a controlled robot workcell to a viewer (a
remote computer). Another remote computer can

be used to generate commands and send them to
ROBOL.

ROBOL was originally implemented under MS-DOS.
This simple operating system has good real-time ca-

pabilities. A user task has unrestricted access to the
hardware and there is no multitasking. Our team
wrote a simple thread scheduler and clock interrupt
service routine. Anyway, the MS-DOS 640 kilobytes
barrier could not be accepted anymore by quickly
growing ROBOL.

The first new operating system to implement
ROBOL under, that was considered, was MS-
Windows 95. It was soon abandoned because

— it provides only soft real-time

— it would be necessary to buy some addi-
tional software development packages for de-
vice drivers because ROBOL uses some custom
developed hardware

We have opted for Linux because any commercial
hard real-time system was beyond our budget. Stan-
dard Linux provides soft real-time only, as well.
ROBOL is a low frequency (14.3 or 35.7 Hz) applica-
tion with plenty of floating point operations during
each period. One period computations may take up
to 3 milliseconds.

Soft real-time experiments only confirmed the old
truth: it mostly works but occasional missing of
deadlines has to be expected, especially if the control
computer is used also as a normal workstation. In
the robot world, missed deadlines stop robot and a
human intervention is required. It was time to look
for a hard real-time solution.

2 Hard Real-Time Linux

Linux is a free Unix-type operating system available
for many platforms. Development teams all over the
world are developing some modifications to the Linux
kernel in order to provide a hard real-time operat-
ing system, e.g. NMT/FSMLab’s RTLinux [15, 12],
DIAPM’s RTAI [9, 11], and the real-time system
KURT [10, 5], all being well appropriate for control
applications or even embedded systems. (NMT —
New Mexico Technology, FSMLabs — Finite State
Machine Labs, Inc., RTLinux — (hard) Real-Time
Linux, DIAPM RTAI — Dipartimento di Ingegne-
ria Aerospaziale - Politecnico di Milano Real-Time
Application Interface, KURT — Kansas University
Real-Time (Linux)).

Comparing the individual packages is beyond the
scope of this paper. ROBOL has been implemented
under RTLinux (RTL) [12].

RTLinux is a small, deterministic, real-time oper-
ating system that is somewhat like a single POSIX
process sitting on a bare machine. Hard real-time ap-
plications are threads and signal/interrupt handlers
in this process. Linux runs as the lowest priority
thread of the RTLinux kernel and it is made always
preemptible. This makes things simple, determinis-
tic and fast.

The price to pay is that almost every real-time ap-
plication has to be divided into two parts:

— Real-time part with strict timing requirements.
It runs under RTLinux small, real-time operat-
ing system. It may consist of one or more RT
threads and/or interrupt service routines. RT
threads are scheduled according to their priori-
ties. The term ,,RT (real-time) thread” is used
to distinguish it from Linux POSIX threads.
RT threads run in kernel space and memory
context. This means that sophisticated ser-
vices provided by Linux and even by C libraries
are generally not available for the RT threads.
RTLinux and RT threads are loadable kernel
modules.

— Anything without strict timing requirements
runs as a normal Linux process.

Both the parts need special tools to communicate
because they run in different memory contexts. RT
threads run in Linux kernel memory context and
Linux processes in their own one. RTfifos pro-
vide a device interface that can be read/written on
the Linux process side and written/read on the RT
thread side. Shared memory utility is another tool.

3 ROBOL Controls PUMA

Some ideas and software from RCCL/RCI robot con-
trol software package were used to control a stan-
dard industrial robot (PUMA UNIMATION 560) by
ROBOL [7, 6, 8]. The system architecture is shown
on Fig. 1.

A bidirectional parallel connection between the
ROBOL PC and the robot controller has been es-
tablished. A RCCL/RCI program called a moper is
run on the robot controller instead of robot manufac-
turer provided robot control software. Every sample
period the moper collects data from robot peripher-
als like servo-drives, teach pendant, I/O signals, etc.
The data are sent to the ROBOL PC via the par-
allel connection. Using the data as input, ROBOL
generates a new set of data that are sent back to the
robot controller via the same connection. The new
data are distributed by the moper among the robot
peripherals and the robot arm takes a desired action.
The parallel communication allows real-time control
of the robot arm by a PC that has a different pro-
cessor and bus architecture than the computer inside
the robot controller (LSI 11/73). No major hardware
work was necessary.

The serial connection is used to download the moper
during start-up, to read messages by the moper, and
to send commands to it.

