RTSS2000- Red Time Operating Systems Workshop

DIAPM-RTAI POSITION PAPER, NOV 2000

Pierre Cloutier
Poseidon Controls Inc.
e-mail: pcloutier @poseidoncontrols.com

Paolo Mantegazza
Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano
e-mail: mantegaza@aeo.pdlimi.it

Steve Papacharalambous, 1an Soanes, Stuart Hughes
Lineo Industrial Solutions Group
e-malil: stevep@lineo.com

e-mail; ians@lineo.com
e-mail; stuarth@lineo.com

Karim Y aghmour
OpersysInc.
e-malil: karim@opersys.com

Abstract

The development team has perfeded and added much functionality to RTAI over the curse of the last yea. The
position paper reviews this progressand focuses on the following areas:

- Improvementsin the sourcetreg install ation procedure and manual upgrade.

- Dynamic CPU frequency and bus frequency cdibration.

- PorttoLinux 2.4: 24.1.x releases and suppartt for the PRC architedure.

- POSIX 1003.1c thread module with mutexes and condition variables.

- New Fifos: dynamic aredion of named fifos, signal and semaphore interfaces.

- RT_MEM_MGR modue: Dynamic memory management and C++ suppart.

- LXRT: soft and hard red time modesin user spacewith symmetricd API.

- Trap handling and memory protedion whilein plain RT and LXRT modes.

- LXRT-INFORMED: integration of RTAI, trap handlers and Linux at termination.
- RT_LXRT_COM and RT_LXRT_RNET modules. the mncept of an extendable LXRT.
- MINI_LXRT: timers and tasklets runningin user space

- Integration of QNX IPC primitives, proxy messges and gBlk'sto LXRT module.
- LIBLXRT: effortsto simplify the APl for GUI and C++ programmers.

- LINUX_SERVER: accessto Linux I/O whilein LXRT hard red time mode.

- Linux TraceTod Kit: suppat for RTAI including LXRT.

The LXRT module with its fully symmetricd APl provides a safe and flexible tod to quickly implement hard red
time programs in user space Once the program is debugged, it can be eaily migrated to the kernel for optimal
performanceif the goplication demands it. With CPU clocked nea the 1 GHz mark, the necessity to exeaute mdein
the kernel bemes questionable. Thus, LXRT provides the trust dirediion of RTAI's future devel opments.

DIAPM-RTAI Position Paper, Nov 2000 1

RTSS2000- Red Time Operating Systems Workshop

I ntroduction

RTAI results from the reseach dane & DIAPM
(Dipartimento d Ingegneria Aerospazale, Politemico
di Milano) in the field of PC based red time control
systems.

It all started in the late 80's when RTOS solutions like
QONX, RTKerned and UCOS were onsidered. The
dedsion to develop and in-house RTOS was then
made, and DIAPM-RTOS was born. It ran under
DOS and used the "terminate and stay resident”
(TSR) technique.

The hardware dstradion layer concept was aso
extended to include dl services required for red time
applicaions and thus the term RTHAL (Red Time
Hardware Abstradion Layer) that will be found in
RTAI's documentation and sourcetree

The RTOS neeaded to evolve to full 32 hHts mode and
again various options were onsidered including a
port to GNU-DOS and Linux 2.0.xx.

The Linux 2.0.xx kernel was not mature eough to
implement the full RTHAL concept, i.e. scatered
interadions with the hardware, too many cli.sti's etc.
However, the NMT RTL effort introduced a smple
red time scheduler very close to DIAPM-RTOS's
own red time scheduler. It demonstrated that
DIAPM-RTOS could be ported eaily to Linux
almost unchanged.

The Linux 2.0.xx DIAPM-RTL implementation used
the NMT patch and integrated to the red time
scheduler services like semaphores, intertask
messaging, QNX like synchronous messaging, and
timing services. It enabled red time floating point
suppat and also modified heavily the timer interrupt
handler in order to have dficient periodic timing and
TSC (CPU time stamp clock) based one-shot modes.

In ealy 1999 Linux 2.2xx made it possble to
implement the RTHAL concept which was
successfully done by mid-February. By the midde of
April, RTAI-0.x was born with suppat for bath UP
and SMP under an SMP compiled kernel.

In September 1999 LXRT was introduced to allow
faster development of red time aplicaions by
debuggng the @plicaion in user space before
porting it to the kernel.

Yea 2000 saw the organizaion of a formal

development team of about a dozen developers
working together with a os tree Followed an

DIAPM-RTAI Position Paper, Nov 2000

avalanche of improvements, corredion of bugs,
additional functionality and new modues that this
paper will describe and summarize in the following

pages.

Red Time Hardware Abstraction
Layer
Esentially RTAI's kernel patch installs the RTHAL

structure in the Linux kernel. The RTHAL performs
threeprimary functions:

e gathers al the pointers to the required internal
data and functions into a single structure, rthal, to
alow the eay trapping of al the kernel
functionaliti es that are important for red time
applicaions, so that they can be dynamically
switched by RTAI when hard red timeis needed,;

* makes available the substitutes of the &ove
grabbed functions and sets rthal pointersto pant
to them;

» substitutes the original function cals with cdlsto
the rthal pointersin all the kernel functions using
them.

Linux is amost uneffeded by RTHAL, except for a
dight (and negigible) loss of performance due to
cdling cli and sti, and flags related functions, in place
of their corresponding original Linux function cdls
and maaos.

About 100 lines of code is all of what is changed o
added in the kernel. Clealy, the RTHAL concept will
fadlit ate and simplify a lot the long term suppart of
RTAI.

Structure rt_hal definition in system.h

struct rt_hal {
void *ret_from_intr;
void *__ switch to;
struct desc_struct *idt_table;
void (*disint)(void);
void (*enint)(void);
unsigned int (*getflags)(void);
void (*setflags)(unsigned int flags);
unsigned int (*getflags and_cli)(void);
void *irq_desc;
int *irq_vedor;
unsigned long *irq_affinity;
int (*assign irg_to_cpu)(int, unsigned long);
void (*ack 8259 irg)(unsigned int);
int *idle_weight;

RTSS2000- Red Time Operating Systems Workshop

void (*Ixrt_global_cli)(void);

void (*switch_mem)

(struct task_struct *, struct task_struct *, int);
struct task_struct ** init_tasks;

1

Structure rthal initialisation inirg.c

struct rt_hal rthal = {
&ret_from intr,
__switch to,
idt_table,
linux cli,
linux_sti,
linux save flags,
linux restore flags,
linux save flags and_cli,
irq_desc,
irq_vedor,
irg_affinity,
asdgn irq_to_cpus,
adk_8299 irq,
&idle_weight,
0,
switch_mem,
init_tasks,

|

Because Linux uses the pointers in the &ove
structure, it is possble for RTAl to change the
functions that Linux uses and that is what the RTAI
module does.

