SHARING MEMORY BETWEEN KERNEL AND USER SPACE
IN LINUX

Tomasz Motylewski
Institute of Physical Chemistry, University of Basel, Klingelbergstr. 80, 4056 Basel,
Switzerland
motyl@stan.chemie.unibas.ch

Abstract

Techniques allowing kernel tasks and user space processes to share large blocks of memory are pre-
sented. In particular, ”mbuff” device driver is introduced. Simple examples of synchronizing producer
and consumer threads using only shared memory are given.

1 Introduction

Shared memory is the most efficient interprocess
communication (IPC) mechanism when big amounts
of data are to be transfered or when no built-in
synchronization is required. Sharing memory be-
tween processes allows them to work like threads
on shared variables but still have their own pro-
tected address spaces. The other IPC mechanisms
like pipes, FIFOs, sockets and files are less efficient
because they involve (sometimes multiple) copying of
data between processes’ memory and kernel buffers.
While memory bandwidth of modern PC computers
is high! also amount of data generated by PCI A/D
converters and other equipment is increasing?.
Sharing memory between user processes in Linux is
well known and documented elsewhere[l, 2, 3]. This
paper will focus on sharing memory blocks between
kernel modules (including real time tasks) and user
space.

2 Sharing memory not con-
trolled by Linux

The historically first method of sharing memory be-
tween kernel and user processes[4, 5] requires the
user to reserve required amount of memory at system
boot using mem=nnm parameter where nn should be
smaller than amount of physical memory in MB. This

instructs Linux kernel to use only the first nn MB of
memory and makes possible to use the rest by map-
ping (mmap(2)) of /dev/mem. In the kernel space
pointer returned by ioremap(start,size) has to by
used. Accidentally, since kernel memory map con-
sists of 4 MB pages® on i86 architecture, the free
memory until the next 4 MB border may be used
without ioremap. This has lead to the false belief
that the method described here can only be used for
blocks smaller than 4 MB. Use of ioremap (vremap
in Linux 2.0) solves this problem. It allows also to
access memory-mapped PCI cards in the kernel.

3 Using mbuff driver

The mbuff . o[6] module and /dev/mbuff is intended
to be used as a shared memory device making mem-
ory allocated in the kernel using vmalloc possible to
map in the user space. Such memory does not need
to be reserved at the system startup and its size is
not limited by memory fragmentation. The allocated
memory is logically (but not physically) continuous.
It can not be swapped out, so is well suited for real
time applications, especially communication between
real time tasks and user space or other high band-
width kernel-user data exchange. The mbuff code
is derived from bttv driver implementation in Linux
2.2 and 2.4.

The simplest example is the file demo.c distributed
with the mbuff package. The mbuff_alloc() func-

!measured: 44 MB/s Pentium 200; 137 MB/s AMD Athlon 800 MHz
2National Instruments PCI-6110E card may generate over 40 MB/s
3Used to remap the whole memory at different address at boot. Most other memory blocks in Linux kernel are mapped as

4 KB pages.

tion allocates new area and maps it, or just maps al-
ready existing area. The function returns the pointer
to the mapped area or NULL in the case of failure (no
/dev/mbuff, bad permissions, mbuff.o not loaded,
not enough memory, or size greater than the size of
already allocated area). The first call does real al-
location (swapping out some programs if necessary),
the next calls should use the size argument equal or
less than the one used at the first allocation.

mbuff_alloc() should be called by each process ac-
cessing the memory, as well as in kernel module.

Every process calling mbuff_alloc is responsible
for freeing it before exit. It can be done with
mbuff_free() function. It will unmap the memory
and decrease usage counter, so when the last process
unmaps the memory, it will be freed. mbuf should
be the pointer returned initially by mbuff_alloc().

For people who often forget to deallocate the mem-
ory, there is mbuff_attach() function - it works like
mbuff_alloc(), except it does not increase usage
counter - memory can be deallocated automatically
on munmap () (e.g. process gets killed). To unmap it
earlier mbuff_detach() function may be used. All
it does is just munmap() call. It makes sense to use
mbuff_attach() and mbuff_detach() only in user
space.

mbuff_allocate() calls vmalloc() which may need
to swap out some memory - it should not be called
from real time nor interrupt nor timer context. Inter-
rupts have to be enabled when mbuff_allocate() is
called. It is safe to call it from RT-FIFO handler as
well as in init_module().

