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Abstract

The development team has perfected and added much functionali ty to RTAI over the course of the last year. The
position paper reviews this progress and focuses on the following areas:

- Improvements in the source tree, installation procedure and manual upgrade.
- Dynamic CPU frequency and bus frequency calibration.
- Port to Linux 2.4: 24.1.x releases and support for the PPC architecture.
- POSIX 1003.1c thread module with mutexes and condition variables.
- New Fifos: dynamic creation of named fifos, signal and semaphore interfaces.
- RT_MEM_MGR module: Dynamic memory management and C++ support.
- LXRT: soft and hard real time modes in user space with symmetrical API.
- Trap handling and memory protection while in plain RT and LXRT modes.
- LXRT-INFORMED: integration of RTAI, trap handlers and Linux at termination.
- RT_LXRT_COM and RT_LXRT_RNET modules: the concept of an extendable LXRT.
- MINI_LXRT: timers and tasklets running in user space.
- Integration of QNX IPC primitives, proxy messages and qBlk's to LXRT module.
- LIBLXRT: efforts to simplify the API for GUI and C++ programmers.
- LINUX_SERVER: access to Linux I/O while in LXRT hard real time mode.
- Linux Trace Tool Kit: support for RTAI including LXRT.

The LXRT module with its fully symmetrical API provides a safe and flexible tool to quickly implement hard real
time programs in user space. Once the program is debugged, it can be easily migrated to the kernel for optimal
performance if the application demands it. With CPU clocked near the 1 GHz mark, the necessity to execute code in
the kernel becomes questionable. Thus, LXRT provides the trust direction of RTAI's future developments.
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Introduction

RTAI results from the research done at DIAPM
(Dipartimento di Ingegneria Aerospaziale, Politecnico
di Milano) in the field of PC based real time control
systems.

It all started in the late 80's when RTOS solutions like
QNX, RTKernel and UCOS were considered. The
decision to develop and in-house RTOS was then
made, and DIAPM-RTOS was born. It ran under
DOS and used the "terminate and stay resident"
(TSR) technique.

The hardware abstraction layer concept was also
extended to include all services required for real time
applications and thus the term RTHAL (Real Time
Hardware Abstraction Layer) that will be found in
RTAI's documentation and source tree.

The RTOS needed to evolve to full 32 bits mode and
again various options were considered including a
port to GNU-DOS and Linux 2.0.xx.

The Linux 2.0.xx kernel was not mature enough to
implement the full RTHAL concept, i.e. scattered
interactions with the hardware, too many cli.sti's etc.
However, the NMT RTL effort introduced a simple
real time scheduler very close to DIAPM-RTOS's
own real time scheduler. It demonstrated that
DIAPM-RTOS could be ported easily to Linux
almost unchanged.

The Linux 2.0.xx DIAPM-RTL implementation used
the NMT patch and integrated to the real time
scheduler services like semaphores, intertask
messaging, QNX like synchronous messaging, and
timing services. It enabled real time floating point
support and also modified heavily the timer interrupt
handler in order to have efficient periodic timing and
TSC (CPU time stamp clock) based one-shot modes.

In early 1999 Linux 2.2xx made it possible to
implement the RTHAL concept which was
successfully done by mid-February. By the middle of
April , RTAI-0.x was born with support for both UP
and SMP under an SMP compiled kernel.

In September 1999, LXRT was introduced to allow
faster development of real time applications by
debugging the application in user space before
porting it to the kernel.

Year 2000 saw the organization of a formal
development team of about a dozen developers
working together with a cvs tree. Followed an

avalanche of improvements, correction of bugs,
additional functionali ty and new modules that this
paper will describe and summarize in the following
pages.

Real Time Hardware Abstraction
Layer

Essentially RTAI's kernel patch installs the RTHAL
structure in the Linux kernel. The RTHAL performs
three primary functions:

• gathers all the pointers to the required internal
data and functions into a single structure, rthal, to
allow the easy trapping of all the kernel
functionaliti es that are important for real time
applications, so that they can be dynamically
switched by RTAI when hard real time is needed;

• makes available the substitutes of the above
grabbed functions and sets rthal pointers to point
to them;

• substitutes the original function calls with calls to
the rthal pointers in all the kernel functions using
them.

Linux is almost uneffected by RTHAL, except for a
slight (and negigible) loss of performance due to
calli ng cli and sti, and flags related functions, in place
of their corresponding original Linux function calls
and macros.

About 100 lines of code is all of what is changed or
added in the kernel. Clearly, the RTHAL concept will
facilit ate and simplify a lot the long term support of
RTAI.

Structure rt_hal definition in system.h

struct rt_hal {
        void *ret_from_intr;
        void *__switch_to;
        struct desc_struct * idt_table;
        void (*disint)(void);
        void (*enint)(void);
        unsigned int (*getflags)(void);
        void (*setflags)(unsigned int flags);
        unsigned int (*getflags_and_cli )(void);
        void * irq_desc;
        int * irq_vector;
        unsigned long * irq_affinity;
        int (*assign_irq_to_cpu)(int, unsigned long);
        void (*ack_8259_irq)(unsigned int);
        int * idle_weight;
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        void (* lxrt_global_cli )(void);
        void (*switch_mem)
       (struct task_struct *, struct task_struct *, int );
        struct task_struct ** init_tasks;
} ;

Structure rthal initialisation in irq.c

struct rt_hal rthal = {
        &ret_from_intr,
        __switch_to,
        idt_table,
        linux_cli ,
        linux_sti,
        linux_save_flags,
        linux_restore_flags,
        linux_save_flags_and_cli ,
        irq_desc,
        irq_vector,
        irq_aff inity,
        assign_irq_to_cpus,
        ack_8259_irq,
        &idle_weight,
        0,
        switch_mem,
        init_tasks,
} ;

Because Linux uses the pointers in the above
structure, it is possible for RTAI to change the
functions that Linux uses and that is what the RTAI
module does.

The RTAI Source tree

In the last year, RTAI has had a complete makeover
of its build system. Using the Linux kernel source
tree as a guideline, many improvements have been
made.

All Makefiles files now use the toplevel Rules.make
file to deduce their  build rules.  This has led to a
more consistent and brief mechanism for  developers
when writing Makefiles within RTAI.

The first build of RTAI uses the header file
dependency utili ty from the Linux kernel to build up
a comprehensive set of dependency files for RTAI.
This ensures that rebuilds are conducted correctly in
response to changes within the system, or anything
the system depends on.

The internal numbering system was changed (e.g
22.2.5), this was done for a  number of reasons.

• It is easy to recognize which kernel series the
RTAI variant will run on (the first digits, e.g 22
== for the 2.2 kernels).  While this is a good idea,
we hope to decouple RTAI from being restricted
to a particular kernel variant.

• As in Linux, the second number indicates a stable
or development version. Even numbers are
stable, odd are development.

• The make system auto-generates an
include/version.h file. Using this numbering
scheme allows simple comparison of version
numbers which may be used for feature
detection.

RTAI now uses kernel patches rather than file copies
to upgrade the kernel. This has helped to keep the
system small , and more famili ar to most  developers.
As part of this change, at make time a check is made
to see that the patch has been applied, and also that
the kernel has been configured for the RTHAL.  One
very important feature for embedded developers is
that ifdefs have been added to the patch so that if
CONFIG_RTHAL is not selected, all RTAI code is
effectively removed from the kernel build.

The build system now has an install target that puts
the RTAI modules into the appropriate
/lib/modules/<ver>/misc directory.  This means that
once installed, the RTAI module stack can be
loaded/unloaded with modprobe, without having to
reference a specific version.  Note also that the
convention of having .o extension for modules is now
observed.  Another feature common to Linux is that it
is possible to install i n an alternate  directory base
(e.g for embedded systems) by using the
INSTALL_MOD_PATH  assignment to the make
install command.

In addition to the changes in the build structure,
RTAI has added a number of utiliti es aimed at
making things simpler for the user.

To try to provide for compatibil ity with RTLinux,
RTAI includes a header file include/rt_compat.h. This
uses a series of wrappers to make it possible to write
most applications using the RTLV1/RTAI API and
have them build and run on RTL V2 or RTAI.  The
main benefit is that the application code itself looks
much cleaner and so is easier to maintain.

To make it simple for a newcomer to get the flavor of
RTAI, there are Perl bindings to LXRT. Using these
bindings, you can write a script using  the RTAI API



RTSS 2000 - Real Time Operating Systems Workshop

DIAPM-RTAI Position Paper, Nov 2000 4

and immediately see your results with no compilation
or Makefile woes.

Finally, we have seen the start of regression tests in
RTAI (see newfifos) the idea is to give a simple
go/no go test so that it is easy for the user (and
developer) to determine whether a feature is
functioning as expected.

Dynamic CPU frequency and bus
frequency calibration

This replaces the CPU_FREQ and APIC_FREQ
#defines in rtai.h with values obtained dynamically
when the RTAI modules are installed. It is no longer
necessary to recompile RTAI for different computers
of differing specifications. The same binaries will
now automatically calibrate themselves to the
computer when they are installed.

• good for binary distributions
• good for a host target development environment

The CPU frequency calibration by default uses
Linux's value (which for Pentiums is obtained
dynamically at boot time by calibrating the TSC
against the 8254 timer). Alternatively the
cpu_freq_calibration utili ty can be run for 20 seconds
or so to obtain a more accurate value. This calibrated
value can be made to override the default value by
using an insmod command line parameter...

insmod rtai.o CpuFreq=<calibrated_value>

The APIC frequency (usually only relevant for SMP
machines) by default is read from the APIC timer
directly. Alternatively the apic_freq_calibration
utili ty can be run for 20 seconds or so to obtain a
more accurate value. This calibrated value can be
made to override the default value by using an
insmod command line parameter...

insmod rtai.o ApicFreq=<calibrated_value>

RTAI proc Interface

The RTAI proc interface provides status and debug
information on the current operating conditions of the
RTAI real time operating system through the standard
Linux /proc interface.  A series of files under the
subdirectory /proc/rtai gives information on each of
the major active subsystems in RTAI.  These files are
activated when the associated module is inserted into
the kernel.  A description of these files and their
contents is given below.

/proc/rtai/rtai

This file gives information on the rtai.o module, for
example rtai version, interrupt state, etc. A typical
output from this file is shown below:

-----------------------------------------------------------------
RTAI Real Time Kernel, Version: 22.2.4

RTAI mount count:  1

Global irqs used by RTAI:

Cpu_Own irqs used by RTAI:

RTAI sysreqs in use:  1

/proc/rtai/scheduler

This file gives information on the currently loaded
rtai scheduler, for example, priority of the currently
running real time tasks, state information, etc. A
typical output from this file is shown below:

-----------------------------------------------------------------
RTAI Uniprocessor Real Time Task Scheduler.