4 ROBOL under RTLinux

ROBOL has been divided into RT threads and a
Linux process in the following way:

4.1 RT Threads

The hard real-time part of ROBOL has been divided
into three RT threads:

1. Work-horse RT thread. It is a good name. The
Work-horse is responsible for all work that has
to be done during one period and is time crit-
ical. For example, communication via paral-
lel connection, monitoring teach pendant but-
tons, executing commands entered by a user
or by a user programme, generating trajecto-
ries, preparing commands for robot peripher-
als, etc. If ROBOL runs in so called dry run
mode, i.e. communication with the robot con-
troller is not used, the Work-horse runs as a
periodic RT thread. If the communication is
active, the Work-horse is interrupt driven by
signals from the robot controller.

2. Auziliary RT thread. ROBOL has got two
very simple custom made, memory resident

HW: Puma 560 robot controller

SW: RTLinux, ROBOL

—_—— — — — — — — — — —

| HW: SGI workstation

|
®— — —I sw: Virtua reality viewer |
|

SW: Moper | (optional)
parallel sefidd | @ - - = = = - = — — =
connection connection | HW:PC I
® — — | SW:GNU Chess, cmd generator I
| (optional) |
HW: PC - - - = = = = — — = -
—@

standard network connection

FIGURE 1: System Architecture

databases. They are used for storing user pro-
grammes and poses. Each database has a set of
functions that enter, modify, delete or replace
items. The databases and functions are located
in the real-time part of ROBOL. The functions
are mostly used by the Work-horse because
it needs the database items in real-time dur-
ing user programme execution. The functions
also must be called from Linux process part of
ROBOL, e.g. during loading/saving the user
programmes from/to a disk. As a RT thread
can preempt Linux at any time, the databases
can get damaged easily. This problem is solved
using the Auxiliary RT thread. If the Linux
process part of ROBOL needs a database op-
eration, it just starts the Auxiliary RT thread
that makes the operation. Shared memory is
used to exchange data between the Auxiliary
RT thread and the Linux process. As both
the Work-horse and Auxiliary RT threads have
the same priority, they can never preempt each
other so the integrity of the databases is guar-
anteed.

. Monitor RT thread. It is a periodic, highest
priority RT thread. Introducing the Monitor
is essential. If a RT thread consumes all CPU
time for any reason (well, because of bug occur-
rence), Linux is permanently preempted. As
the Monitor RT thread has higher priority than
the other two RT threads, it can preempt them
and check how much CPU time they consumed
during a period. If things go wrong, an error

message is written and all RT threads are sus-
pended.

4.2 Linux Threads

The Linux process part of ROBOL has been divided
into four several threads:

1. User Interface. This is a highest priority Linux

thread because ROBOL must react quickly
enough on commands entered by a user. The
old MS-DOS ROBOL used an outdated text
based user interface. The interface was rewrit-
ten using X library (Xlib), the lowest level C
language programming interface to the X Win-
dow System. Xlib itself does not contain some
very low level keyboard functions required by
ROBOL, but they were found in [2]. Linux pro-
vides plenty of nice tools to develop a modern
graphical user interface e.g. [13, 4, 14].

. Disk Operations. This thread is responsible for

loading and saving user programmes and other
data from/to disk. It is a low priority thread.

. Virtual Reality Viewer Communication. This

is an optional thread. The viewer, running
on a remote computer, provides a virtual re-
ality (VR) model of the robot workcell and
animation of workcell’s activity. A user can
use ROBOL and the VR viewer for creating
and testing user programmes off-line. The
animated VR model of the workcell provides
him/her the necessary visual feedback. The

basic idea is very simple. ROBOL has its in-
ternal robot workcell model containing list of
objects, their mutual pose coordinates and re-
lations. Every ROBOL’s sample period, the
list of objects and objects’ pose coordinates are
sent to the VR viewer for display. TCP/IP
sockets and XDR (eXternal Data Representa-
tion) are used for communication. A more de-
tailed description can be found in [3].

4. Remote Robot Control Communication. This
is an optional thread. Sending commands for
immediate execution to ROBOL from a remote
computer is interesting for some applications.
For example, if a camera is affixed to a robot
arm, the camera pose can be controlled directly
from a vision system. The remote robot con-
trol option is provided as a C function library.
It contains functions like opening/closing com-
munication with ROBOL, sending commands
to ROBOL, getting current pose of camera, etc.
A user links his software with the library.

Another example application is the robot work-
cell playing chess. GNU Chess moves are trans-
formed into ROBOL commands. The com-
mands are sent to the ROBOL’s PC using a
standard network connection and executed by
ROBOL. Again, TCP/IP sockets and XDR are
used for communication.

5 Implementation Issues

ROBOL was originally implemented under MS-DOS
as one task divided into two threads. One thread
(containing most of the code) was responsible for all
real-time stuff, the other one for all non real-time
stuff. A simple thread scheduler was written. The
real-time thread could preempt the non real-time one
at any time and take as much time as it needed. The
only exception were the database functions shared by
both treads. If called from the non real-time thread,
the functions could block scheduling for very short
time. Both threads run in the same memory con-
text.