4 Usage examples

Characteristic feature of shared memory is asyn-
chronous ("random”) access. It results in less danger
of deadlocks, because one thread accessing shared
area does not block the others from doing so. Also,
small changes in huge data structures do not re-
quire writing the whole block again. But care has
to be taken to ensure the consistency of data seen
by one thread, while the other is changing it. It
includes prohibiting the compiler from optimizing
(caching in registers) accesses to shared memory (de-
clare all variables kept there volatile) and under-
standing which thread may preempt which other and
at which time. Critical regions of the program may
be protected by disabling interrupts or using mu-
texes or semaphores, alternatively designed to keep
data structures consistent at any time or to detect
whether data has been changed while being read[4].

4.1 Ring buffer

Simplified ring buffer implementation, suitable for
use with single producer and consumer threads
is presented below. Since producer changes only
r->end and consumer only r->start no locking is
needed. The order of operations — ”check status;
update value; update index” is significant.

struct ring_buffer {
volatile int start,end;
volatile short buf[SIZE];
} *ring;
ring_init() {
ring=(struct ring_bufferx*)
mbuff_alloc("mybuffer",
sizeof (struct ring_buffer));
ring->start=ring->end=0;
}
ring_destroy() {
mbuff_free("mybuffer",ring);
}
short ring_get(struct ring buffer *r) {
short val;
if (r->start==r->end) {
return EMPTY;
}
val=r->buf [r->start];
r->start= ++r->start }SIZE;
return val;

int ring_put(struct ring_buffer *r,

short val) {

int next= (r->end+1) % SIZE;

if (next == r->start) {
return FULL;

}

r->buf [r->end] = val;

r->end = next;

return 0K;

4.2 Direct DMA to shared memory

Many PCI boards have scatter-gather DMA capabil-
ity — they can be given the chain (or ring) of physical
addresses of memory buffers and then save incoming
data to them without further intervention (producer
thread). To find physical addresses of vmalloc’ed
memory pages kvirt_to_bus () (kvmem.h) should be
used.

When the information about the number of bytes
already transfered by DMA is not available, each
empty page of the buffer may be marked at the be-
ginning and at the end by a ”"magic” sequence of
characters before the transfer is started. After start

the consumer process may check whether both magic
sequences on the next page have been already over-
written, if so the data can be read and the page
marked as "empty” again. This leads to a very effi-
cient implementation of circular buffer. It does not
protect against overruns if consumer process is not
fast enough, but allows the producer and consumer
threads to work without additional synchronization.
For example implementation see crdsd.c in [7].

5 Conclusion

Shared memory is an efficient and easy to use way to
pass data and communicate between all user space
and kernel processes/threads. Applications requiring
physically continuous memory, possibly mapped at
fixed address should reserve it using mem= boot argu-
ment and mmap /dev/mem (user space) or use ioremap
(kernel). Other applications may use more flexible
mbuff driver to allocate needed memory blocks at
any time. Example uses of shared memory are:

e Fast transfer of data between user and kernel
space (no copy)

e Exporting internal data and state of kernel
tasks to make debugging easier

e Controlling kernel tasks by changing parame-
ters in shared memory

Excellent article of Frederick M. Proctor[4] is recom-
mended for more examples and general techniques
used with shared memory. Instead of using __va(),
ioremap () call should be utilized.

Updated version of this article will be available
online[8].

References

[1] shmget(2) manual page, Linuz Programmer’s
manual, Debian 2.2, manpages_1.29-2 all.deb,
2000.

[2] ipc(5) manual page, Linuz Programmer’s Man-
ual, Debian 2.2, manpages_1.29-2_all.deb, 2000.

[3] Sven Goldt, Sven van der Meer, Scott Burkett
and Matt Welsh, IPC chapter in The Linux
Programmer’s Guide version 0.4, March 1995,
http://www.ibiblio.org/pub/linux/docs/
linux-doc-project/programmers-guide/

[4] Frederick M. Proctor Using Shared Memory in
Real-Time Linux http://www.isd.cme.nist.
gov/projects/emc/shmem.html

[5] Michael Barabanov, Shared Memory
HOWTO, http://wuw.rtlinux.org/rtlinux/
documents/shmem.html

[6] Tomasz Motylewski, Kernel — user space shared
memory driver mbuff, http://crds.chemie.
unibas.ch/PCI-MIO-E/mbuff-0.7.2.tar.gz,
2000

[7] Tomasz Motylewski Programs for control
of CRDS experiment http://crds.chemie.
unibas.ch/PCI-MIO-E/pcontrol-0.4.4.tar.

gz

[8] Tomasz Motylewski Sharing Memory Between
Kernel and User Space in Linux, http://crds.
chemie.unibas.ch/linux/shm-orlando/, 2000