Calibrated CPU Frequency: 333347000 Hz
Calibrated 8254 inter. to scheduler latency: 9027 ns
Calibrated one shot setup time: 1974 ns

Priority  Period(ns)  FPU  Sig  State  Task
---------------------------------------------------
      5         5000000     No   No   0x5    1
      6         8000000     No   No   0x5    2

/proc/rtai/fifos

This file gives status information on the real time
fifos, how many are in use, the buffer size, etc. A
sample output is shown below:

-----------------------------------------------------------------
RTAI Real Time fifos status.

fifo No  Open Cnt  Buff Size  malloc type Name
-----------------------------------------------------------------
0        1         20000      kmalloc

/proc/rtai/memory_manager

Current status of the dynamic memory manager is
given by this file, for example number of memory
blocks, amount of memory available in each block,
etc. A typical output is shown below:
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-----------------------------------------------------------------
RTAI Dynamic Memory Management Status.

Chunk Size  Address    1st free block  Block size
-----------------------------------------------------------
0     65536 0xc50c0000   0xc50c1798        59484
1     65536 0xc5170000   0xc5170010        65508

RTAI port to the PPC Architecture

Paolo Mantegazza worked on porting RTAI to PPC
because of the interest of an Italian company and
Zentropix. After testing RTAI on PII class CPUs, the
company found there was no need for them to use the
PPC as PII were cheaper and performed well enough.

Zentropix remained interested and supplied a portable
G3 Mac.

Paolo's interest was to put the RTHAL concept to a
hard real li fe test and verify to what extent RTAI is
entangled into the ix86 architecture.

It took some spare time to study the CPU, using a
well structured standard Motorola manual (The
Programming Environments for 32-Bit
Microprocessors), and Linux native code hacking and
copying. After that, the beta porting of RTAI kernel
space part, including FPU support, was done in three
weeks working evenings and weekends only.

LXRT compiles but has not been tested. Hard real
time mode in user space was never studied nor
attempted.

DIAPM do not plan to use the PPC, and therefore
Paolo's interest in going further is limited.

The Linux Implementation

The Linux PPC architecture is many miles behind its
ix86 brother. We hope things are better on other
archs, they say so for alphas. We feel PPC-Linux is
much worse than advertised, if compared to the
maturity, features and progress of the Linux ix86
architecture.

Relevant hardware summary:

PPC is a many, symmetrically usable, registers RISC
CPU. It has no true stack, no push/pop instructions.
The stack is emulated by using an index register. Gcc
argument passing is mostly done using registers.
Paolo did not check if asmlinkage declarations can

change things. It defaults to big endian mode, even if
it can work also in small endian mode.

Its timing source is an internal counter, called
decrementer, guaranteed to be paced at the same
frequency of the CPU time base (the equivalent of
Intel TSC). The time base pacing is a small fraction
of the CPU.  The time base frequency does not come
from slicing the CPU, but that does not matter much
to the software. The decrementer cannot be
programmed as periodic. It simply counts down then
wraps around to full 32 bits and goes on counting
down. At wrapping around it generates a specific
interrupt. To have it periodic the decrementer must be
reloaded so the PPC is natively a one-shot hardware
timer to all practical effects.

External interrupts have just one vector, so it is up to
the irq handler to dispatch and find the source by
interacting with PICs. Software interrupt have also
only one source, called trap, used also for some fault
specific trap. There is a separated supervisor specific
trap for OS system calls.

Software (Linux) summary

Because of the above, interrupts/traps dispatching is
native in Linux Kernel and cli /sti equivalents are
already in pointers to function. For an RTAIler that
simply means that PPC Linux is natively based on the
RTAI RTHAL concept. So there is not much to be
patched. In fact RTL does no patching but Paolo did
patch a few lines because he wanted to do a few thing
differently.

Some technical notes on the port

It is only for UP.

Almost every thing of RTAI proved easily portable as
it was. It could not be diff icult because RTHAL is in
Linux already and I was used to it. The main thing to
be adapted where:

• the timer,

• knowing the external interrupt source,

• setting up an emulation of ix86 IDT table for soft
irqs to save the RTAI srq concept and flexibili ty.

The first two had to work for sure to allow running
kernel space applications. The third one is essential
for shared memory, fifos and LXRT.
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The RTAI timer is always a one-shot one. Periodic
mode is simply supported by a fix reloading of the
decrementer, after reading the time base, with the
count required to insure the next interrupt
corresponds to the fixed periodic tick. So all t imed
function always call for the decrementer update at
each decrementer expiration. The difference being
that an appropriate variable count is loaded in one-
shot, while in periodic mode the count is changing
just to account for the time elapsed to acknowledge
the related interrupt.

After recall ing the full 32 bits wrap around, it is noted
that Linux does something sill y. It reads the
decremeter to get the counts from the interrupts, then
keeps reading it to wait for another decrement and at
that time calculates the new count to be loaded. It is
sure that no decrementer variation will occur as the
decrementer runs at a fraction of the CPU speed.
However on slower CPUs, waiting for the
decrementer causes the loss of some time.

The RTAI approach in periodic mode is simpler. At
each interrupt the variable keeping the time is
incremented by the period to calculate the base time
of the next interrupt. The algorithm then reads the
current time base, make the difference and loads the
decrementer.

Finding the external interrupt source is done by
simply using the pointer to the related function made
available by native PPC RTHAL. Here the Linux
source code was modified slightly as that pointer is
passed to the Linux dispatcher for its soft interrupt.
The dispatcher is in charge of finding the irq source
when RTAI is not mounted, and the RTAI two lines
of code  patch saves it from doing it uselessly when
RTAI is mounted.

Soft irqs for RTAI srq are emulated by causing a trap
after loading registers with the interrupt number. The
Linux trap handler has been patched so that it can
understand if RTAI is mounted. In such a case it
passes the trap to the RTAI handler that, by looking at
the registers, understands if it is his or Linux, and
then acts accordingly. Clearly in such a way one can
also intercept Linux traps the way we have done in
ix86. It should be OK as shared memory and fifos
work well already. All the RTAI kernel space
examples seem also to work well .

Status of the RTAI port
As explained above LXRT compiles but does not run.
You have seen how I had to change the related call to
lxrt_resume to get the right arg. However, there can
be problems in the way the long long returned from

the lxrt_handler are packed and recovered since they
must match the endian mode.

As said above we stopped working on it because of
the lack of interest and we were already amused and
satisfied with what had been accomplished. The
exercise did demonstrate the usefulness of the
RTHAL concept.

The RTAI Module

It is a module that once installed lies in a dormant
state ready to overtake Linux. The function
init_module() does a few important things:

• initializes all of its control variables and
structures;

• makes a copy of  the idt_table and of the Linux
irq handlers entry addresses;

• initializes the interrupts chips management
specific functions.

Also, file rtai.h contains basic defines and inlined
functions that perform some important RTAI services
like timers services including support for 8254 timer
and APIC timers.

Mounting RTAI

The execution of function rt_mount_rtai() (usually
done by the schedulers or the fifos module) mounts
RTAI services and fully traps the hardware.

A specific lock service is implemented (Linux
spinlocks are no more protected by disabling the
interrupt flags as Linux hold just soft flags, while
RTAI needs true disables):

unsigned long flags; spinlock_t lock;
rt_spin_lock(&lock);
/*
    Critical code isolation in Linux,
    can be preempted by RTAI.
* /
rt_spin_unlock(&lock);

rt_spin_lock_irq(&lock);
/*
    Same as above but soft (flags) disabled only.
* /
rt_spin_unlock_irq(&lock);

flags=rt_spin_lock_irqsave(&lock);
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/*
Critical code isolation in RTAI with interrupt
disabled.
* /
rt_spin_lock_irqrestore(flags,& lock);

A global lock service to obtain atomicity across
CPU's is implemented:

unsigned long flags;
rt_global_cli ();
/* Critical code, interrupts disabled for all CPU's. */
rt_global_sti();

flags = rt_global_save_flags_and_cli ();
/*
Critical code, Linux is already preempted. On SMP, a
single global lock that locks out the other CPU's.
Allows recursive calls within it from the same cpu.
Works on UP boxes.
* /
rt_global_restore_flags(flags);

Also, RTAI needs a special form of hard lock disable
across CPU's:

unsigned long flags;
flags=hard_lock_all ();
/*
On UP boxes is the same as
rt_global_save_flags_and_cli () above. On SMP locks
out all the other CPU's.
* /
hard_unlock_all (flags);

The function rt_mount_rtai() actually intercepts all
the hardware:

• Sets up the locks described above.

• sets up the global hard lock handler;

• hard locks all CPU's;

• redirects rthal interrupts enable/disable and flags
save/restore to its internal functions doing it all in
software;

• recovers from rthal a few functions to manipulate
8259 PIC and IO_APIC mask/ack/unmask
functions;

• redirect all hardware handler structures to its
trapped equivalent;

• changes the handlers functions in idt_table to its
dispatchers;

• releases the global hard lock.

When rt_mount_rtai() returns, Linux appears working
as nothing had happened but it is no longer the
machine master. Function rt_umount_rtai() reverses
the process decribed above and returns the system to
its original state.

What happens when an interrupt comes in
while RTAI is mounted?

While in RTAI real time mode a Linux interrupt is
flaged as pending and its execution is delayed until
RTAI switches to the Linux context again. Similarly,
real time tasks may pend Linux service requests and
those are flagged as pending as well .

When RTAI switches to the Linux context, function
linux_sti() gets executed immediately after the switch
as part of the global lock release algorithm. The
function will dispatch for execution all the pending
service requests and all the pending Linux interrupts
before actually returning control to Linux.

While in the Linux context, a real time interrupt
preempts Linux and gets executed immediately. If the
interrupt is chained to a Linux interrupt, the Linux
handler will also be dispatched immediately. If a
service request was pended by the real time interrupt
handler, the service request will be executed before
control is returned to Linux.
What does the SMP hard_lock_all () do?
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With an SMP compiled kernel the hard_lock_all ()
function protects itself using the global lock, then
acquires a specific hardware spinlock and sends an
Inter Processors Interrupt (IPI) message to all the
other CPU's, using a vector dedicated to such a
purpose. It then begins busy waiting on an agreed
global volatile variable to be set by all other CPU's.
The other CPU's are then interrupted by the message
sent to them, set the agreed global variable and spin
on the hardware specific lock with their interrupts
disabled, thus blocking any activity on their CPU.
When the agreed variable indicates that all the CPU's
are locked the one in charge of the processing carries
out its work and unlocks the global lock. At this point
all the blocked CPU's acquire the specific lock in turn
and return from interrupt. Notice that it is also
possible to force the slave CPU's to execute a service
function before returning.

The scheduler Modules

RTAI has a UniProcessor (UP) specific scheduler and
two for MultiProcessors (MP). In the latter case you
can chose between a symmetricMultiProcessor (SMP)
and a MultiUniProcessor (MUP) scheduler.

The UP scheduler

The UP scheduler can be timed only by the 8254
timer and cannot be used with MPs.

The SMP scheduler

The SMP scheduler can be timed either by the 8254
or by a local APIC timer. In SMP/8254 tasks are
defaulted to work on any CPU but you can assign
them to any subset, or to a single CPU, by using the
function:

• rt_set_runnable_on_cpus().

