The Real Time Controls Laboratory, an Open Source, Hard Real Time,
Controls Implementation Platform

Edgar F. Hilton (efhilton@fsmlabs.com), Victor Yodaiken
FSM Labs, Inc., Socorro, NM, USA

Marty A. Humphrey, Paul E. Allaire
University of Virginia, Charlottesville, VA, USA

Abstract

Modern automatic control systems need 1) logically com-
plex and computationally expensive controller algorithms
and I/0; 2) real time data storage of plant information
such as states, inputs, and outputs; 3) real time plot-
ting capabilities; 4) real time controller parameter updates
(both scalar parameters and matrices); and 5) real time
access to reference signals; 6) remote monitoring for safety
purposes. Control systems based upon embedded Digital
Signal Processors (DSP) boards often require specialized
programming and development tools, may lack flexibility
when computational or timing requirements change, and
may not directly address the aforementioned needs. Even
worse, newer and faster DSPs may not be fully pin compat-
ible with their predecessors, thus requiring total redesign
of the embedded electronics for a given project. A novel
controller implementation system — the Real Time Con-
trols Laboratory (RTiC-Lab) — has been developed explic-
itly to address these problems. It relies on both commod-
ity personal computers and Real Time Linux to guarantee
satisfying hard real time constraints in light of maintaining
soft real time requirements (such as plant monitoring and
parameter updates). RTiC-Lab is Open Source and is thus
intended to serve as a communal effort among both con-
trols engineers and the Real Time community. Discussion
is presented on the design of RTiC-Lab’s software archi-
tecture, the controller API, and the IPC-API which allows
other software packages to communicate with RTiC-Lab.
An example application is presented.

1 Introduction

Modern automatic control applications (ACA) require the
following:

1. temporal and logical correctness: a control law must
operate on time dependent data, and provide time
dependent control signals. Failure to produce a log-
ically correct output at the proper time could result
in catastrophe [7, 6, 10].

2. logically complex and computationally expensive con-
troller algorithms and I/0: as CPU speeds increase,

controller algorithms will match the CPU capabilities

[9]-

3. real time data storage of plant information such as
states, inputs, and outputs: this data should be eas-
ily stored for post analysis and filtering by any math-
ematical and visualization packages such as Matlab,
Scilab, and TecPlot.

4. real time plotting and filtering capabilities: the data
should be easily sent in soft real time to virtually any
software package that can be used for visualization
and run-time filtering and which may, via some on-
board logic, choose to update any controller parame-
ters or signal reference information — for example an
adaptive algorithm may first adapt to the controlled
plant’s parameters and then it updates the controller
gains for performance.

5. real time controller parameter updates (both scalar pa-
rameters and matrices): controller algorithms take
many shapes, forms, and sizes. And, as a rule of
thumb, the controller algorithm will never be correct
on its first implementation. Consequently, the con-
troller requires that the architecture allow for an easy
means to update parameters both during stoppage
time and in soft real time.

6. real time access to reference signals: for example, an
autonomous underwater robot may be asked to carry
out the remainder of its mission from a new depth.

7. remote monitoring: this is especially true for danger-
ous applications — such as active magnetic bearing ap-
plications with high speed rotors —, or environments
in which it is inconvenient, dangerous, or cost ineffec-
tive to have a human being present.

This is the case with active magnetic bearing (AMB)
control systems such as AMB supported artificial hearts [5,
2, 1] and high speed energy storage flywheels for powering
communication satellites [4, 8].

Traditionally, control systems have relied on embedded
Digital Signal Processors (DSP). However, controls engi-
neers have often had to learn a new API and programming



DISPLAY/
HOST
COMPUTER
(DHC)

$ NETWORK (LAN)
DEVOTED DEVOTED DEVOTED
CONTROL CONTROL 000 CONTROL
COMPUTER COMPUTER COMPUTER
(DCC1) (DCC2)

@/O Aﬁuo
N\ N\

Figure 1: Overview of the Real Time Controls Laboratory
network environment

language for each new target DSP. DSPs require special-
ized programming and development tools, may lack flexi-
bility when computational or timing requirements change,
and may not directly address the aforementioned needs.
The development time for faster DSP systems is much
slower than that of commodity PCs. Even worse, newer
and faster DSPs may not be fully pin compatible with
their predecessors, thus requiring total redesign of the em-
bedded electronics for a given project.