The RTAI Sourcetree

In the last yea, RTAI has had a complete makeover
of its build system. Using the Linux kernel source
tree & a guideline, many improvements have been
made.

All Makefiles files now use the toplevel Rules.make
file to deduce their build rules. This has led to a
more onsistent and brief mecdhanism for developers
when writing Makefil es within RTALI.

The first build of RTAIl uses the healer file
dependency utility from the Linux kernel to build up
a omprehensive set of dependency files for RTAL.
This ensures that rebuilds are conducted corredly in
response to changes within the system, or anything
the system depends on.

The internal numbering system was changed (e.g
22.2.5), thiswas done for a number of reasons.

DIAPM-RTAI Position Paper, Nov 2000

e It is easy to remgnize which kernel series the
RTAI variant will run on (the first digits, e.g 22
==for the 2.2 kernels). Whilethisisagoodidea
we hope to decouple RTAI from being restricted
to aparticular kernel variant.

* AsinLinux, the second number indicaes a stable
or development version. Even numbers are
stable, odd are development.

e The make system auto-generates an
include/version.h file. Using this numbering
scheme dlows smple cmparison of version
numbers which may be used for fedure
detedion.

RTAI now uses kernel patches rather than file copies
to upgrade the kernel. This has helped to ke the
system small, and more familiar to most developers.
As part of this change, at make time ached is made
to seethat the patch has been applied, and also that
the kernel has been configured for the RTHAL. One
very important feaure for embedded developers is
that ifdefs have been added to the patch so that if
CONFIG_RTHAL is not sdleded, al RTAI code is
eff ectively removed from the kernel buil d.

The build system now has an install target that puts
the RTAlI modules into the gpropriate
/lib/modules/<ver>/misc diredory. This means that
once ingtaled, the RTAlI module stak can be
loaded/unloaded with modprobe, without having to
reference a spedfic version. Note dso that the
convention of having .0 extension for modues is now
observed. Another feaure cmmon to Linux isthat it
is possble to install in an aternate diredory base
(eg for embedded systems) by using the
INSTALL_MOD_PATH assgnment to the make
install command.

In addtion to the danges in the build structure,
RTAI has added a number of utilities aimed at
making things smpler for the user.

To try to provide for compatibility with RTLinux,
RTAI includes a header file include/rt_compat.h. This
uses a series of wrappers to make it possble to write
most applications using the RTLVL/RTAI APl and
have them build and run on RTL V2 o RTAI. The
main benefit is that the gplicaion code itself looks
much cleaner and so is easier to maintain.

To make it simple for a newcomer to get the flavor of
RTAI, there ae Perl bindings to LXRT. Using these
bindings, you can write ascript using the RTAI API

RTSS2000- Red Time Operating Systems Workshop

and immediately seeyour results with no compil ation
or Makefile woes.

Finally, we have seen the start of regresson tests in
RTAI (see newfifos) the idea is to give a simple
go/no go test so that it is essy for the user (and
developer) to determine whether a fedure is
functioning as expeded.

Dynamic CPU frequency and bus
frequency cdibration

This replaces the CPU_FREQ and APIC_FREQ
#defines in rtai.h with values obtained dynamicdly
when the RTAI modules are installed. It is no longer
necessary to recompile RTAI for different computers
of differing spedficaions. The same binaries will
now automaticdly cdibrate themselves to the
computer when they are install ed.

» goodfor binary distributions
» goodfor ahost target development environment

The CPU freguency cdibration by default uses
Linux's value (which for Pentiums is obtained
dynamicdly at boa time by cdibrating the TSC
against the 8254 timer). Alternatively the
cpu_freq_cdibration uility can be run for 20 seconds
or so to obtain a more acarate value. This cdibrated
value @n be made to override the default value by
using an insmod command line parameter...

insmod rtai.o CpuFreg=<cdibrated_value>

The APIC frequency (usualy only relevant for SMP
madines) by default is read from the APIC timer
diredly. Alternatively the @ic freg_cdibration
utility can be run for 20 seands or so to oltain a
more acurate value. This cdibrated value @an be
made to override the default value by using an
insmod command line parameter...

insmod rtai.o ApicFreq=<cdlibrated value>

RTAI proc Interface

The RTAI proc interface provides gatus and debug
information on the current operating conditi ons of the
RTAI red time operating system through the standard
Linux /proc interface A series of files under the
subdiredory /proc/rtai gives information on each of
the major adive subsystemsin RTAI. Thesefilesare
adivated when the ssciated module is inserted into
the kernel. A description of these files and their
contentsis given below.

DIAPM-RTAI Position Paper, Nov 2000

[proc/rtai/rtai

This file gives information on the rtai.o module, for
example rtai version, interrupt state, etc. A typicd
output from thisfileis gown below:

RTAI Red Time Kernel, Version: 22.2.4
RTAI mount count: 1

Global irgs used by RTALI:

Cpu_Own irgs used by RTALI:

RTAI sysregsin wse: 1

[proc/rtai/ scheduler

This file gives information on the aurrently loaded
rtai scheduler, for example, priority of the airrently
running red time tasks, state information, etc. A
typicd output from thisfile is shown below:

RTAI Uniprocessor Red Time Task Scheduler.
Calibrated CPU Frequency: 33334000Hz
Calibrated 8254 inter. to scheduler latency: 9027ns
Calibrated one shot setup time: 1974ns

Priority Period(ns) FPU Sig State Task

5 5000000 No No O0x5 1
6 8000000 No No 0x5 2

[proc/rtai/fifos

This file gives gatus information on the red time
fifos, how many are in use, the buffer size etc. A
sample output is iown below:

RTAI Red Timefifos gatus.

fifo No Open Cnt Buff Size malloc type Name

0 1 20000 kmalloc

[proc/rta/memory manager

Current status of the dynamic memory manager is
given by this file, for example number of memory
blocks, amount of memory available in each block,
etc. A typical output is shown below:

RTSS2000- Red Time Operating Systems Workshop

RTAI Dynamic Memory Management Status.

Chunk Size Address 1st freeblock Block size

0 65536 0xc50c0000 @xc50c1798 59484
1 65536 0xc5170000 0xc5170010 65508

RTAI port to the PRC Architecture

Paolo Mantegazzaworked on porting RTAI to PRC
becaise of the interest of an Italian company and
Zentropix. After testing RTAI on Pl classCPUs, the
company found there was no need for them to use the
PRC as PIl were chegoer and performed well enough.

Zentropix remained interested and supplied a portable
G3 Mac

Paolo's interest was to put the RTHAL concept to a
hard red life test and verify to what extent RTAI is
entangled into the ix86 architedure.