It is also possible to assign any real time interrupt
service to a specific cpu by using functions:

• rt_assign_irq_to_cpu()
• rt_reset_irq_to_sym_mode()

 Thus a user can staticall y optimize his/her
application if he/she believes that it can be better
done than using a symmetric load distribution. The
possibili ty of forcing any interrupts to a specific CPU
is clearly not related to the SMP scheduler alone and
can even be used in interrupt handlers.
Note that only the real time interrupt handler is forced
to a specific CPU. That means that if you check this

feature by using "cat /proc/interrupts" for a real time
interrupt that is chained to Linux, e.g. the timer when
rtai_sched is installed, you can still see some
interrupts distributed to all the CPUs, even if they are
mostly on the assigned one. That is because Linux
interrupts are kept symmetric by the RTAI dispatcher
of Linux irqs.

For the SMP/APIC based scheduler if you want to
statically optimize the load distribution by binding
tasks to specific CPUs it can be useful to use the
function rt_get_timer_cpu() just after having
installed the timer, to know which CPU is using its
local APIC timer to pace the scheduler. Note that for
the one-shot case that will be the main timing CPU
but not the only one. In fact which local APIC is used
depends on the  task being scheduling out, and that
will determine the next shooting.

SMP schedulers allow to chose between a periodic
and a one-shot timer, not to be used together. The
periodic ticking is less flexible but, with the usual PC
hardware much more efficient. So it is up to you to
choose the mode in relation to the applications at
hand.

measured on the basis of the CPU time stamp clock
(TSC) and neither on the 8254 chip nor on the local
APIC timer, which are used only to generate oneshot
interrupts. The periodic mode is instead timed by
either the 8254 or the local APIC timers. In the
oneshot mode the time is hen the 8254 is used slow
I/Os to the ISA bus are minimised as much as
possible with a sizable gain in efficiency. The oneshot
mode has just about 15-20% more overhead than the
periodic one. The use of the local APIC timers leads
to a further improvement and substantially less jitter.

Remember that local APICs are hard disabled on
UPs, unless you are using just one CPU on an MP
motherboard. Experience with local APIC timers
shows that there is no performance improvement for a
periodic scheduling, except for a marginal reduced
jitter, while the oneshot case gain is the sizable 10-
15% mentioned above. In fact by using the TSC just
two outb() calls are required to reprogram the 8254,
i.e. approximately 3 us, against almost nothing for the
APIC timer. However you have to broadcast a
message to all the CPU's in any case, and that is more
than approximately 3 us. The APIC bus is an open
drain 2 wires one and is not very fast. Note that the
performance loss of the 8254 is just a fraction of the
overall task switching procedure, which is always
substantiall y heavier in the oneshot case than in
periodic mode.
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If you have an SMP motherboard, or a local APIC
enabled, you should  definitely use the APIC SMP
scheduler.  Note however that in this case we have
chosen not to bound the timer to a specific CPU.
Nonetheless, as explained above, you can still
optimise the static binding of your task by using the
function rt_get_timer_cpu() which allows you to find
which local APIC is timing your application so that
you can use the function rt_set_runnable_on_cpus()
to bind any task to the "timing" CPU. See the
README file in the smpscheduler directory.

Older 80486 machines

Since the TSC is not available on 486 machines, we
use a form of emulation of the read time stamp clock
(rdtsc) assembler instruction based on counter2 of the
8254. So you can use RTAI also on such machines.
Be warned that the one-shot timer on 486 is a
performance kill er because of the need to read the
TSC, i.e. the 8254 counter2 in this case, 2/3 times.
That can take 6-8 us, i.e. more than it takes for a full
switch among many tasks while using a periodic
timer. Thus only a few kHz period is viable, at most,
for real time tasks if you want to keep Linux alive.
No similar problems exist for the periodic timer that
need not use the TSC at all . So, compared to the 20%
cited above, the real time performance ratio of  the
one-shot/periodic timer eff iciency ratio can be very
low on 486 machines. Moreover it will produce far
worse jitters than those caused on Pentiums and
upward machines. If you really need a one-shot timer
buy at least a Pentium. However, for periodic timing
486s can still be more than adequate
for many applications.

The MUP scheduler

The MUP scheduler instead derives its name by the
fact that real time tasks MUST be bound to a single
CPU at the very task initialization. They can be
afterward moved by using functions:

• rt_set_runnable_on_cpus()
• rt_set_runnable_on_cpuid()

The MUP scheduler can however use inter CPUs
services related to semaphores, messages and
mailboxes. The advantage of using the MUP
scheduler comes mainly from the possibili ty of using
mixed timers simultaneously, i.e. periodic and
oneshot, where periodic timers can be based on
different periods, and of the possibly of forcing
critical task to remain in the CPU cache. With dual
SMP machines we cannot say that there is a

noticeable difference in efficiency. MUP has been
developed primarily for our slowt (a few khz) PWM
actuators, and BANG-BANG air jet thrusters,
coupled to a periodic scheduler. All the functions of
the UP and SMP schedulers are available in the MUP
scheduler.

A new Fifo Module

The new fifo implementation for RTAI maintains full
compatibility with the basic services provided by its
original NMT-RTL counterpart while adding many
more.

It is important to remark that even if the RTAI fifo
API appears as before, the implementation behind
them is based on the mailbox concepts, already
available in RTAI and symmetrically usable from
kernel modules and Linux processes. The only
notable difference, apart from the file style API
functions to be used in Linux processes, is that on the
module side you always have only non blocking
put/get, so that any different policy should be
enforced by using appropriate user handler functions.

With regard to fifo handlers, it is now possible to
install also one with a read/write argument (read 'r',
write 'w'). In this way you have a handler that can
know what it has been called for. It is useful when
you open read-write fifos or to check against miscalls.
For that you can have a handler prototyped as:

• int x_handler(unsigned int fifo, int rw);

that can be installed by using:

• rtf_create_handler
(fifo_numver, X_FIFO_HANDLER(x_handler).

see rtai_fifos.h for the X_FIFO_HANDLER macro
definition.

The handler code is likely to be a kind of:

int x_handler(unsigned int fifo, int rw);
{

if (rw == 'r') {
// Reading code.

} else {
// Writing code.

}
}

Even if fifos are strictly no longer required in RTAI
because of the availability of LXRT, they are kept
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both for compatibility reasons and because they are
very useful tools that can communicate with interrupt
handlers since they do not require any scheduler to be
installed. In this sense you can see this new
implementation of fifos as a kind of universal form of
device drivers since once your interrupt handler is
installed you can use fifo services to do all the rest.

The new implementation made it possible to add
some new services. One of these is the possibili ty of
using asyncronous signals to notify data availability
by catching a signal set by the user. It is implemented
in a standard way, see the function:

rtf_set_async_sig(int fd, int signum) (default signum
is SIGIO);

and standard Linux man for fcntl and signal/sigaction,
while the others are specific to this implementation.

A complete picture of what is available can be
obtained from a look at rtai_fifos.h prototypes.

Support for multiple readers and/or writers

It is important to remark that now fifos allow multiple
readers/writers so the select/poll mechanism to
synchronize with in/out data can lead to unexpected
blocking. For example: you poll and discover that
data is available and then another user preempts you
and steals all your data with the result that when you
finally ask for it the data is gone and you  get
blocked. So, make sure that you cannot be blocked
when you read or write data. To avoid such problems
you have available the functions:

• rtf_read_all_at_once(fd, buf, count);

that blocks untill all count bytes are available;

• rtf_read_timed(fd, buf, count, ms_delay);

• rtf_write_timed(fd, buf, count, ms_delay);

that block just for the specified delay in milliseconds
but are queued in real time Linux process priority
order. If ms_delay is zero they return immediately
with all the data they could get, even if you did not
set O_NONBLOCK at fifo opening.

So by mixing normal read/writes with their friends
above you can easily implement blocking, non
blocking and timed IOs. They are not standard and
therefore not portable, but far easier to use than the
select/poll mechanism.  The standard llseek() is also

available but it is equivalent to calli ng rtf_reset(),
whatever fifo place you point at in the call.

For an easier timing you have available also:

• rtf_suspend_timed(fd, ms_delay).

To make them easier to use, fifos can now be created
by the user at open time. If a fifo that does not exits
already is opend it is created with a 1K buffer. Any
subsequent creation in the kernel side resizes it
without any loss of data. Again if you want to create a
fifo from the user side with a desired buffer size you
can use:

• rtf_open_sized(const char *dev, perm, size).

Since they had to be there already to implement the
mailboxes we have also made available binary
semaphores. They can be used for many things, e.g.
to synchronize shared memory access without any
scheduler installed instead of using blocking fifos
read/writes with dummy data.

Semaphore services

The semaphore services available are:

• rtf_sem_init(fd, init_val);

• rtf_sem_wait(fd);

• rtf_sem_trywait(fd);

• rtf_sem_timed_wait(fd, ms_delay);

• rtf_sem_post(fd);

• rtf_sem_destroy(fd);

Note that fd is the file descriptor. A semaphore is
always associated to a fifo and you must get a file
descriptor by opening the corresponding fifo.

Naturally the above functions are symmetrically
available in kernel space except for rtf_sem_trywait()
and rtf_sem_post() which are only available in user
space, because as explained above, you only get non
blocking services in the kernel.

Dynamic creation of named fifos

To make it easier to keep track of which fifo to use
and in order to avoid fifo number clashes beween
separate real time tasks, it is now possible to
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dynamically create named fifos on an unused fifo
number. Existing named fifos can have their name
looked up in order to find which fifo number they
occupy. The named fifo services available are:

• rtf_create_named(name);
• rtf_getfifobyname(name);

Technical Notes

These functions are symmetrically available in kernel
and user space. Both return the allocated fifo number.
In user space note that these calls will not
automatically open the fifo device for you. Instead
one must append the returned fifo number onto the
end of '/dev/rtf' and then open the fifo device as
normal.

The maximum length of a fifo's name is defined as
RTF_NAMELEN. This is currently set to 15.

When using rtf_create_named() from user space, the
first fifo created is assigned a fifo number of 1 rather
than 0. This is because /dev/rtf0 is used to
communicate with the kernel driver module (where
the name to number mapping is kept), and so at the
time of calling fifo number 0 is not free. This should
not cause any problems. The same thing does not
happen when rtf_create_named() is called from kernel
space.

If you want to monitor the fifo name to number
mapping two choices are available. Either look in
/proc/rtai/fifos or use the new
RTF_GET_FIFO_INFO ioctl. Take a look in the test
program regression.c and rtai_fifos.h to see a (slightly
contrived) example of using this ioctl. Sample /proc
interface output...

  fifo No  Open Cnt  Buff Size  malloc type Name
  ---------------------------------------------------------
  0        1         1000       kmalloc     kernel_FIFO_345
  1        2         1000       kmalloc     user_FIFO_12345

Future implementations may employ SRQs rather
than /dev/rtf0 for the name resolution.