A novel controller implementation system — the Real
Time Controls Laboratory (RTiC-Lab) — has been devel-
oped explicitly to address the aforementioned controller
requirements. It relies on both commodity personal com-
puters and Finite State Machine Lab’s (FSMLabs) Real
Time Linux (RTLinux) to guarantee satisfying hard real
time constraints in light of maintaining soft real time re-
quirements (such as plant monitoring and parameter up-
dates). RTiC-Lab is and will be — as its underlying Linux
and RTLinux platforms — Open Source Software released
and protected under the Free Software Foundation’s Gen-
eral Public License. That is, users of RTiC-Lab can down-
load the source code, use it, enhance it, and share it with
their colleagues.

The following sections are set up as follows. First,
RTiC-Lab is presented. Especially, discussion focuses on
the design of RTiC-Lab’s software architecture, the con-
troller API, and the IPC-API which allows other software
packages to communicate with RTiC-Lab. Finally, imple-
mentation results are shown which demonstrate the pre-
dictability of RTiC-Lab.

2 The Real Time Controls Labo-
ratory, (RTiC-Lab)

Control of ACAs require an exhaustive tuning and char-
acterization process during the early stages of the ACA’s

=]

LOCAL AREA NETWORK ‘

I

DEVOTED
CONTROL
COMPUTER

DEVOTED
CONTROL
COMPUTER

DEVOTED
CONTROL
COMPUTER

P e
RADIAL
BEARING

THRUST
BEARING

EXCITER
BEARING

Figure 2: Example of the applicability of RTiC-Lab on an
AMB system.

life. RTiC-Lab, is explicitly designed to be used not only
during these early stages of controller design and plant
characterization, but also during subsequent monitoring
and control. It provides an environment in which to imple-
ment controller algorithms while providing real time access
to controller states, plant outputs, controller actions, con-
troller parameters, and other controller information. All
this information can be plotted and filtered — via user de-
fined filters — in soft real time. The user can further filter
the necessary data either in soft real time or post mortem.
Last and most importantly, the controller parameters can
be updated in real time through a user-defined graphical
user interface.

The general scheme used in the design of RTiC-Lab is
shown is Figure 1. A devoted display or host computer
(DHCQ) is networked via 10 or 100 Mb/s TCP/IP network
to a set of devoted controls computers (DCCs).

The controls engineer sits at the DHC (which may or
may not be at the same room or even building as the
DCCs) and coordinates, codes, and synchronizes all DCCs
from the DHC. Run time parameters, such as sampling
rate, startup delay, and networking parameters can be set
for each of the DCCs from the DHC.

Each of the DCCs is a stripped down computer system
having no keyboard, mouse, video card, or monitor. These
only have both the necessary I/O cards which are used to
interface to the plant hardware and the necessary Ethernet
card to communicate with the DHC.

An AMB example of RTiC-Lab is shown in Figure 2. A
single DHC interfaces with three DCCs which in turn in-
terface to the AMB rotor system. The first DCC handles
all radial control of the AMB, while a second (and slower)
DCC controls the thrust direction of the AMB, and a third
DCC is used to add either some excitation or synchronous
forces to cancel out rotor imbalances at the midspan. Both
controller parameters can be updated through the graph-
ical user interface, and all data is plotted in soft real time



Sampling error as a function of RPM using Autobalance code
1 T T T T T

Maximum error, %
o o
o o N
o ~ ol

o
2

0.55

05 I I I I I I I
0 0.5 1 15 2 25 3 35 4

Speed, RPM

Figure 3: Maximum sample period error for the suspension
controller as a function of spin speed

at the DHC.