It took some spare time to study the CPU, using a
well structured standard Motorola manua (The
Programming Environments for 32-Bit
Microprocesrs), and Linux native ade hading and
copying. After that, the beta porting of RTAI kernel
spacepart, including FPU suppart, was done in three
weeks working evenings and weekends only.

LXRT compiles but has not been tested. Hard red
time mode in user space was never studied nor
attempted.

DIAPM do not plan to use the PRC, and therefore
Paolo'sinterest in going further is limited.

The Linux Implementation

The Linux PRC architedure is many miles behind its
ix86 lrother. We hope things are better on other
archs, they say so for alphas. We fed PRC-Linux is
much worse than advertised, if compared to the
maturity, feaures and progress of the Linux ix86
architedure.

Relevant hardware summary:

PRC is a many, symmetricdly usable, registers RISC
CPU. It has no true stadk, no push/pop instructions.
The stadk is emulated by using an index register. Gcc
argument passng is mostly done using registers.
Paolo dd not ched if asmlinkage dedarations can

DIAPM-RTAI Position Paper, Nov 2000

change things. It defaults to big endian mode, even if
it can work aso in small endian mode.

Its timing source is an internal counter, cdled
deaementer, guaranteed to be pacel at the same
frequency of the CPU time base (the eyuivalent of
Intel TSC). The time base padng is a small fradion
of the CPU. The time base frequency does not come
from dlicing the CPU, but that does not matter much
to the software. The deaementer cannot be
programmed as periodic. It simply counts down then
wraps around to full 32 kts and goes on counting
down. At wrapping around it generates a spedfic
interrupt. To have it periodic the deaementer must be
reloaded so the PPC is natively a one-shot hardware
timer to al pradicd effeds.

External interrupts have just one vedor, so it is up to
the irqg handler to dispatch and find the source by
interading with PICs. Software interrupt have dso
only one source, cdled trap, used also for some fault
spedfic trap. There is a separated supervisor spedfic
trap for OS system cdls.

Software (Linux) summary

Because of the &ove, interrupts/traps dispatching is
native in Linux Kernel and cli/sti equivalents are
already in pointers to function. For an RTAller that
simply means that PRC Linux is natively based on the
RTAI RTHAL concept. So there is not much to be
patched. In fad RTL does no patching but Paolo dd
patch afew lines because he wanted to doa few thing
differently.

Some technicd notes onthe port

It isonly for UP.

Almost every thing of RTAI proved easily portable &
it was. It could not be difficult because RTHAL isin
Linux already and | was used to it. The main thing to
be adapted where:

e thetimer,
» knowing the external interrupt source,

e setting Y an emulation of ix86 IDT table for soft
irgsto save the RTAI srq concept and flexihili ty.

The first two had to work for sure to alow running
kernel space gplicdions. The third one is essential
for shared memory, fifosand LXRT.

RTSS2000- Red Time Operating Systems Workshop

The RTAI timer is always a one-shot one. Periodic
mode is smply suppated by a fix reloading of the
deaementer, after realing the time base, with the
count required to insure the next interrupt
corresponds to the fixed periodic tick. So al timed
function always cdl for the deaementer update &
eath deaementer expiration. The difference being
that an appropriate variable count is loaded in one-
shot, while in periodic mode the @unt is changing
just to acourt for the time dapsed to adknowledge
the related interrupt.

After recdling the full 32 bitswrap around, it is noted
that Linux does omething slly. It reals the
deaemeter to get the cunts from the interrupts, then
keeps reading it to wait for another deaement and at
that time cdculates the new count to be loaded. It is
sure that no deaementer variation will occur as the
deaementer runs at a fradion of the CPU sped.
However on dower CPUs, waiting for the
deaementer causes the lossof some time.

The RTAI approach in periodic mode is smpler. At
ead interrupt the variable keeping the time is
incremented by the period to cdculate the base time
of the next interrupt. The dgorithm then reads the
current time base, make the difference and loads the
deaementer.

Finding the externa interrupt source is done by
simply using the pointer to the related function made
available by native PRC RTHAL. Here the Linux
source ®de was modified dightly as that pointer is
passd to the Linux dispatcher for its oft interrupt.
The dispatcher is in charge of finding the irq source
when RTAI is not mounted, and the RTAI two lines
of code patch saves it from doing it uselessly when
RTAI is mounted.

Soft irgs for RTAI srq are emulated by causing a trap
after loading registers with the interrupt number. The
Linux trap handler has been patched so that it can
understand if RTAI is mounted. In such a cae it
passes the trap to the RTAI handler that, by looking at
the registers, understands if it is his or Linux, and
then ads acordingy. Clealy in such a way one can
also intercept Linux traps the way we have done in
ix86. It should be OK as shared memory and fifos
work well aready. All the RTAIl kernel space
examples sem also to work well.

Status of the RTAI port

As explained above LXRT compil es but does not run.
You have seen how | had to change the related cdl to
Ixrt_resume to get the right arg. However, there can
be problems in the way the long long returned from

DIAPM-RTAI Position Paper, Nov 2000

the Ixrt_handler are padced and recmvered since they
must match the endian mode.

As sid above we stopped working on it because of
the ladk of interest and we were dready amused and
satisfied with what had been acomplished. The
exercise did demonstrate the usefulness of the
RTHAL concept.

The RTAI Module

It is a module that once installed lies in a dormant
state ready to overtake Linux. The function
init_module() does afew important things:

e jnitializes al of its control variables and
structures;

* makes a mpy of theidt table and of the Linux
irq handlers entry addresses,

e initidizes the interrupts chips management
spedfic functions.

Also, file rtai.h contains basic defines and inlined
functions that perform some important RTAI services
like timers srvices including suppart for 8254 timer
and APIC timers.

Mourting RTAI

The exeaution of function rt_mount_rtai() (usualy
done by the schedulers or the fifos module) mounts
RTAI services and fully traps the hardware.

A spedfic lock service is implemented (Linux
spinlocks are no more proteded by disabling the
interrupt flags as Linux hold just soft flags, while
RTAI neadstrue disables):

unsigned long flags; spinlock_t lock;
rt_spin_lock(&lock);
/*
Criticd codeisolation in Linux,
can be preempted by RTAI.
*/
rt_spin_unlock(&lock);

rt_spin_lock_irg(&lock);
/*
Same & above but soft (flags) disabled only.
*/
rt_spin_unlock_irq(&lock);

flags=rt_spin_lock irgsave(&lock);

RTSS2000- Red Time Operating Systems Workshop

/*

Criticd code isolation in RTAIl with interrupt
disabled.

*/

rt_spin lock irgrestore(flags,&lock);

A global lock service to obtain atomicity acoss
CPU'sisimplemented:

unsigned long flags;

rt_globa_cli();

/* Critical code, interrupts disabled for all CPU's. */
rt_globa_sti();

flags=rt_global_save flags and_cli();

/*

Criticd code, Linux is aready preempted. On SMP, a
single global lock that locks out the other CPU's.
Allows reaursive cdls within it from the same qu.
Works on UP boxes.