The pthread Module

The RTAI pthread module implements a thread
package to the POSIX 1003.1c standard.  The module
includes calls for thread creation and destruction,
mutual exclusion, and condition variables. This gives
the real time programmer the abili ty to program the
application using a standard threads API.

pthreads

The module provides for the dynamic creation and
destruction of threads, so the number of threads does
not have to be known until runtime.  POSIX threads
use attribute objects to represent the properties of
threads.   Properties such as stack size and scheduling
policy are set for a thread attribute object.  A thread
has an id of type pthread_t, a stack, an execution
priority, and a starting address for execution.  In
POSIX, threads are created dynamically with the
pthread_create function which creates a thread and
puts it in a ready queue.

During its life a pthread can be in any one of four
states; Ready, Running, Blocked, and Terminated.

A pthread is in the ready state when it is able to run,
but is waiting for a processor to become available.
Usuall y it is in the ready state on creation, when it has
been blocked or pre-empted by another pthread or
task.

A pthread is in the running state when it is executing
on a processor. A pthread is blocked when it is unable
to run because it is waiting for an event. Typical
examples of this include waiting to lock a mutex,
suspending execution for a time period, or waiting for
an I/O operation to complete.

A pthread is terminated when it returns from its start
function or by call ing pthread_exit.  Under real time
Linux, this state is very short as the concepts of
pthread joining and detaching are not currently
implemented. Hence, when pthreads are terminated
they are recycled immediately.

Synchronization

In the majority of cases, applications that are written
using pthreads will have a requirement to share data
between pthreads and ensure that certain actions are
performed in a coherent sequence.  This requires that
the activity of the pthreads is synchronized when
accessing the data in question to avoid incorrect
operation and undesired effects.  Under RTAI the
synchronization functions that are available for
applications are mutexes and conditional variables.

Mutexes

The most common method of synchronizing access to
a resource that isshared between multiple pthreads is
to use a mutual exclusion, abbreviated to mutex.  A
mutex is used to serve as a mutually exclusive lock
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which permit pthreads to control access to sections of
data and code requiring  atomic access.  In these
circumstances only one pthread can hold the lock and
hence access the resource that the mutex is protecting.
Mutexes can also be used to ensure exclusive access
to sections of code or routines; these are known as
critical sections of code.

Condition Variables

One of the main differences between a mutex and a
condition variable is that a mutex allows threads to
synchronize by controll ing access to data, whereas a
condition variable allows threads to synchronize on
the value of the data.  A condition variable provides a
method of communicating information regarding the
state of shared data.  For example this information
could be a counter reaching a certain value, or a
queue becoming empty.

The Memory Management Module

The dynamic memory module for RTAI gives real
time application programs the abil ity to be able to
dynamically create and free memory using the
standard UNIX programming API calls.  Before this
module, real time applications which needed dynamic
memory management had to use the standard Linux
kernel calls: kmalloc() and kfree(). This is potentially
very dangerous as these calls can block, and if this
were to occur from a real time task, the result is
usually a total system lock up.  The situation is made
worse as this can lead to intermittent bugs as real time
applications can appear to work using these calls, but
fail under varying load conditions and circumstances.

The dynamic memory manager module pre-allocates
blocks (chunks) of memory from the Linux kernel
which is available for use by real time tasks using a
"UNIX like" API: rt_malloc and rt_free. The manager
allocates and frees memory from these blocks of
memory, and also monitors the amount of free
memory that is available in these blocks.  When the
amount of available memory falls below a low water
mark a request for another block of memory is made
pending.  Similarly, when the amount of available
memory is greater than a high water mark, a request
to free a block of memory is made pending.  These
pending requests are carried out using the standard
kmalloc and kfree calls at a safe time, i.e. when the
real time system becomes idle, just before control is
handed back to Linux.  Using this mechanism, the
memory manager balances the memory requirements
of the real time application with the need to keep as

much memory as possible available to the Linux
kernel.

The dynamic memory manager can be configured for
the number of memory blocks that are kept available,
and the size of the blocks.  This means that the
module can be configured to meet the specific
requirements and operating conditions of a real time
application, allowing the application to be
programmed using the flexibil ity of dynamic memory
allocation, whilst minimizing the memory resource
burden on the Linux kernel.  Another key feature
provided by the module is the abili ty to create real
time threads from other real time threads which is an
essential feature for many applications. For this
purpose, RT_TASK *rt_alloc_dynamic_task(void)
has been added to the schedulers.

Dynamic memory allocation for real time tasks is
supported by the implementation of the following
functions:

• void *rt_malloc(unsigned int size);

rt_malloc() allocates size bytes and returns a pointer
to the allocated memory.  If the allocation request
fails a NULL is returned.

• void rt_free(void *ptr);

rt_free() frees the memory space pointed by ptr which
must have been returned by a previous call to
rt_malloc().  rt_free returns no value.

The default configuration of the dynamic memory
manager is:

Memory block size: 64 KBytes
Number of free blocks kept available: 2

These parameters can be changed if required by using
the following module parameters:

Memory block size:  granularity
Number of free blocks kept available: low_chk_ref

For example to change the size of the memory blocks
to 32 Kbytes and the number of free blocks kept
available for allocation to 4:

Insmod rtai_sched_up.o granularity=32768
low_chk_ref=4
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RTAI C++ Support Built Into The Module

Real time C++ support is provided with the
implementation of the operators:

• void* operator new(size_t);
• void* operator new [](size_t);
• void  operator delete(void*);
• void  operator delete [](void*);

These operators use the rt_malloc() and rt_free()
primitives and thus make it possible to execute real
time C++ written modules. The LXRT directory
provides an example on how to do this. Notice that
C++ support is limited as programs must be compiled
with the -fno-exception g++ option. Also,  an abstract
base class that defines a pure virtual function should
implement an empty function otherwise the compiler
will generate the __pure_virtual() call which will
result in an unresolved symbol at insmod time:

class Wathever {
public:

virtual void foo() = 0; // Pure virtual.
virtual void Better {} // Empty function.

} ;

Member function foo causes the problem whereas
empty member function Better() tricks g++.

Alternatively you could choose to implement your
own __pure_virtual() function with something like
this:

extern "C" void __pure_virtual();
void __pure_virtual()
{
RT_TASK *t;
rt_printk( "%X calli ng a pure virtual\n", t =
rt_whoami());
rt_task_suspend(t);
}

Notice that if you attempt to compile with the -fPIC
option, you will see another unresolved symbol:
_GLOBAL_OFFSET_TABLE_.

Also, you cannot instantiate global objects because
nothing actuall y does the global initialization. This is
normally done before the program enters main and
you need to link with the library files crtbegin.o and
crtend.o to do that. However, linking with those two
files will introduce you to two other unresolved
symbols:

• __register_frame_info

• __deregister_frame_info.

To resume, C++ support is limited in that exception
handling and global instantiation services are not
available in the kernel due to a lack of  library
support. It is possible to trick the compiler in order to
avoid  the __pure_virtual unresolved symbol.

There is now in the source tree an example almost
entirely written in C++ to help users get started. The
example is simple and yet sophisticated in that it
ill ustrates many aspects of the language like
derivation, composition, templates, virtual functions
and, of course, provides a Makefile that compiles a
C++ written kernel module.

LXRT - the symmetrical API concept

Paolo Mantegazza's objective when he started to think
about LXRT was to implement in user space the
message handling and remote procedural call
functions that are integrated to the RTAI schedulers.

Programmers famili ar with RTAI would then be able
to do IPC in user space without having to master all
the details and intricacies of System V IPC and libc6.
This way staff and students could focus on their
research in the field of aerospace and spend less time
learning Unix.

The next step was simple. Given that RTAI
messaging functions would be available in user space,
it would be usefull i f the  functions internals allowed
to cross the kernel/user space boundary.  This way a
user space program could send a message to a kernel
task and vice versa using the same function call
prototype.

The initial development of the LXRT module
implemented all the RTAI  scheduler services in user
space with very few exceptions and changes to the
API functions prototypes. Moreover, the problem of
crossing the kernel/user space boundary was
surmounted and the API functions could be used inter
and intra space for both kernel and user space.

The internals of the first LXRT
implementation

A number of problems were resolved in the first
LXRT implementation of the symmetrical API. Let's
follow the flow of control as if we were actually
making a call from user space:
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First, it is necessary to create a RTAI real time task
agent. The agent will enter the real time space and
actually execute the native API functions if and when
required. The function rt_task_init() creates the agent.
In a similar way, the function rt_task_delete() releases
the resources required to instantiate the real time
agent. The agent real time task structure, stack and
messaging buffers are allocated dynamically.

Usuall y real time kernel tasks have statically declared
task structures and it is therefore easy to share
pointers to those structures. Any task can initiate a
messaging procedure if the name of the variable that
declares the global task structure of the receiver is
known. Clearly user space programs would have to
use a different approach. A name registry algorithm
was developped and enables kernel and user space
programs to register a unique name up to six
characters long. Any task that knows a registered
name can find the address of the real time task
structure of the registered task and therefore can
initiate a messaging procedure with it. The registry
algorithm also supports mail boxes, semaphores and
proxies.

A simple approach using static inline functions in
header file rtai_lxrt.h was used to copy the function
arguments onto the stack before executing the
software interrupt. With the help of macros most of
the API functions where quickly implemented in user
space with two lines of code each. The register
arguments of the system call encode (on the stack) the
size of the argument structure as well as the function
ID number and a pointer to the argument structure.

LXRT installs in init_module() an interrupt handler
that saves the registers, calls lxrt_handler() after
pushing the register arguments onto the stack, and
restores the registers at the end of the system call . The
handler save/restore are done the same way Linux
does it thus keeping the possibili ty and flexibili ty to
return with a ret_from_intr() although at first a simple
iret instruction was sufficient.

Once in the Linux context, the function ID number is
decoded and used as an index into a matrix of
structures that contain the pointer to the native API
function as well as information as to what to do next.
About 20% of the native functions do not need to
enter RTAI real time context. In that case the
arguments are copied from the user space stack with
copy_from_user() and the native function simply
called.

When a context switch is required, LXRT calls
lxrt_resume() to prepare the agent before the context
switch can be accomplished. Function arguments may
have to be copied from user space to message buffers
using dedicated pointers in the real time task
structure. The stack of the agent has to be initialised
and the address of the native API function copied
onto it among other things. The context switch will
transfer control to the stub function
lxrt_rtai_fun_call () that will in turn disable global
interrupts, call the native API function and then
automatically call rt_suspend(). Function rt_suspend()
always calls rt_schedule() to force a context switch
(the return to Linux) and may also pend a Linux
service request to wakeup the the user program in the
Linux context if need be. After having done this
initialisation, emuser_trxl() is called to do the context
switch to kernel real time mode.

The user program agent task wakes up in kernel real
time mode executing the desired native API function.
At this point two things can happen. The agent could
exit the function immediately and start unwinding
things to go back to user space, or, the function could
decide to block and call rt_schedule() to switch to
another real time task.

In the first case, the native API function exits and the
stub function  calls rt_schedule(). At some point in
time the RTAI scheduler restarts Linux. The user
program wakes up in kernel mode and continues to
execute lxrt_resume(). Global interrupts are re-
enabled and, if required, data is copied back to user
space. The system call then completes and control
returns to user space.