In the event that the controlled plant is both computa-
tionally simple and safe enough to be handled exclusively
in a single computer, then RTiC-Lab will collapse into one
single computer to control the entire plant. Stated differ-
ently, the same computer both implements the controller
in hard real time and saves, plots, and updates parameters
in soft real time.

As of the time of this writing (version 0.6.4), RTiC-Lab’s
networking capabilities are handled by exporting windows
in Linux. However, true distributed functionality is cur-
rently in the works. Networking is thus not mentioned
further in this paper.

RTiC-Lab uses RTLinux’s fixed priority scheduler, and
assigns task priorities according to Liu and Layland’s
RMA scheduling algorithm. Data is transmitted from the
hard real time or “embedded” tasks to the soft real time or
“reactive” tasks (henceforth referred to as XRTiC) via real
time FIFOs (RTFIFOs). Both scalar and matrix param-
eters are transferred between XRTiC and the embedded
tasks via RTFIFOs and shared memory.

In accordance with the RTLinux paradigm [3], RTiC-
Lab separates the ACA’s controller into the embedded
part and the reactive part. The embedded part of the con-
troller includes all tasks having hard timing constraints.
The reactive task, or XRTiC, is a multi-threaded, user-
space application running in Linux. Users can use XR-
TiC’s IPC API to create their own stand-alone Linux ap-
plications which accesses XRTiC to not only obtain both
embedded data and status information, but also to up-
date controller parameters. RTiC-Scope, the RTiC-Lab
Oscilloscope emulator, is one such application which uses
RTiC-Lab’s IPC APIL.

For example, for an AMB application, the embedded
part handles: 1) the AMB suspension controller(s) (both
periodic and event driven), 2) a software watchdog, and 3)
a set of interrupt service routines that are used for commu-
nication with XRTiC. XRTiC would perform the follow-

Speed detection error as a function of RPM using Autobalance code
0.5 T T T T T T

04r- -

Maximum error, %
o o
o i o N
= o N o
T T T T
I i I I

o
o
5
T
I

Il Il Il Il Il
0.5 1 15 2 25 3 35 4
Speed, RPM

o
o

Figure 4: Maximum RPM error of the sampled speed as a
function of spin speed

ing functions: 1) communicate with the embedded tasks
via RTFIFOs, 2) display a graphical user interface for the
user through which the user can start, stop, and update
parameters, 3) perform error checking of the user’s con-
troller code, 4) send parameter updates to the embedded
tasks as requested by user, 5) either save to data to a file
or print it to stdout, and 6) send data to, and receive
parameters and commands from an external user-supplied

3 Implementation Results

Of most importance to the implementation of an ACA is
the predictability of RTiC-Lab. Figure 3 shows the sam-
pling error obtained on a Pentium IIT 600 MHz computer
running the following algorithms: 1) a full p-synthesis,
44th order, four input, four output, state space, AMB
radial magnetic bearing controller (8 kHz), 2) a strictly
proper PID axial AMB controller (8 kHz), 3) an AMB
auto-balance algorithm (8 kHz), 4) a key phasor monitor-
ing task which monitors the rotor spin speed and from
which (combined with time information) we can extract
the actual rotational angle of the rotor (once per rotor rev-
olution, interrupt driven, parallel port). Note that items
1, 2, and 3, above, all run in one task, while item 4 runs
as a separate task.

First, we measure RTLinux’s ability to both schedule
and handle our main periodic tasks irrespective of bus load
as would be expected in a high speed AMB rotor. As
can be seen from the plot, the periodic tasks’ sampling
period error is bounded below an outstanding 1% even at
simulated rotor spin speeds approaching 40,000 RPM (667
Hz).

The next point of interest is determining the maximum
error of the sampled rotor spin speed itself. Errors here
would measure any latencies in the priority based sched-
uler in RTLinux. Figure 4 shows the error of the sampled
simulated spin speed for the same controller as above. As



/ | [
/‘, 16|
I\ .