*/

rt_global_restore flags(flags);

Also, RTAI needs a spedal form of hard lock disable
aqossCPU's;

unsigned long flags;

flags=hard_lock_all();

/*

On upP boxes is the same &
rt_global_save flags and_cli() above. On SMP locks
out al the other CPU's.

*/

hard_unlock_all (flags);

The function rt_mount rtai() adually intercepts all
the hardware:

e Setsup the locks described above.

e setsup the global hard lock handler;

* hardlocksall CPU's,

» redireds rthal interrupts enable/disable and flags
savelrestore to itsinternal functionsdoingit al in
software;

* reaoversfrom rthal afew functions to manipulate
8259 PIC and 10 _APIC mask/ad/unmask

functions;

 redired al hardware handler structures to its
trapped equivalent;

DIAPM-RTAI Position Paper, Nov 2000

e changes the handlers functions in idt_table to its
dispatchers;

» releasesthe global hard lock.

When rt_mount_rtai() returns, Linux appeas working
as nothing had happened but it is no longer the
madhine master. Function rt_umount_rtai() reverses
the process deaibed above and returns the system to
itsoriginal state.

RTAI Dispatcher

4 m\m registers 5
IT
RTAI handler =
:
s w
: 8
Linux handier Pending SRQ T
- : %
IDT table
L@ Linux Handier Table

What happens when an interrupt comes in
while RTAI is mourted?

While in RTAI red time mode aLinux interrupt is
flaged as pending and its exeaution is delayed until
RTAI switches to the Linux context again. Similarly,
red time tasks may pend Linux service requests and
those ae flagged as pending as well .

When RTAI switches to the Linux context, function
linux_sti() gets exeauted immediately after the switch
as part of the global lock release dgorithm. The
function will dispatch for exeaution all the pending
service regquests and all the pending Linux interrupts
before ac¢ually returning control to Linux.

While in the Linux context, a red time interrupt
preanpts Linux and gets exeauted immediately. If the
interrupt is chained to a Linux interrupt, the Linux
handler will also be dispatched immediately. If a
service request was pended by the red time interrupt
handler, the service request will be executed before
control isreturned to Linux.

What does the SMP hard lock al() do?

RTSS2000- Red Time Operating Systems Workshop

With an SMP compiled kernel the hard_lock_all()
function proteds itself using the global lock, then
aqquires a spedfic hardware spinlock and sends an
Inter Processors Interrupt (IPl) message to al the
other CPU's, using a vedor dedicaed to such a
purpose. It then begins busy waiting on an agreed
global volatile variable to be set by all other CPU's.
The other CPU's are then interrupted by the message
sent to them, set the agreed global variable and spin
on the hardware spedfic lock with their interrupts
disabled, thus blocking any adivity on their CPU.
When the agreed variable indicates that all the CPU's
are locked the one in charge of the processng caries
out its work and unlocks the global lock. At this point
all the blocked CPU's acquire the spedfic lock in turn
and return from interrupt. Notice that it is aso
posgble to force the dlave CPU's to execute aservice
function before returning.

The scheduler Modules

RTAI has a UniProcessor (UP) spedfic scheduler and
two for Multi Processors (MP). In the latter case you
can chose between a symmetricM ulti Processor (SMP)
and a MultiUniProcessor (MUP) scheduler.

The UP scheduler

The UP scheduler can be timed only by the 8254
timer and cannot be used with MPs.

The SMP scheduler

The SMP scheduler can be timed either by the 8254
or by a locd APIC timer. In SMP/8254 tasks are
defaulted to work on any CPU but you can assign
them to any subset, or to a single CPU, by using the
function:

e rt_set runnable on_cpus().

It is also possble to assgn any red time interrupt
serviceto a spedfic qpu by using functions:

e rt_assign_irg_to_cpu()
e rt_reset_irg_to_sym mode()

Thus a user can daticdly optimize higher
applicaion if he/she believes that it can be better
done than using a symmetric load dstribution. The
possbility of forcing any interrupts to a spedfic CPU
is clealy not related to the SMP scheduler alone and
can even be used in interrupt handlers.

Note that only the red time interrupt handler is forced
to a spedfic CPU. That means that if you ched this

DIAPM-RTAI Position Paper, Nov 2000

feaure by using "cat /proc/interrupts’ for a red time
interrupt that is chained to Linux, e.g. the timer when
rta_sched is ingaled, you can still see some
interrupts distributed to all the CPUs, even if they are
mostly on the asigned one. That is becaise Linux
interrupts are kept symmetric by the RTAI dispatcher
of Linuxirgs.

For the SMP/APIC based scheduler if you want to
staticdly optimize the load dstribution by binding
tasks to spedfic CPUs it can be useful to use the
function rt_get timer_cpu() just after having
installed the timer, to know which CPU is using its
locd APIC timer to pacethe scheduler. Note that for
the one-shot case that will be the main timing CPU
but not the only one. In fad which locd APIC is used
depends on the task being scheduling out, and that
will determine the next shoating.

SMP schedulers alow to chose between a periodic
and a one-shot timer, not to be used together. The
periodic ticking is less flexible but, with the usual PC
hardware much more efficient. So it is up to you to
choose the mode in relation to the gplicaions at
hand.

measured on the basis of the CPU time stamp clock
(TSC) and neither on the 8254 chip nor on the locd
APIC timer, which are used only to generate oneshot
interrupts. The periodic mode is instead timed by
either the 8254 a the locd APIC timers. In the
oneshot mode the time is hen the 8254 is used slow
[/Os to the ISA bus are minimised as much as
possble with asizable gainin efficiency. The oneshot
mode has just about 15-20% more overheal than the
periodic one. The use of the locd APIC timers leads
to a further improvement and substantially lessjitter.

Remember that locd APICs are hard dsabled on
UPs, unless you are using just one CPU on an MP
motherboard. Experience with locd APIC timers
shows that there is no performance improvement for a
periodic scheduling, except for a margina reduced
jitter, while the oneshot case gain is the sizable 10-
15% mentioned above. In fad by using the TSC just
two outb() cdls are required to reprogram the 8254
i.e. approximately 3 us, against almost nothing for the
APIC timer. However you have to hroadcast a
message to al the CPU'sin any case, and that is more
than approximately 3 us. The APIC bus is an open
drain 2 wires one and is not very fast. Note that the
performance loss of the 8254 is just a fradion of the
overall task switching procedure, which is aways
substantially heavier in the oneshot case than in
periodic mode.