In the second case, the agent is blocked in the real
time kernel when the RTAI scheduler restarts Linux.
The user program wakes up in kernel mode, re-
enables global interrupts and immediately suspends
itself by  setting state to TASK_INTERRUPTIBLE
followed by a schedule() call . Linux then continues
with another process.

At some point in time, the user program real time
agent eventually exits the native API function. The
stub function described above calls rt_suspend(). A
service request to wakeup the kernel component of
the user space program is pended before the
rt_schedule() call to do a context switch. This forces
the execution of the required wake_up_interruptible()
call i n the Linux context before the current process
actually resumes. A Linux context switch occurs and
our user program wakes up again in lxrt_resume()
and completes the system call as described above for
the first case.
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The need to cleanup at process termination
time

With the first release of LXRT it became apparent
that a soft real time task that terminated abnormally
could not be re-started because the registr() call i n
rt_task_init() failed. Nobody had deregistered the task
name at termination. LXRT needed to be informed by
Linux of the termination event in order to do required
house cleaning. Deemed acceptable in the context of
laboratory research more needed to be done to
graduate to industrial status.

The objective behind the development of LXRT-
INFORMED was to have a system that could recover
after the crash of a linux task with a real time LXRT
agent.

A few lines of code were added to function do_exit()
to allow the detection of real time agents that need to
be deleted by LXRT at process termination time.
Function do_exit() calls a special handler installed
(and de-installed at cleanup_module() time) by the
LXRT module. In order to minimise the overhead of
that additional call in do_exit() it was decided that
do_exit() would only do the call for POSIX
processes. Thus LXRT-INFORMED works only for
processes that change their Linux scheduling policy
to SCHED_FIFO or SCHED_RR.

When a POSIX process terminates do_exit() calls
linux_process_termination() and the following
actions are taken in sequence and as follows:

• Disable global interrupts.

• Try to find an agent for the current process.

• Verify in the registry if current registered
semaphores. If so, and for each, call
rt_sem_delete() and rt_free() to release the
allocated memory, and also erase the registry
entry.

• Verify in the registry if current registered mail
boxes. If so, and for each, call rt_mbx_delete()
and rt_free() to release the allocated memory,
and also erase the registry entry.

• Verify in the registry if current attached proxy
messages, if so, and for each, call
rt_Proxy_detach(), and also erase the registry
entry.

• If an agent task was not found above enable
global interrupts and return, otherwise continue.
Notice here that this approach works if the user
forgot to release the resources during a normal
exit.

• Go through the list of RTAI real time tasks and
try to find those that may be SEND, RPC,
RETURN, or DELAYED blocked on the agent
task found above. For each task found, unblock it
and force a context switch to RTAI.

• Call rt_task_delete(), and then rt_free() to release
the messaging buffers as well as the task
structure itself. Remember that the structure was
allocated dynamically.

• Finally deregister the task name and enable
global interrupts.

Notice that mail boxes cause a particular problem
here because they are connection less. In other words,
it is not possible for a zombie (a former agent task
about to be deleted) to detect that another real time
task is MBX (mail box) blocked specificall y for a
message from him. The solution here is to anticipate
this possibili ty at the system design stage and to use
the rt_mbx_receive_timed() function with a timeout
value and check the return value to detect the error.

Extensive testing was carried out with test programs
using the server (SRV) client (CLT) model and doing
synchronous IPC transactions to validate the
algorithm under various conditions:

• SRV does a divide by zero error in user space,
• throw SIGINT at SRV with kill -s INT pid,
• throw SIGINT at SRV from real time context,
• Hit Control C,
• SRV exits without deleting a SEM,
• SRV exits without deleting the agent real time

task,
• SRV exits normally without deleting anything,
• SRV does a divide by zero in user space while a

rt_task is RPC blocked on CLT,
• Control C while a real time task is RPC blocked

on CLT,
• SRV does a divide by zero in user space while a

real time task is  RPC blocked on SRV

The return values from failed rt_rpc() calls were
verified to the correct value of 0 when the real time
task RPC blocked on either CLT or SRV was
unblocked by linux_process_termination().
Furthermore, the tests were carried out under both the
SMP and UP schedulers.
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Performance and benchmarks

Intertask communications with LXRT are about 36%
faster than with old FIFO's. Testing inter Linux
(Linux <-> Linux) communications with int size msg
and replies (using the native rt_rpc() function) on a
P233MMX the following results were obtained:

        LXRT 12,000 cycles RTAI-0.9x
        Fifo 19,000 cycles RTAI-0.8
        Fifo new 22,300 cycles RTAI-0.8
        SRR 14,200 cycles

The results speak for themselves. Notice that the new
fifo implementation provides much more flexibili ty
than the original implementation but at a small price
in performance. The SRR package implements the
QNX 4 IPC Send/Receive/Reply primitives with a
standard kernel module using ioctl(). LXRT, because
it bypasses ioctl() altogether is more efficient and
provides with the symmetrical API inter space IPC
(kernel <-> user space).

LXRT Switching from soft to hard
real time mode

A user space process calls rt_make_hard_real_time()
to switch to hard real time mode. Once in that mode,
the process can no longer make system calls or use a
library function that could lead to a system call .
However, the rich family of RTAI messaging services
can be used. Thus, any system call can be relayed by
the real time process to a soft real time agent. Anyone
who has worked on the QNX platform is familiar
with such an approach. The Unix server example
shows exactly how it is done.

The rt_make_hard_real_time() call enters the kernel
and first waits on semaphore steal_give_sem. The
purpose of this semaphore is to exclude all other
processes from trying to enter or leave hard real time
mode at the same time. Those two procedures handle
only one process at a time.

When rt_sem_wait() returns, steal_from_linux() is
called. Notice that when the process executed
rt_task_init() the pointer to the RT_TASK structure
of the real time agent task was stored in the task
structure of the Linux process in variable
this_rt_task[0].

The function steal_from_linux() adds the real time
agent to the list of processes that lxrt_schedule() is
concerned with. It sets the state of the Linux process
to TASK_LXRT_OWNED so Linux will not try to

restart it while in hard real time mode. It increases the
goodness priority of the idle process because we need
to use it later and we want it scheduled as soon as
possible. It queues a bottom half function to execute
lxrt_do_steal(). Finally, it calls schedule(). The
process is now in limbo.

Notice that in the initialization described conceptually
above, flag exec_sigfun was set. The first transition
from false to true changes a lot of things. In
init_module() LXRT sets the signal function of the
real time task representing the current process to
execute lxrt_sigfun(). Recall that the signal function
is always executed immediately after the context
switch which means that lxrt_sigfun() gets executed
whenever the real time scheduler re-starts Linux.
When flag exec_sigfun is false, lxrt_sigfun() is an
empty function. When exec_sigfun is true,
lxrt_sigfun() calls lxrt_schedule() and then disables
hard interrupts. This means that as soon as there is an
agent task in the task list of lxrt_schedule(),
lxrt_schedule() gets called whenever rt_schedule() re-
starts Linux. We will come back to lxrt_schedule()
later. Let's now worry about the process still i n limbo.

At some point, the bottom half algorithm executes
lxrt_do_steal() that will re-schedule itself in the
bottom half until three conditions are true: the
running CPU is not already in hard real time mode,
the state of the process in limbo is equal to
TASK_LXRT_OWNED and the current process is an
idle task. When the conditions are met,
lxrt_do_steal() disables global interrupts, sets the
pstate of our process to READY and calls
lxrt_schedule(). The next time the process wakes up,
it will be running in hard real time mode. Notice that
pstate is the state variable used by  lxrt_schedule().

When the process finally wakes up global interrupts
are enabled, the goodness priority of idle is reset to its
normal value, the semaphore steal_give_sem is
released and the rt_make_hard_real_time() call
returns to user space with a simple iret instruction.
Notice that ret_from_intr() calls are not allowed while
in hard real time mode.

LXRT Scheduler

As we have seen above, the function lxrt_schedule()
is a signal function that gets called every time Linux
gets re-started by the real time scheduler when at least
one process is in hard real time mode.

The LXRT scheduler behaves in a similar way as the
real time scheduler except that it has its own task list
and is concerned with task state variable pstate. When
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the function executes, it disables global interrupts and
then tries to find a task with pstate equal to the
READY state.

If it finds none, it restarts Linux if it was not the
previous task, and resets lxrt_hrt_flags (if it was
previously set) thus enabling system calls return
through ret_from_intr().

If it finds one, it sets the pstate variable of the
RT_TASK representing Linux to READY (i.e. it
stops it because it was also RUNNING) if Linux was
the previous task, it re-starts the hard real time
process and sets lxrt_hrt_flags (if it was not set) thus
disabling system calls return through ret_from_intr().

Like the Linux scheduler, lxrt_schedule() executes
rthal.switch_mem()  immediately before the context
switch in order to load the local descriptor table and
the cr3 register etc. If need be, the coprocessor stack
is saved and restored immediately before and after the
context switch.

Notice the usefulness of the hardware abstraction
layer concept: rthal.switch_mem is simply a pointer
to the native function Linux uses to switch the
memory to the next process.

On exit, the scheduler enables global interrupts.

LXRT Switching from hard to soft
real time mode

Typically, a user space process calls
rt_make_soft_real_time() to switch back to soft real
time mode in order to exit normally with the exit()
function (a system call ).

The rt_make_soft_real_time() call enters the kernel
and first waits on semaphore steal_give_sem. Again,
the purpose of this semaphore is to exclude all other
processes from trying to enter or leave hard real time
mode at the same time.

When rt_sem_wait() returns give_back_to_linux() is
called. This function removes the process from
lxrt_schedule's task list, decrements
nr_linux_rt_process if non zero, schedules the
execution of lxrt_do_give_back() in the bottom half
queue, and then calls lxrt_schedule() to force a
context switch. Again, the process is in limbo.

Notice that when nr_linux_rt_process reaches zero
things start to come back to normal. Each time
lxrt_sigfun() is executed, the flag exec_sigfun is set

equal to nr_linux_rt_process. Thus, the
lxrt_schedule() call i n give_back_to_linux() will be
the very last one if nr_linux_rt_process reached zero
when it was decremented.
At some point, lxrt_schedule() will restart Linux and
the bottom algorithm will execute
lxrt_do_give_back(). This function acts in a similar
way as its counterpart lxrt_do_steal_from_linux(). It
will re-schedule itself in the bottom half until three
conditions are true: the running CPU is not already in
hard real time mode, the state of the process in limbo
is equal to TASK_LXRT_OWNED and the current
process is an idle task. When the conditions are met,
lxrt_do_give_back() will set the process state to
TASK_INTERRUPTIBLE and simply call
wake_up_interruptible(). The process will eventually
be scheduled to run by Linux.

When the process finally wakes up global interrupts
are enabled, the goodness priority of idle is reset to its
normal value, the semaphore steal_give_sem is
released and the rt_make_soft_real_time() call returns
to user space with a ret_from_intr() call as for any
other Linux system call.