/

I\ / \v 1 [
[\ \ n
N

=
—
e

(a) Low X to Low X (b) Low X to High X

(c) High X to Low X (d) High X to High X

Figure 5: Computer’s I/O characteristics. Theoretical and measured amplitudes versus frequency

can be seen, the maximum error is also below and impres-
sive 0.5% at simulated speeds approaching 40,000 RPM.
Last and no less important, both RTiC-Lab and
RTLinux, together, must satisfy both the logical and tem-
poral correctness of the aforementioned controller as seen
by the controlled plant. Figures 5 show the theoretical
and the measured input/output characteristics of the mu-
synthesis controller of the low x to low x, low x to high
x, high x to low x, and high x to high x input to out-
put ports of the controller, respectively. The measured
response denotes the results obtained from a sine sweep
as measured at the I/O ports of the computer by use of
a Stanford Research Systems two channel dynamic signal
analyzer (Model SR785). As can be seen from the plots,
both the theoretical and measured values match perfectly.

4 Conclusion

The Real Time Controls Laboratory, or RTiC-Lab, was
developed to aid in the ACA implementation process. It
relies on FSM Lab’s RTLinux for meeting its strict time
lines. And, consistent with the underlying operating sys-
tem, RTiC-Lab is Open Source. Most importantly, tests
have shown that the predictability of the RTLinux/RTiC-
Lab combo are quite remarkable and thus both systems are
capable of safely controlling high performance systems.

Controller developers and real time programmers who
are interested in using and/or enhancing this software are
encouraged to download the software from http://www. -
rtic-lab.sourceforge.net. Please submit all modifica-
tions and enhancements to efhilton@fsmlabs.com. Spe-
cial forums for discussion may be accessed also from this
site.

5 Acknowledgements

Work for RTiC-Lab has been made possible due to gen-
erous contributions and donations by the National Aero-
nautics and Space Administration (NASA); American Fly-
wheel Systems, Inc.; the Rotating Machinery and Controls
Laboratory at UVA; and the Finite State Machine Labs,
Inc. (FSM Labs).

References

[1] P. E. Allaire, H. C. Kim, E. H. Maslen, G. B. Bearn-
son, and D. B. Olsen. Design of a magnetic bearing
supported prototype centrifugal artificial heart pump.
In Tribology Transactions, volume 39-3, pages 663—
669, July 1996.

[2] M. Baloh, P. Allaire, E. Hilton, N. Wei, E. Maslen,
D. Baun, and R. Flack. Magnetic bearing system
for continous flow ventricular assist device. J. of the
ASAIO, 45(5), 1999.

[3] M. Barbanov and V. Yodaiken. Introducing Real-
Time Linux. Linuz Journal, 34:19-23, February 1997.

[4] R. Bartlett, J. Coyner, S. Djouadi, P. Allaire,
E. Hilton, J. Luo, P. Tsiotras, F. Maher, and
R. Strunce. A simulation of spacecraft energy mo-
mentum wheels using advanced magntetic bearing
controllers. In 1999 Invitational NASA/Air Force
Flywheel Workshop, NASA Glenn Research Center,
1999. Invited Paper.

[5] E. Hilton, P. Allaire, M. Baloh, N. Wei, G. Bearnson,
D. Olsen, and P. Khanwilkar. Test controller design,
implementation, and performance for a magnetic sus-
pension continous flow ventricular assist device. Ar-
tificial Organs, 23(8):785-791, 1999.

[6] P.A. Laplante. Real-Time Systems Design and Anal-
ysis: An Engineer’s Handbook. IEEE Press, IEEE
Computer Society, New York, second edition, 1997.

[7] N. Nissanke. Realtime Systems. Prentice Hall, Lon-
don, 1997.

[8] U. Schénhoff, J. Luo, G. Li, E. Hilton, R. Nordmann,
and P. Allaire. Implementation results of p-synthesis
control for an energy storage flywheel test rig. In
7th International Symposium on Magnetic Bearings,
August 23-25 2000.

[9] J. Stankovic. Misconceptions about real-time com-
puting. IEEE Computer, 21(10), October 1988.

[10] J. Stankovic and G. Buttazzo. Implications of clas-
sical scheduling results for real-time systems. IEEE
Computer, 28(6), June 1995.