RTSS2000- Red Time Operating Systems Workshop

If you have aan SMP motherboard, or a locd APIC
enabled, you should definitely use the APIC SMP
scheduler. Note however that in this case we have
chosen not to baund the timer to a spedfic CPU.
Nonetheless as explained above, you can dfill
optimise the static binding of your task by using the
function rt_get_timer_cpu() which allows you to find
which locd APIC is timing your applicaion so that
you can wse the function rt_set runnable_on_cpus()
to bind any task to the "timing" CPU. See the
README file in the smpscheduler diredory.

Older 80486madines

Since the TSC is not avail able on 486 machines, we
use aform of emulation of the read time stamp clock
(rdtsc) asembler instruction based on counter2 of the
8254 So you can use RTAI aso on such machines.
Be warned that the one-shot timer on 486 is a
performance killer because of the nead to real the
TSC, i.e. the 8254 counter? in this case, 2/3 times.
That can take 6-8 us, i.e. more than it takes for a full
switch among many tasks while using a periodic
timer. Thus only a few kHz period is viable, at most,
for red time tasks if you want to keep Linux alive.
No similar problems exist for the periodic timer that
need not use the TSC at al. So, compared to the 20%
cited above, the red time performance ratio of the
one-shot/periodic timer efficiency ratio can be very
low on 486 machines. Moreover it will produce far
worse jitters than those caused on Pentiums and
upward madines. If you redly need a one-shot timer
buy at least a Pentium. However, for periodic timing
486s can till be more than adequate

for many applicéions.

The MUP scheduler

The MUP scheduler instead derives its name by the
fad that red time tasks MUST be bound to a single
CPU at the very task initialization. They can be
afterward moved by using functions:

e rt_set runnable on_cpus()
e rt_set_runnable on_cpuid()

The MUP scheduler can however use inter CPUs
services related to semaphores, messages and
mailboxes. The alvantage of using the MUP
scheduler comes mainly from the posshbility of using
mixed timers dmultaneoudy, i.e. periodic and
oneshot, where periodic timers can be based on
different periods, and of the paossbly of forcing
criticd task to remain in the CPU cade. With dual
SMP machines we annot say that there is a

DIAPM-RTAI Position Paper, Nov 2000

noticedle difference in efficiency. MUP has been
developed primarily for our slowt (a few khz) PWM
aduators, and BANG-BANG air jet thrusters,
coupled to a periodic scheduler. All the functions of
the UP and SMP schedulers are avail able in the MUP
scheduler.

A new Fifo Module

The new fifo implementation for RTAI maintains full
compatibility with the basic services provided by its
original NMT-RTL counterpart while alding many
more.

It is important to remark that even if the RTAI fifo
APl appeas as before, the implementation behind
them is based on the mailbox concepts, aready
available in RTAI and symmetrically usable from
kernel modules and Linux processs. The only
notable difference, apart from the file style API
functionsto be used in Linux processes, is that on the
module side you aways have only non blocking
put/get, so that any different policy should be
enforced by using appropriate user handler functions.

With regard to fifo handlers, it is now posshle to
install also one with a read/write agument (rea 'r',
write 'w'). In this way you have ahandler that can
know what it has been cdled for. It is useful when
you open read-write fifos or to chedk against miscdls.
For that you can have ahandler prototyped as:

* intx_handler(unsigned int fifo, int rw);
that can be installed by using:

e rtf_create handler
(fifo_numver, X_FIFO_HANDLER(x_handler).

see rtai_fifosh for the X_FIFO_ HANDLER maao
definition.

The handler codeislikely to be akind of:
int Xx_handler(unsigned int fifo, int rw);
if rw==""{
/I Reading code.

}else{
/I Writing code.
}

}

Even if fifos are strictly no longer required in RTAI
becaise of the availability of LXRT, they are kept

RTSS2000- Red Time Operating Systems Workshop

both for compatibility ressons and becaise they are
very useful todls that can communicate with interrupt

handlers sncethey do not require any scheduler to be
installed. In this snse you can see this new
implementation of fifos asa kind of universal form of
device drivers snce once your interrupt handler is
installed you can usefifo servicesto doall the rest.

The new implementation made it possble to add
some new services. One of these is the posshility of
using asyncronous sgnals to notify data availability
by cachingasignal set by the user. It isimplemented
in astandard way, seethe function:

rtf_set async sig(int fd, int signum) (default signum
isSIGIO);

and standard Linux man for fcntl and signal/sigadion,
whil e the others are spedfic to thisimplementation.

A complete picture of what is avalable can be
obtained from alook at rtai_fifos.h prototypes.

Suppat for multi ple readers and/or writers

It isimportant to remark that now fifos allow multiple
readerswriters © the seled/pdl medianism to
synchronize with infout data can lead to unexpeded
blocking. For example: you pal and dscover that
data is available and then another user preempts you
and steds all your data with the result that when you
finally ask for it the data is gone and you get
blocked. So, make sure that you cannot be blocked
when you read or write data. To avoid such problems
you have avail able the functions:

« rtf_read_all_at_once(fd, buf, court);

that blocks untill all count bytes are avail able;

e rtf_read_timed(fd, buf, count, ms_delay);
e rtf_write timed(fd, buf, count, ms_delay);

that block just for the spedfied delay in milliseconds
but are queued in red time Linux process priority
order. If ms_delay is zero they return immediately
with all the data they could get, even if you did not
set O_NONBLOCK at fifo opening.

So by mixing rormal read/writes with their friends
above you can easily implement blocking, non
blocking and timed 10s. They are not standard and
therefore not portable, but far easier to use than the
seled/pal mechanism. The standard llseek() is also

DIAPM-RTAI Position Paper, Nov 2000

available but it is equivalent to cdling rtf_reset(),
whatever fifo placeyou point at in the cdl.

For an easier timing you have avail able dso:
» rtf_suspend_timed(fd, ms_delay).

To make them easier to use, fifos can now be aeded
by the user at open time. If a fifo that does not exits
already is opend it is creaed with a 1K buffer. Any
subsequent credion in the kernel side resizes it
without any lossof data. Again if you want to crede a
fifo from the user side with a desired huffer size you
can use:

« rtf_open_sized(const char *dev, perm, size).

Since they had to be there dready to implement the
mailboxes we have dso made available binary
semaphores. They can be used for many things, e.g.
to synchronize shared memory acces without any
scheduler installed instead of using blocking fifos
read/writes with dummy data.

Semaphare services

The semaphore services avail able ae:

e rtf_sem_init(fd, init_val);

e rtf_sem wait(fd);

e rtf_sem_trywait(fd);

e rtf_sem_timed_wait(fd, ms_delay);

e rtf_sem_post(fd);

* rtf_sem_destroy(fd);

Note that fd is the file descriptor. A semaphore is
always asciated to a fifo and you must get a file
descriptor by opening the wrresponding fifo.
Naturaly the @ove functions are symmetrically
available in kernel space acept for rtf_sem_trywait()
and rtf_sem pacst() which are only available in user

space because & explained above, you only get non
blocking servicesin the kernel.