Notice the trap handling special case of a hard real
time task that must be terminated because of an
exception. If the task does a division by zero in the
kernel we cannot use any Linux function that
references current because it is not defined. "current"
is an inline function that will return garbage whenever
in RTAI real time mode. Thus, the bottom half setup
procedure is avoided and the process is waken up in
the Linux context via a standard RTAI service request
that eventually calls wake_up_interruptible().

We decided to steal from and give back to an idle
process because it was easier to implement at first and
allowed the validation of the LXRT concept. It does
cause a short interruption of the program flow which
is not a major problem as user's are not expected to
seesaw between the two modes. Future development
may look into the possibili ty of stealing from and
giving back to any process.

Finally, the need for the steal_give_sem semaphore is
clearly seen when comes the time to give two
processes back to Linux. If they are given back at the
same time, the wake_up_interruptible() calls are
executed back to back with the result that the second
one succeeds and the process that should have been
started by the first one falls in limbo and stays there
for ever. Without the semaphore, we could infringe
the cardinal rule: for each processor, there is to be
only one process in the kernel at a time.
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LXRT QNX like Synchronous IPC
Services

Raw synchronous messaging has always been there in
the RTAI schedulers with the rt_rpc(), rt_receive()
and rt_return() primitive functions.

Using the raw proxies functionality added last year
and the  existing messaging primitives the basic QNX
like messaging primitives were implemented in
LXRT to obtain a symmetrical API:

• pid_t rt_Alias_attach( *name);
• pid_t rt_Name_attach( *name);
• pid_t rt_Name_locate( *host, *name);
• int   rt_Name_detach( pid);
• int   rt_Send( pid, *smsg, *rmsg, ssize, rsize);
• pid_t rt_Receive( pid, *msg, maxsize, *msglen);
• pid_t rt_Creceive( pid, *msg, maxsize, *msglen,

delay);
• int   rt_Reply( pid, *msg, size);
• pid_t rt_Proxy_attach( pid, *msg, nbytes,

priority);
• int   rt_Proxy_detach( pid);
• pid_t rt_Trigger( pid);

Again, full API symmetry means that one can use the
above functions  to do synchronous messaging within
the kernel, within user space, or between the kernel
and user space. The memcpy() function is used and
therefore the implementation is not as efficient as one
designed to use shared memory (like the Unix server
example). However, the memcpy() function will
allow to extend the functionali ty of the QNX like
primitives over the network.

Notice that the pid_t pid's returned by the functions
above have nothing to do with the standard Linux
pid's. Think of them more as handles as they are
managed internally by the implementation. Also, pid's
are encoded in the lower 16 bits only, and therefore
can be differentiated from small negative error
numbers.

Recall that natine RTAI names are 6 characters long
(because they are encoded into 32 bits). The function
rt_Name_attach() is meant to be used by kernel task
that do not automatically have a native name. In user
space one would use rt_Alias_attach() passing a
pointer to a null as the argument in order to obtain the
pid. The pointer can point at an optional 31 characters
long string holding an alias name. Function
rt_Name_locate() looks for equivalence with both the
native and the alias name if any.

Raw proxies

Raw proxies are real time tasks ready to send a pre-
canned messages (created by an owner task) to the
owner task. In practice, the proxy is the task pointer
of a real time proxy agent task sitting there doing
nothing, always ready to send the pre-defined proxy
message.

A real time task or an interrupt handler that knowns
the proxy can use the function rt_trigger() to wakeup
the proxy agent who in turn will send the proxy
messages to the owner of the proxy. The number of
messages that will be sent is equal to the number of
times rt_trigger() will have been called. rt_trigger()
does not block. It does not wait for a reply.

API Function Prototypes

pid_t rt_Name_attach (char *native_name);

Registers a native name for the calling task with
LXRT and returns the pid of the task. Once this call
has been made, the task can use the family of
synchronous IPC functions.

Native names can be up to 6 characters long
excluding the null at the end. Acceptable characters
are numeric and upper case alphabetic. The additional
characters '$' and '_' are also valid. This design
constraint results from the fact that native names are
encoded into a four bytes unsigned long.

The function is not available in user space.

If native_name points to a null string, the function
will automatically create a name of the form
"T_XXX X" where XXXX is the hex ASCII
representation of the returned pid. As the pid is
unpredictable, the rt_Name_locate() function is meant
to be used for names agreed upon up front and
registered with rt_Name_attach().

pid_t rt_Alias_attach(char *any_name);

The implementation allows the user to register an
alias names that can be up to 32 characters long
including the null at the end. The rt_Name_locate()
function searches through the list of native names and
also checks for the alias names if any.

User space program first use
rt_task_init(nam2num(name), ...) to initialise the real
time agent. In so doing, they supply a native name
automatically. The program obtains the pid from the
returned value of the function. If an alias name is not
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required the argument should be a pointer to a null
string. The usage of the function is mandatory in user
space.

The function returns the pid_t if successful.
Otherwise returns an error code:

• EBUSY  - name already exists.
• EAGAIN - name space used up.
• ENOMEM - no memory to fulfill request.
• EINVAL - ill egal null pointer.

pid_t rt_Name_locate
(conts char *host, const char *name);

Locates a process that has registered its name with
rt_Name_attach() or rt_Alias_attach(). If host is null
the search is made locally. If host is not null then a
network search occurs. If the name is located on
another computer, the initial VC (virtual circuit)
buffer size will be equal to a default size of 512 bytes.
VC buffers grow dynamically. Notice that network
communications are not yet implemented. The
function returns a process id if successful, otherwise
it returns zero.

int rt_Name_detach(pid_t pid);

Removes the registered name and deregisters the
process from LXRT. The pid parameter must be the
same as the one returned by rt_Name_attach(). When
a process dies, its name is be detached from the
system and all real time resources created by LXRT
will be freed. The function returns zero if successful,
otherwise return an error code.

pid_t rt_Proxy_attach
(pid_t pid, char *data, int nbytes, int priority);

Creates a canned message of length nbytes pointed to
by data. The proxy will be attached to process pid. If
pid is zero, the proxy will be attached to the call ing
process. The proxy can be assigned a priority. A
value of -1 defaults to the priority of the call ing
process. The proxy acts as a messenger always ready
to send its message. A proxy can send a zero byte
message by setting nbytes to zero. The function
returns a process id on success. On error, the function
returns a negative error code:

• EAGAIN - no free process entries.
• ENOMEM - not enough memory.
• ESRCH  - pid does not exist.

int rt_Proxy_detach(pid_t proxy);

Releases the proxy previously created by the calling
process. Returns zero on success. Otherwise, the
function returns a negative error code:

• EPERM - you are not owner of the proxy.
• ESRCH - proxy does not exist.

pid_t rt_Trigger(pid_t pid);

Trigger the proxy agent to send a message to the
process which owns the proxy. The calli ng process
will not block. If more than one trigger occurs before
the proxy message is received, that number of
messages will be received. The function can be called
from an interrupt handler provided it is the last call
the handler does. The owner of the proxy can trigger
the proxy to himself. The function returns the process
id of the task who owns the proxy. On error, it returns
a negative error code:

ESRCH  - pid does not exist.
EINVAL - pid is not a proxy.

pid_t rt_Receive
(pid_t pid, void *msg, size_t maxsize, size_t
*msglen);

Waits for a message from process pid. If pid is zero,
waits for a message or proxy from any process. If a
message is waiting, up to maxsize bytes are copied
into msg. If a message is not waiting, the process will
enter the RECEIVE blocked state. Messages are
queued in priority order. RTAI allows to change this
to FIFO time order by removing the MSG_PRIORD
define in the scheduler source code. If you specify to
receive from a task in particular and that task dies
while you are RECEIVED blocked on it then the
function returns -ESRCH. The number of bytes
transferred will be the minimum of that specified by
both sender and receiver and will be copied into
msglen. The maximum number of bytes that can be
transferred is unlimited as the messaging buffers
grow dynamically. Receive changes the state of the
sender from RPC to RETURN blocked. The function
returns the pid of the sender on success, otherwise it
returns a negative error code:

ESRCH  - Process pid does not exists.

int rt_Send(pid_t pid, void *smsg, void *rmsg, size_t
ssize, size_t rsize);

Sends the message pointed to by smsg to the process
identified by pid. Any reply will be placed in the
buffer pointed to by rmsg. The size of the sent
message will be ssize while the size of the reply will
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be truncated to a maximum of rsize bytes. The
number of bytes transferred will be the minimum of
that specified by both the sender and the receiver.
After sending a message, the task will block in the
RPC state waiting for a reply. If the receiving process
is RECEIVED blocked and ready to receive a
message, the transfer of data into its address space
will occur immediately and the receiver will be
unblocked and made ready to run. The sending
process will enter the RETURN blocked state. If the
receiver is not ready to receive the message, the
sender enters the RPC blocked state. The transfer will
not occur until the receiver executes a rt_Receive()
call . The function returns the actual number of bytes
received in the reply message (zero is allowed),
otherwise the function returns a negative error code:

• EINVAL - message length invalid.
• ENOMEM - insufficient memory to grow buffer.
• ESRCH - process pid does not exist, or died.

int rt_Reply(pid_t pid, void *msg, size_t size);

Replies size bytes of data to the process identified by
pid.  The number of bytes sent will be the minimum
of that specified by both the replier and the sender.
The data transfer occurs immediately and the replier
does not block. Reply changes the state of the sender
from RETURN blocked to READY. The function
returns zero on success otherwise returns a
negativeerror code:

• EINVAL -  message length invalid.
• ENOMEM - insufficient memory.
• ESRCH -  process pid does not exist.

pid_t rt_Creceive(pid_t pid, void* msg, size_t size,
RTIME delay);

A non blocking form of rt_Receive(). The function
returns zero if no messages from any pid are available
for an immediate transfer when delay is set to zero.
When delay is non zero, the function will wait up to
delay tics for a message to transfer. The functions
returns either a pid if a transfer occurred or zero at the
expiration of the delay.

LXRT queue blocks (qBlk's)

qBlk's are simple structures that contain a pointer to a
function and the time at which the function must be
executed. The qBlk's are linked into a list. A family
of functions are provided to manage them.

The functions are of the type:

• void (*handler)(void *data, int event)

 and therefore the simple structures also include the
arguments data and event. The application may or
may not use any of the arguments. qBlk's use a
dynamically allocated root structure called the tick
queue. The tick queue is created with the
rt_InitTickQueue() function. Any task that will use
qBlk's must initialize the tick queue.

The tick queue uses an elementary structure called a
QueueHook on which qBlk's are linked to form a
queue. Queue management functions are provided to
manage queues of qBlk's.

qBlk's are usually managed within the task. When a
qBlk executes it is guaranteed that it can manipulate
the task data atomically. A qBlk function is like a
mini-thread that wakes up when the task is blocked
waiting. Scheduling functions are provided to control
how the qBlk's will be executed.