It was not difficult to divide ROBOL into RT threads
and Linux threads, as described in Section 4, because
the real-time and non real-time part of it were clearly
separated. The user programme and pose databases
were the major trouble source. They were rather
poorly designed and flooded by pointers and pointers
to pointers. The databases have suddenly to be used
in two different memory contexts. A given pointer
may be correct in one memory context only... Obvi-
ously, the correct solution is to write new databases
but it has not been done till now.

The real-time part of ROBOL, compiled as a load-
able kernel module, needs some functions provided
by the standard C library. Some string operations,
sprintf and sscanf are required, but not provided
by the Linux kernel. Kernel’s sprintf does not sup-
port floating point number formating essential for
ROBOL. Linking a kernel module with the standard
C library is possible but it is just a very reliable
way to a computer crash. To solve the problem,
the necessary source code from glibc was compiled
with loadable module gcc options. The result was
a light weight library of some selected standard C
functions. The library contains plenty of functions
that are ,.forbidden in RT threads,” but it works
well with ROBOL. The library is not provided on-
line and using it is discouraged. In spite of this,
several people were given a copy and they do not
complain. They need mostly sprintf function sup-
porting floating point number formatting.

Most of the ROBOL code is compiled as a loadable
kernel module. Due to huge amount of the code,
debugging is of great importance. A special version
of ROBOL intended for debugging purposes only is
generated together with the real-time one but it is
no entirely satisfying solution. Since version 2.3,
RTLinux provides capability to debug RT threads
using the standard debugging tool gdb. It is really
appreciated.

6 Conclusion

ROBOL, the robot control software presented in this
paper, is no high end piece of software engineering.
However, anybody faced with implementing existing
or writing new robot control software for RTLinux
will cope with the same or at least very similar prob-
lems as the author did.

References

[1] Pavel Andris, Ivo Berka, Karol Dobrovodsky,
Ladislav Jana¢, and Peter Kurdel. Integrated
Programming System for Robot Cells Control.
In Proc. of the 1st International Meeting on
Robotics in Alpe Adria Region, pages 154-161,
Portoroz, Slovenia, June 21-23, 1992.

[2] Amber J. Benson, Gery Aitken, Erik For-
tune, Donna Converse, Gregory Sachs, and Will
Walker. The X Keyboard Extension: Library
Specification, 1996. X Consortium Standard.

[3] Karol Dobrovodsky, Pavel Andris, and Peter
Kurdel. A Virtual Reality Robot Workcell Sim-
ulator. In Karel Jezernik, editor, Proc. of 9th

[4]
[5]
[6]

(8]

International Workshop on Robotics in Alpe-
Adria-Danube Region, pages 331-336, Maribor,
Slovenia, June 1-3, 2000. Institute of Robotics,
Faculty of Electrical Engineering and Computer
Science, University of Maribor.

http://www.gtk.org.
http://www.ittc.ukans.edu/kurt/.

John Lloyd. RCCL/RCI Hardware Installation
Notes. McGill Research Centre for Intelligent
Machines, McGill University, Montréal, Québec,
Canada, 1992.

John Lloyd, Mike Parker, and Gaylord Holder.
Real Time Control under UNIX for RCCL.
In 3rd International Symposium on Robotics
and Manufacturing, pages 237-242, Vancouver,
B.C., Canada, July 18-20, 1990.

John Lloyd, Mike Parker, and Rick McClain.
Extending the RCCL Programming Environ-
ment to Multiple Robots and Processors. In
IEEE Conference on Robotics and Automation,
pages 465—-469, Philadelphia, Pa., April 24-29,
1988.

[9]

[10]

[11]
[12]
[13]

[14]

[15]

Paolo Mantegazza. DIAPM-RTAI for Linux:
WHYs, WHATSs and HOWs. In Proc. Real Time
Linux Workshop, Vienna, Austria, Dec. 13-15,
1999. Institut for Machine and Process Automa-
tion, Vienna University of Technology.

Douglas Niehaus. Effective Real-Time System
Implemetation with KURT Linux. In Proc. Real
Time Linux Workshop, Vienna, Austria, Dec.
13-15, 1999. Institut for Machine and Process
Automation, Vienna University of Technology.

http://wuw.rtai.org.
http://www.rtlinux.org.
http://www.troll.no.

Brent B. Welch. Practical Programming in Tcl
and Tk. Prentice-Hall, second edition, 1997.

Victor Yodaiken and Michael Barabanov.
RTLinux Version Two. In Proc. Real Time
Linuz Workshop, Vienna, Austria, Dec. 13-15,
1999. Institut for Machine and Process Automa-
tion, Vienna University of Technology.