Dynamic aedion d named fifos

To make it easier to keep tradk of which fifo to use
and in order to avoid fifo number clashes beween
separate red time tasks, it is now possble to

10

RTSS2000- Red Time Operating Systems Workshop

dynamicdly creae named fifos on an unused fifo
number. Existing named fifos can have their name
looked up in order to find which fifo number they
occupy. The named fifo services avail able ae:

* rtf_create_ named(name);
« rtf_getfifobyname(name);

Tednicd Notes

These functions are symmetricdly available in kernel
and user space Both return the dlocated fifo number.
In wser space note that these cdls will not
automaticdly open the fifo device for you. Instead
one must append the returned fifo number onto the
end of '/dev/rtf' and then open the fifo device @
normal.

The maximum length of a fifo's name is defined as
RTF_NAMELEN. Thisiscurrently set to 15

When using rtf_creae_named() from user space the
first fifo creaed is assgned a fifo number of 1 rather
than 0. This is becaise /dev/rtf0 is used to
communicae with the kernel driver module (where
the name to number mapping is kept), and so at the
time of cdling fifo number O is not free This should
not cause any problems. The same thing does not
happen when rtf_creae _named() is cdled from kernel
space

If you want to monitor the fifo name to number
mapping two choices are available. Either look in
/proc/rtai/fifos or use the new
RTF_GET _FIFO_INFO ioctl. Take alook in the test
program regresson.c and rtai_fifos.h to see a(sdlightly
contrived) example of using this ioctl. Sample /proc
interfaceoutput...

fifo No Open Cnt Buff Size malloc type Name

0 1 1000 kmalloc kernel FIFO_ 345
1 2 1000 kmalloc user FIFO 12346

Future implementations may employ SRQs rather
than /dev/rtfO for the name resolution.

The pthread Module

The RTAI pthread module implements a threal
padkage to the POSIX 10031c standard. The module
includes cdls for thread credion and destruction,
mutual exclusion, and condition variables. This gives
the red time programmer the aility to program the
applicaion wsing astandard threads API.

DIAPM-RTAI Position Paper, Nov 2000

pthreals

The module provides for the dynamic aedion and
destruction of threals, so the number of threads does
not have to be known until runtime. POSIX threads
use dtribute objeds to represent the properties of
threads. Properties such as dack size and scheduling
policy are set for a threal attribute objed. A thread
has an id of type pthread t, a stadk, an execution
priority, and a starting address for execution. In
POSIX, threads are aeaed dynamicdly with the
pthread_creae function which creaes a thread and
putsit in arealy queue.

During its life apthread can be in any one of four
states, Realy, Running, Blocked, and Terminated.

A pthrea is in the ready state when it is able to run,
but is waiting for a processor to become available.
Usudly it isin the ready state on credion, when it has
been blocked o pre-empted by another pthread or
task.

A pthrea is in the running state when it is exeauting
on aprocesor. A pthreal is blocked when it is unable
to run becaise it is waiting for an event. Typicd
examples of this include waiting to lock a mutex,
suspending exeaution for atime period, or waiting for
an 1/O operation to complete.

A pthrea is terminated when it returns from its gart
function or by cdling pthread_exit. Under red time
Linux, this state is very short as the cncepts of
pthread joining and detaching are not currently
implemented. Hence, when pthreads are terminated
they are recycled immediately.

Synchronization

In the majority of cases, applicaions that are written
using pthreads will have arequirement to share data
between pthreads and ensure that certain adions are
performed in a mherent sequence. This requires that
the adivity of the pthreads is g/nchronized when
accesing the data in question to avoid incorred
operation and undesired effeds. Under RTAI the
synchronizaion functions that are available for
appli cations are mutexes and conditi onal variables.

Mutexes
The most common method d synchronizing acces to
a resource that isshared between multiple pthreads is

to use amutual exclusion, abbreviated to mutex. A
mutex is used to serve @& a mutually exclusive lock

11

RTSS2000- Red Time Operating Systems Workshop

which permit pthreads to control accessto sedions of
data and code requiring atomic acces. In these
circumstances only one pthread can hold the lock and
hence acessthe resourcethat the mutex is proteding.
Mutexes can aso be used to ensure exclusive acces
to sedions of code or routines; these ae known as
critica sedions of code.

CondtionVariables

One of the main differences between a mutex and a
condition variable is that a mutex alows threals to
synchronize by controlling acessto data, whereas a
condition variable dlows threals to synchronize on
the value of the data. A condition variable provides a
method d communicating information regarding the
state of shared data. For example this information
could be a ounter reading a cetain value, or a
gueue bemming empty.

The Memory Management Module

The dynamic memory module for RTAI gives red
time gplicaion programs the adility to be ale to
dynamicdly creade and free memory using the
standard UNIX programming API cdls. Before this
module, red time gplicaions which needed dynamic
memory management had to use the standard Linux
kernel cdls: kmalloc() and kfreq). Thisis potentially
very dangerous as these cdls can block, and if this
were to occur from a red time task, the result is
usually atotal system lock up. The situation is made
worse & this can lea to intermittent bugs as red time
applicaions can appea to work using these cdls, but
fail under varying load conditi ons and circumstances.

The dynamic memory manager module pre-all ocaes
blocks (chunks) of memory from the Linux kernel
which is available for use by red time tasks using a
"UNIX like" API: rt_malloc and rt_free The manager
alocaes and frees memory from these blocks of
memory, and also monitors the amount of free
memory that is available in these blocks. When the
amount of available memory falls below a low water
mark a request for another block of memory is made
pending. Similarly, when the amount of available
memory is greaer than a high water mark, a request
to free ablock of memory is made pending. These
pending requests are caried out using the standard
kmalloc and kfree c#ls at a safe time, i.e. when the
red time system becomes idle, just before control is
handed badc to Linux. Using this mechanism, the
memory manager balances the memory requirements
of the red time gplicaion with the need to ke as

DIAPM-RTAI Position Paper, Nov 2000

much memory as posshle available to the Linux
kernel.

The dynamic memory manager can be configured for
the number of memory blocks that are kept avail able,
and the size of the blocks. This means that the
module cax be nfigured to med the spedfic
requirements and operating conditions of a red time
applicaion, alowing the @plicaion to be
programmed using the flexibility of dynamic memory
alocaion, whilst minimizing the memory resource
burden on the Linux kernel. Another key feaure
provided by the module is the aility to creae red
time threads from other red time threals which is an
esential feaure for many applicaions. For this
purpose, RT_TASK *rt_alloc_dynamic_task(void)
has been added to the schedulers.