Dynamic qBlk's

The tick queue can reference both static and dynamic
qBlk's. Plain RTAI kernel real time task can use both
static and dynamic qBlk's. LXRT soft and hard real
time tasks must use dynamic qBlk's only. qBlk's are
always managed and executed in plain RTAI hard
real time context even if the code of the qBlk function
is in user space.

Dynamic qBlk's are one-shot object. They are
initialized from a pool of free qBlk's and they are
automatically returned to the free poll before they are
executed. The only way to get a dynamic qBlk to
repeat is to schedule it with the rt_qBlkRepeat()
function. In fact, rt_qBlkWait() forces a single-shot
execution and is usually used with static qBlk's.

The function rt_qDynInit() takes the qBlk from the
free list if one is available. Otherwise it calls
rt_malloc() to create one. At completion time, the
dynamic qBlk is returned to the free list which gets
cleared by call ing rt_qDynFree().

Plain real time task should not attempt to free the
memory themselves. Rather, they should call
rt_qDynFree(-1) to empty the free list completely.
This minor constraint leaves the possibility to trade
qBlk's among tick queues in the future.

qBlk functions can re-enter LXRT

For LXRT soft and hard real time tasks, the qBlk
function can re-enter LXRT as long as the function
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type (as defined in struct rt_fun) is not greater than 1.
This constraint will disappear in the near future.

Also, while re-entering the task cannot block in the
real time scheduler because the Linux context cannot
resume until the qBlk function completes.

qBlk management functions

void rt_qBlkWait(QBLK *qblk, RTIME tics);

Insert a qBlk in the Tick queue, after dequeuing it if
need be (if it was already queued), to be executed
after the given number of ticks have expired.
Specifying a tick count of 0 is the normal way of
inserting a qBlk after all currently expired qBlk's.

void rt_qBlkRepeat(QBLK *qblk, RTIME tics);

Insert a qBlk in the Tick queue, after dequeuing it i f
need be, to be executed after the given number of
ticks have expired. After completion, the qBlk is
reinserted in the queue with the same delay if it is not
cancelled or dequeued within the qBlk function itself.
Notice that a tick count of 0 does not repeat.

void rt_qBlkSoon(QBLK *qblk);

Insert a qBlk at the head of the Tick Queue after
dequeuing it if need be. The qBlk will be executed
before any already expired qBlk.

void rt_qBlkDequeue(QBLK *qblk);

Unhook a qBlk from a queue and notify (i.e. execute
the QHOOK cancel function) the queue manager. The
qBlk is not released. If the qBlk  was not queued this
function does nothing.

void rt_qBlkCancel(QBLK *qblk);

Dequeue if it was hooked, and release a qBlk.

qBlk scheduling functions

void rt_qLoop(void);

The application waits for the execution of all pending
qBlk's. The function returns when the tick queue is
empty.

void rt_qReceive(void);

The application receives messages and/or proxies
from other tasks while excuting pending qBlk's at the
same time.

void rt_qStep(void);

The application needs to manage the synchronisation
itself as other things may be more important than the
pending qBlk's. The return value tells the application
if a qBlk is pending or not and if so, when the next
qBlk should be executed.

void rt_qSync(void).

The application was doing something very important
and now needs to execute and release all expired
qBlk's in the Tick Queue. qBlk's that expire during
this process will also be completed.

Queue mangement functions

It is also possible to create hooks to which qBlk's can
be linked to be scheduled later on. This feature can be
used to implement a bottom half like mechanism to
execute less important functions at a more appropriate
time. qBlk's can be used by a real time interrupt
handler provided it uses the tick queue of a co-
operating real time task.

QHOOK *rt_qHookInit
(QHOOK ** lnk, void (*cancel)(void *, QBLK *),
void *);

Allocate and initialise a QHOOK. Returns zero on
error or returns the pointer and sets the link lnk if any.

void rt_qHookRelease(QHOOK *qhk);

Release and free the memory of a QHOOK.

void rt_qBlkBefore(QBLK *cur, QBLK *nxt);

Insert the qBlk before another qBlk in a queue. If it
was hooked it will first be unhooked.

void rt_qBlkAfter(QBLK *cur, QBLK *prv);

Insert the qBlk after another qBlk in a queue. If it was
hooked it will first be unhooked.

void rt_qBlkAtHead(QBLK *cur, QHOOK *hook);

Insert the qBlk at the head of a queue. If it was
hooked it will first be unhooked.

void rt_qBlkAtTail(QBLK *cur, QHOOK *hook);

Insert the qBlk at tail of a queue. If it was hooked it
will first be unhooked.
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QBLK *rt_qBlkUnhook(QBLK *qblk);

Remove the qBlk from a queue. The qBlk is not
released and the cancel function not called.

LXRT Exception Handling

The LXRT module now mounts a handler to deal
with processor generated  exceptions. These
exceptions or traps use the lower 32 vectors of the
IDT. The previous approach was to simply ignore
trap handling. It worked as long as the real time code
was bug free. Often, the slightest mistake would crash
or reboot the computer or damage something that
came back later to make the user's li fe miserable.

A default trap handler is installed by the schedulers.
The API function rt_set_rtai_trap_handler() is
provided to change the default trap handler algorithm
that simply suspends a faulty RTAI real time task.

LXRT implements a more sophisticated trap handler
to deal adequately  with exceptions in the following
cases:

• A soft real time task is running in user space. No
special action taken and the exception is simply
passed to the Linux handler. As explained above,
function do_exit() will call
linux_process_termination() to delete the agent
task and release any real time resources the
process may have registered.

• A plain real time task is running. As for the
default handler the task is suspended. We choose
not to delete the task to make it possible for a
module to dump the task structure and its stack
after the fact.

• The agent of a soft real time task is running in the
kernel. A service request is pended to send the
signal SIGKILL to the Linux task then the
function lxrt_suspend() is called to stop the
agent. Notice that control never returns to the
trap handler.

• A hard real time task is running in user space. In
this case we call function give_back_to_linux()
from the trap handler to return the process to soft
real time and then do_exit(SIGKILL) is called to
terminate the process.

• A hard real time task is running in the kernel.
Here function lxrt_suspend() is called to return to
the Linux context followed by a

give_back_to_linux() call to come back to soft
real time mode and finally a do_exit(SIGKILL)
call i s done to kill the process. Function
linux_process_termination() completes as
explained above.

• A special case occurs if a qBlk is executing a
user space function. In this case it is necessary to
reload the local descriptor of the Linux current
process that was changed by the the
rthal.switch_mem() call in function exec_func().
After the reload (i.e. a second call  of function
rthal.switch_mem() with appropriate arguments)
the exception is dealt with similarly to the plain
real time task case described above.

Notice that there is not much that can be done if an
exception like a division by zero occurs in an
interrupt handler. However, that remains true for all
systems.

The CPL (current privilege level) is not checked if the
exception is generated by the processor. Thus trap
and interrupt descriptors have a DPL (descriptor
privilege level) of zero. The IF (interrupt enabled
flag) flag is not affected by processor generated
exceptions.

The DPL level of a trap descriptor can be changed to
3 to allow calling the trap with the int $n instruction
from user space. Notice that there is no error code
pushed on the stack in that case.

A stack switch occurs if the handler's privilege level
is smaller than the CPL of the interrupted procedure.

Page fault exceptions occur all the time in the Linux
context. Usuall y the user space program needs a
VMA not currently mapped in physical memory. An
error can occur if the kernel tries to access user space
memory with a bad pointer argument. The Linux page
fault handler deals nicely with that problem as
explained in file exception.txt in the kernel
documentation.

The LXRT extendabili ty concept

The original LXRT used an array of structures
rt_fun_entry called rt_fun to hold the function
pointers so that one of the system call register
argument could be used to figure out the matrix index
of the function pointer and the  number of word long
arguments to pass to the function.

The matrix rt_fun is loaded in memory as global data
when LXRT is started by insmod. Some other module
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could also define a similar matrix of rt_fun
structures. Clearly, if LXRT used a pointer to access
the base matrix of rt_fun structures, it would be able
to access a different matrix using a simple pointer
management indexing scheme.

This is the concept behind the RT_LXRT_COM
module. To support extendabili ty, LXRT now uses a
matrix of 16 different pointers to arrays of
rt_fun_entry structures called rt_fun_ext. The pointer
to LXRT's base matrix is located at index 0. Hence,
up to 15 other modules can use the LXRT system call
inteface.

The end result is that RT_COM kernel module
functions like:

• rt_com_setup(…)
• rt_com_set_param(…)
• rt_com_read(…)
• rt_com_write(…)
• rt_com_bout_free(…)
• rt_com_clr_in(…)
• rt_com_clr_out(…)
• rt_com_set_mode(…)
• rt_com_rd_modem(…)
• rt_com_wr_modem(…)
• rt_com_error(…)

where implemented easily with a simple header file
and a trivial module as part of the symmetric API
without modyfing LXRT at all . In other words, they
can be used in user space (both soft and hard real time
modes).

RTAI MINI-LXRT Tasklets Support
Module

The MINI_RTAI_LXRT tasklets module that is
explained hereafter adds an interesting new feature
along the line of a symmetric API (pioneered by
DIAPM-RTAI) of all real time services inter-intra
kernel and user space both for soft and hard real time.
As a result,  you have an even wider spectrum of
development and implementation options, allowing
maximum flexibili ty with uncompromised
performances. And of course, all LGPL open source.

New services: tasklets and timers

The new services provided can be useful when hard
real time tasks, both in kernel and user space, do not
need any RTAI scheduler services that could lead to a

task block. This critical constraint should be clearly
understood.
Such tasks are called tasklets and can be of two
kinds:

• A simple tasklets,

• Timed tasklets (timers).

It must be noted that only timers need to be made
available both in user and kernel space. In fact,
simple tasklets in kernel space are nothing but
standard functions that can be directly executed by
simply call ing them, so there is no need for any
special treatment. However, in order to maintain full
usage symmetry, and to continue to allow the
possibili ty of porting applications from one address
space to the other, tasklets functions have been
implemented so they can be used in whatever address
space.

Note that the Linux kernel offers similar services.
They are not exactly the same because of the RTAI
symmetrical API implementation, but the basic idea
behind them is fairly similar.

It should be clear that for such tasks the standard hard
real time tasks  available with RTAI and LXRT
schedulers can be a waist of resources and the
execution of simple, possibly timed, functions can
often be more than  enough.

Examples of such applications are timed polli ngs and
simple Programmable Logic Controllers (PLC) like
sequencing services. Obviously, there are many other
instances that justify the use of tasklets, either simple
or timed. In general, such an approach can be a very
useful complement in controll ing complex machines
and systems, both for basic and support services.

The implementation

The MINI-LXRT implementation of timed tasklets
relies on a server support task that executes the
related timer functions, either in one-shot or periodic
mode, on the base of their time deadline and
according to their user assigned  priority.

As explained above, plain tasklets are just functions
executed from kernel  space. Their execution needs
no server and is simply triggered by call ing  the user
specified tasklet function at due time, either from a
kernel task or interrupt handler in charge of their
execution when they are needed.
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Once more it is important to recall that only non
blocking RTAI scheduler services can be used in any
tasklet function. Services that can block must
absolutely be avoided, as they wil l deadlock the
timers server task, executing task or interrupt handler,
whichever applies, with the result that no other tasklet
functions will be executed.