Dynamic memory alocdion for red time tasks is
suppated by the implementation of the following
functions:

e void *rt_malloc(unsigned int size);

rt_ malloc() allocaes sze bytes and returns a pointer
to the dlocaed memory. If the dlocation request
fallsaNULL isreturned.

* voidrt_free(void *ptr);

rt_freq) frees the memory spacepointed by ptr which
must have been returned by a previous cdl to
rt_ malloc(). rt_freereturns no value.

The default configuration of the dynamic memory
manager is:

Memory block size: 64 KBytes
Number of freeblocks kept avail able: 2

These parameters can be changed if required by using
the following modue parameters:

Memory block size: granularity
Number of freeblocks kept available: low_chk_ref

For example to change the size of the memory blocks
to 32 Kbytes and the number of free blocks kept
available for alocaion to 4

Insmod rtai_sched_up.o
low_chk ref=4

granularity=32768

12

RTSS2000- Red Time Operating Systems Workshop

RTAI C++ Suppat Built Into The Modue

Red time C++ suppat is provided with the
implementation of the operators:

* void* operator new(size t);

e void* operator new [](size t);
e void operator delete(void*);

e void operator delete [](void*);

These operators use the rt_malloc() and rt fred)
primitives and thus make it possble to exeaute red
time C++ written modules. The LXRT diredory
provides an example on how to do this. Notice that
C++ suppart is limited as programs must be compil ed
with the -fno-exception g++ option. Also, an abstrad
base dassthat defines a pure virtual function should
implement an empty function otherwise the cmmpil er
will generate the _ pure virtual() cdl which will
result in an urresolved symbal at insmod time;

classWathever {

public:
virtual void foo() = 0;
virtual void Better {}

/I Pure virtual.
/I Empty function.

1

Member function foo causes the problem whereas
empty member function Better() tricks g++.

Alternatively you could choose to implement your
own _ pure virtual() function with something like
this:

extern"C" void ___pure virtual();
void __pure virtual()

{

RT_TASK *t;

rt_printk("%X cdling a pure virtua\n', t =
rt_whoami());

rt_task_suspend(t);

}

Notice that if you attempt to compile with the -fPIC
option, you will see another unresolved symbadl:
_GLOBAL_OFFSET_TABLE .

Also, you cannot instantiate global objeds becaise
nothing adually does the global initiadizaion. Thisis
normally done before the program enters main and
you nred to link with the library files crtbegin.o and
crtend.o to do that. However, linking with those two
files will introduce you to two ather unresolved
symbdls:

e register_frame info

DIAPM-RTAI Position Paper, Nov 2000

e Ceregister_frame info.

To resume, C++ suppat is limited in that exception
handling and global instantiation services are not
available in the kernel due to a lak of library
suppart. It is possble to trick the compiler in order to
avoid the _ pure virtual unresolved symbal.

There is now in the source tree @ example dmost
entirely written in C++ to help users get started. The
example is smple and yet sophisticated in that it
illustrates many aspeds of the language like
derivation, compasition, templates, virtual functions
and, of course, provides a Makefile that compiles a
C++ written kernel module.

LXRT - the symmetrical APl concept

Paolo Mantegazzés objedive when he started to think
about LXRT was to implement in user space the
message handling and remote procedura cdl
functionsthat are integrated to the RTAI schedulers.

Programmers famili ar with RTAI would then be ale
to doIPC in user spacewithout having to master all
the detail s and intricades of System V IPC and libc6.
This way staff and students could focus on their
reseach in the field of agospace ad spend lesstime
leaning Unix.

The next step was dmple. Given that RTAI
messaging functions would be available in user space
it would be usefull if the functions internals allowed
to crossthe kernel/user spaceboundary. This way a
user spaceprogram could send a message to a kernel
task and vice versa using the same function cdl
prototype.

The initial development of the LXRT module
implemented all the RTAI scheduler servicesin user
space with very few exceptions and changes to the
API functions prototypes. Moreover, the problem of
crossng the Kkernel/user space boundary was
surmounted and the API functions could be used inter
and intra spacefor both kernel and user space

The internads of the first LXRT
implementation

A number of problems were resolved in the first
LXRT implementation of the symmetricd API. Let's
follow the flow of control as if we were adually
making a cdl from user space

13

RTSS2000- Red Time Operating Systems Workshop

First, it is necessary to crege aRTAI red time task
agent. The agent will enter the red time space and
acually execute the native API functions if and when
required. The function rt_task_init() creaes the agent.
Inasimilar way, the function rt_task_delete() releases
the resources required to instantiate the red time
agent. The ayent red time task structure, stack and
messaging buffers are dlocated dynamicdly.

Usually red time kernel tasks have statically dedared
task structures and it is therefore eay to share
pointers to those structures. Any task can initiate a
messaging procedure if the name of the variable that
dedares the global task structure of the recever is
known. Clealy user space programs would have to
use adifferent approach. A name registry agorithm
was developped and enables kernel and user space
programs to register a unique name up to SiX
charaders long. Any task that knows a registered
name an find the aldress of the red time task
structure of the registered task and therefore can
initiate a messaging procedure with it. The registry
algorithm also supparts mail boxes, semaphores and
proxies.

A simple gproach wsing static inline functions in
header file rtai_Ixrt.h was used to copy the function
arguments onto the stack before executing the
software interrupt. With the help of maaos most of
the API functions where quickly implemented in user
space with two lines of code eab. The register
arguments of the system cdl encode (on the stack) the
size of the agument structure a well as the function
ID number and a pointer to the agument structure.

LXRT installs in init_module() an interrupt handler
that saves the registers, cdls Ixrt_handler() after
pushing the register arguments onto the stack, and
restores the registers at the end of the system cdl. The
handler savelrestore ae done the same way Linux
does it thus keeping the possbility and flexibility to
return with aret_from _intr() although at first asimple
iret instruction was sufficient.

Oncein the Linux context, the function ID number is
deomded and used as an index into a matrix of
structures that contain the pointer to the native API
function as well as information as to what to do next.
About 20% of the native functions do not neel to
enter RTAI red time mntext. In that case the
arguments are cpied from the user space stack with
copy_from_user() and the native function simply
cdled.

DIAPM-RTAI Position Paper, Nov 2000

When a ontext switch is required, LXRT cdls
Ixrt_resume() to prepare the agent before the context
switch can be acompli shed. Function arguments may
have to be mpied from user spaceto message buffers
using dedicaed pdnters in the red time task
structure. The stadk of the agent has to be initialised
and the aldress of the native APl function copied
onto it among other things. The context switch will
transfer control to the sub function
Ixrt_rtai_fun cdl() that will in turn disable global
interrupts, cdl the native API function and then
automaticdly call rt_suspend(). Function rt_suspend()
always cdls rt_schedule() to force a ontext switch
(the return to Linux) and may also pend a Linux
service request to wakeup the the user program in the
Linux context if need be. After having done this
initialisation, emuser_trxI() is cdled to dothe context
switch to kernel red time mode.