User and kernel space MINI-LXRT applications
should cooperate and synchronize by using shared
memory.

It has been called MINI-LXRT since it is a kind of
light hard real time server that can substitute both
RTAI and LXRT, if the constraints explained above
are satisfied. The MINI-LXRT module can be used in
kernel and user space,  with any RTAI scheduler.

Its implementation has been very easy to accomplish,
as it is nothing but what its name implies. LXRT
provided all the needed tools. In fact, it duplicates a
lot of LXRT so that its final production version will
be fully integrated with it. However, at the moment, it
cannot work with LXRT.

As already done for shared memory and LXRT, the
function calls for Linux  processes are inlined in the
file mini_rtai_lxrt.h. This approach has been
preferred to a library since it is simpler and more
effective. The calls are short and simple so that even
if it is likely that only a few calls are used for a
typical process, they do not add significantly to the
size of the program.

MINI-LXRT Services

The services made available by the MINI-LXRT
module (functions, macros and variable names are
self explanatory, see also example test.c) are:

struct rt_tasklet_struct *rt_tasklet_init(void)

void rt_tasklet_delete(void)

int rt_insert_tasklet(struct rt_tasklet_struct * tasklet,
void (*handler)(unsigned long), unsigned long data,
unsigned long id, int pid)

void rt_remove_tasklet
(struct rt_tasklet_struct *tasklet)

struct rt_tasklet_struct *rt_find_tasklet_by_id
(unsigned long id)

void rt_tasklet_exec(struct rt_tasklet_struct *tasklet)

struct rt_tasklet_struct *rt_timer_init(void)

void rt_timer_delete(void)
int rt_insert_timer(struct rt_tasklet_struct *timer, int
priority, RTIME firing_time, RTIME period, void
(*handler)(unsigned long), unsigned long data, int
pid)

void rt_remove_timer
(struct rt_tasklet_struct *timer)

void rt_set_timer_priority
(struct rt_tasklet_struct *timer, int priority)

void rt_set_timer_firing_time
(struct rt_tasklet_struct *timer, RTIME firing_time)

void rt_set_timer_period
(struct rt_tasklet_struct *timer, RTIME period)

#define rt_fast_set_timer_period(timer, period)

int rt_set_timer_handler
(struct rt_tasklet_struct *timer, void
(*handler)(unsigned long))

#define rt_fast_set_timer_handler(timer, handler)

void rt_set_timer_data
(struct rt_tasklet_struct *timer, unsigned long data)

#define rt_fast_set_timer_data(timer, data)

void rt_tasklets_use_fpu(int use_fpu)

RT_TASK *rt_timers_server(void)

The rt_fast... timer related macros can be safely used
in kernel space as alternative to their standard
equivalents when the related data and timer structure
address are available.

Remember to always include the header file
rtai_timers.h found in the module directory. It
defines struct rt_tasklet_struct and all the tasklet
functions prototypes and macros.

The functions rt_tasklet_init(), rt_timer_init(),
rt_tasklet_delete() and  rt_timer_delete() are meant
to be used in user space only because the timer
structure must be allocated dynamically in kernel
space. They become empty macros in kernel space
where one must allocate the tasklet structure.

FPU Support and other technicaliti es
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The timers server task assumes that timer functions
never use the Floating Point Unit (FPU). Otherwise,
the function rt_tasklets_use_fpu() should be used to
enable the use of the FPU if it is needed by any timer
function, both in kernel and user space. The same
applies to simple tasklets in user space.

In the kernel, the task, or interrupt handler, executing
any tasklet must enable the FPU by appropriately
using the fsave and frestore, and clearing clts (see
rtai.h for the related macros).

The function rt_timers_server() returns the pointer
to the timer server itself.  It has been useful during
development and it is maintained as an undocumented
back door feature. Recall the basic rule that one
should never do a blocking call .

The timers server runs on a 2K stack, which should
be enough to run most timers tasklet functions in
kernel space. If one needs a larger stack, one should
either recompile mini_rtai_lxrt.c after setting the
macro STACK_SIZE in  mini_rtai_lxrt.h to what you
want, or simply load the timers server module using
"ldmod ./rtai_timers StackSize=<xxxx>", where
<xxxx> is the new stack  size.

In user space, the tasklet (or timer function) runs
within the memory of the process owning the handler
function so no problem should arise. Note however
that you must lock all the process memory (and pre-
grow the stack) so that it cannot be swapped out. So
pre-grow all the memory the process will need, see
mlockall usage in Linux manuals or use the lxrtlib
function lock_all().

There are also many very useful test cases that
demonstrate the use of most services, both in kernel
and user space (see directory tests and related run
files).

Clearly, this module is a beta release and there is still
work to be done.

LXRT Unix server

This example introduces the basic frame of a
generalized, per process, UNIX  server to be used by
hard real time LXRT applications that want to access
Linux IO services.

Clearly, hard real time tasks are timed by Linux while
using the server. So the garantee to satisfy hard real
timing constraints vanishes, even if they remain under
control of the LXRT scheduler (i.e. Linux cannot
schedule them directly). There is a partial loss of

efficiency with respect to plain Linux usage. In fact
we do not like such a solution very much and prefer
an application specific server. However users who
want to have it simple will find it useful, especially
during development.

How does it work?

The module shows the power of remote procedure
call as a unified inter tasks communication and
synchronization mechanism. There are two switches
per Linux service request, a standard micro kernel
way of working. The context switches and the need to
copying some data, are responsible for most of the
penalty the user has to pay for using this server. The
response time is not so bad anyhow. Those with QNX
experience will understand the concept easily.

The function rt_start_unix_server() called before
the switch to hard real time mode forks the program
./unix_server who will act as an agent to execute the
IO functions in soft real time mode (POSIX with
SCHED_FIFO scheduling). Shared memory is used
to avoid using memcpy() and thus minimize call
overhead.

All the native IO calls are used by the agent and their
return values returned "as is" to the real time task.

The function rt_end_unix_server() call i nstructs the
server to release the shared memory, rt_task_delete()
his real time agent, and exit normally. Any open files
are not closed automaticall y before exiting for now.

Once more if you need faster response time use your
own server. Recall that Linux should not be your
main concern while you are running hard real time in
user space. It should be needed just for some support
services to be executed sporadicaly when hard real
time service is not requested.

API Functions prototypes

The API is pretty much standard except for the
function name rt_ prefix to indicate that the call can
be made while in hard real time mode. Refer to your
libc6 manual if you need to understand how the
underlying Unix calls behave. The following
functions have been implemented so far:

void rt_start_unix_server(void * task, int rt_prio, int
shmsize)

int rt_end_unix_server(void)
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int rt_scanf(const char * fmt, ...)

int rt_printf(const char * fmt, ...)
int rt_open(const char *pathname, int flags, mode_t
mode)

int rt_close(int fd)

int rt_write(int fd, void *buf, size_t count)

int rt_read(int fd, void *buf, size_t count)

int rt_select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval * timeout)

off_t rt_lseek(int fd, off_t offset, int whence)

int rt_sync(void)

int rt_ioctl(int d, int request, unsigned long argp, int
size)

LXRT liblxrt

Efforts were made to provide GUI programmers with
the possibili ty to carry out their work without having
to install copies of the kernel and RTAI source trees.
Many excellent GUI programmers are not interested
in and/or do not care about kernel internals. The new
header file rtai_lxrt_user.h allows to do that.

There is also the issue that GUI applications are often
C++ based: KDE, Qt and QpTreads are packages that
come to mind. File rtai_lxrt_user.h also makes life
easier for the g++ compiler. A C++ example was
added to the source tree to show how a C++ kernel
module can be written.

Tomasz Motylewski contributed the file touchall .c
that provides the function lock_all(). This function
grows the stack and locks all the program memory
pages. The usefulness of a library arose from this
contribution as all user space programs that use
LXRT should call l ock_all () - or at least do the
equivalent.

Notice that any exception 14 while in hard real time
mode is interpreted as a program error and the
program terminated by the trap handler. No attempts
were made to map pages while in hard real time
mode. It would have contradicted basic real time
principles.

The library builds both static and shared objects and
thus provides the application developer with all the

flexibili ty he or she expectd to find in the Linux
environment.

Linux Trace Toolkit

Modern software systems are ever more complex.
Systems based on RTAI are no exception. Its real-
time nature and the fact that it takes control of the
Linux kernel make nothing to diminish this
complexity. Hence, understanding the dynamic
behavior of RTAI based systems can be difficult,
even to the best of insiders. The RTAI extensions to
the Linux Trace Toolkit take this complexity away by
providing developers with the capabili ty of tracing
and reconstructing dynamic system behavior.

To accomplish this, trace statements are inserted in
the execution path of key system code. Each trace
statement indicates the event that occurred on the
corresponding path and provides a concise
description of the event. When Linux is compiled
with RTAI trace support, the corresponding RTAI
trace statements will generate calls to the RTAI trace
facili ty. This facili ty is the primary link between the
instrumented components of RTAI and the trace
driver which takes care of logging the traced events.
If Linux is compiled without RTAI trace support, the
trace statements are void and result in no calls at all
(RTAI remains unmodified).

The trace driver's primary role is to buffer event
descriptions into its buffers. To increase flexibil ity,
the driver's behavior can be modified through the
ioctl() interface. Taking care of this configuration and
taking care to commit the data buffered, the trace
daemon acts as the primary link between the
developer and the trace system. By invoking it with
the adequate parameters, the developer has total
control on the trace process, from it's duration to the
events traced and the trace buffer sizes.

Once the trace process is launched, all specified
events are traced and committed to a trace file. Once
the tracing is complete, this trace file is then used by
the visualization and analysis tool provided with LTT
to reconstruct the system's behavior during the trace.
This tool can be used both as a command-line tool
and as a graphical tool. In the later form, it provides
the developer with a control-graph view of the system
which enables him to see the different transitions in
control that occurred during the trace and the reasons
of their occurrence. Furthermore, the tool uses the
information collected to provide exact statistics about
different components of system performance.
Contrary to other means of instrumentation, LTT
makes no approximations and does not rely on
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samples. Rather, it provides an exact description of
the system's behavior.

Using the information provided, the developer can
isolate performance bottlenecks, solve
synchronization problems and confirm his
understanding of the system's behavior. The
commercial RTOS world is no stranger to such a
capabili ty as many RTOS vendors provide such a
capabili ty for their products. It is worth noting that
such a trace system was used by the JPL (Jet
Propulsion Laboratory) engineers to find the reason

why the Mars Pathfinder constantly reset and,
consequently, implement a solution. See the link
below for the full story.
LTT is available at the Opersys Home Site (see the
link below) and is distributed under the terms of the
GPL. Apart from and prior to providing RTAI trace
capabili ty, LTT was designed to provide trace
capabili ty to the Linux kernel. This capabili ty
remains available and is independent of the capabili ty
of tracing RTAI, though both capabiliti es can be
combined.
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