The user program agent task wakes up in kernel red
time mode exeauting the desired native API function.
At this point two things can happen. The agent could
exit the function immediately and start unwinding
things to go back to user space or, the function could
dedde to hlock and cdl rt _schedule() to switch to
another red time task.

In the first case, the native API function exits and the
stub function cdls rt_schedule(). At some paint in
time the RTAI scheduler restarts Linux. The user
program wakes up in kernel mode and continues to
exeaute Ixrt_resume(). Globa interrupts are re-
enabled and, if required, data is copied badk to user
space The system call then completes and control
returns to user space

In the second case, the agent is blocked in the red
time kernel when the RTAI scheduler restarts Linux.
The user program wakes up in kernel mode, re-
enables global interrupts and immediately suspends
itself by setting state to TASK_INTERRUPTIBLE
followed by a schedule() cdl. Linux then continues
with another process

At some point in time, the user program red time
agent eventually exits the native API function. The
stub function described above cdls rt_suspend(). A
service request to wakeup the kernel component of
the user space program is pended before the
rt_schedule() cdl to doa mntext switch. This forces
the execution of the required wake _up_interruptible()
cdl in the Linux context before the airrent process
adually resumes. A Linux context switch occurs and
our user program wakes up again in Ixrt_resume()
and completes the system cdl as described above for
the first case.

14

RTSS2000- Red Time Operating Systems Workshop

The ned to cleanup at process termination
time

With the first release of LXRT it became gparent
that a soft red time task that terminated abnormally
could not be re-started because the registr() cdl in
rt_task_init() failed. Nobody had deregistered the task
name & termination. LXRT nealed to be informed by
Linux of the termination event in order to do required
house deaning. Deemed acceptable in the context of
laboratory reseach more nealed to be done to
graduate to industrial status.

The objedive behind the development of LXRT-
INFORMED was to have asystem that could recover
after the aash of alinux task with ared time LXRT

agent.

A few lines of code were aded to function do_exit()
to allow the detedion of red time agents that need to
be deleted by LXRT at process termination time.
Function do_exit() cdls a spedal handler installed
(and de-installed at cleanup_module() time) by the
LXRT module. In order to minimise the overhead o
that additional cdl in do_exit() it was dedded that
do exit() would only do the cdl for POSIX
proceses. Thus LXRT-INFORMED works only for
processes that change their Linux scheduling palicy
to SCHED_FIFO or SCHED_RR.

When a POSIX process terminates do_exit() cdls
linux_process termination() and the following
adions are taken in sequence ad as follows:

» Disable global interrupts.
e Trytofind an agent for the aurrent process

e Veify in the registry if current registered
semaphores. If so, and for ead, cdl
rt sem delete() and rt freq) to release the
allocaed memory, and aso erase the registry
entry.

e Veify in the registry if current registered mail
boxes. If so, and for ead, cdl rt_mbx_delete()
and rt_fredq) to release the dlocaed memory,
and also erase the registry entry.

e Veify in the registry if current attached proxy
messages, if so, and for ead, cdl
rt Proxy detach(), and also erase the registry
entry.

DIAPM-RTAI Position Paper, Nov 2000

e |If an agent task was not found above enable
global interrupts and return, otherwise cntinue.
Notice here that this approach works if the user
forgot to release the resources during a normal
exit.

* Go through the list of RTAI red time tasks and
try to find those that may be SEND, RPC,
RETURN, or DELAY ED blocked on the agent
task found above. For ead task found, unblock it
and force a ontext switch to RTAL.

e Cdl rt_task_delete(), and then rt_fred) to release
the messaging buffers as well as the task
structure itself. Remember that the structure was
allocaed dynamicdly.

* Finaly deregister the task name and enable
global interrupts.

Notice that mail boxes cause a particular problem
here because they are mnnedion less. In other words,
it is not posshle for a 2mbie (a former agent task
about to be deleted) to detea that another red time
task is MBX (mail box) blocked spedficdly for a
message from him. The solution here is to anticipate
this possibility at the system design stage and to use
the rt_mbx_receve timed() function with a timeout
value and check the return value to deted the aror.

Extensive testing was carried out with test programs
using the server (SRV) client (CLT) model and ddng
synchronous IPC transadions to validate the
algorithm under various conditi ons:

SRV doesadivide by zero error in user space

e throw SIGINT at SRV with kill -sINT pid,

» throw SIGINT at SRV from red time mntext,

» Hit Control C,

* SRV exitswithout deleting a SEM,

* SRV exits without deleting the agent red time
task,

* SRV exits normally without deleting anything,

* SRV does adivide by zero in user spacewhile a
rt_task is RPC blocked on CLT,

» Control C while ared time task is RPC blocked
on CLT,

e SRV does adivide by zero in user spacewhile a
red timetask is RPC blocked on SRV

The return values from failed rt_rpc() cdls were
verified to the aorred value of 0 when the red time
task RPC blocked on either CLT or SRV was
unblocked by linux_process termination().
Furthermore, the tests were caried out under both the
SMP and UP schedulers.

15

RTSS2000- Red Time Operating Systems Workshop

Performance and benchmarks

Intertask communicaions with LXRT are éout 36%
faster than with old FIFO's. Testing inter Linux
(Linux <-> Linux) communicdions with int size msg
and replies (using the native rt_rpc() function) on a
P233MM X the foll owing results were obtained:

LXRT 12,000 cycles RTAI-0.9x

Fifo 19,000 cycles RTAI-0.8
Fifonew 22,300 cycles RTAI-0.8
SRR 14,200 cycles

The results peak for themselves. Notice that the new
fifo implementation provides much more flexibili ty
than the original implementation but at a small price
in performance The SRR padage implements the
QNX 4 IPC Send/Receve/Reply primitives with a
standard kernel module using ioctl(). LXRT, becaise
it bypasses ioctl() atogether is more dficient and
provides with the symmetricd API inter space IPC
(kernel <-> user space.

LXRT Switching from soft to hard
red time mode

A user spaceprocesscdls rt_make hard red_time()
to switch to hard red time mode. Once in that mode,
the processcan no longer make system calls or use a
library function that could lead to a system cdl.
However, the rich family of RTAI messaging services
can be used. Thus, any system cdl can be relayed by
the red time processto a soft red time agent. Anyone
who has worked on the QNX platform is familiar
with such an approach. The Unix server example
shows exadly how it isdone.

The rt_make hard red_time() cdl enters the kernel
and first waits on semaphore sted_give sem. The
purpose of this smaphore is to exclude dl other
processes from trying to enter or leave hard red time
mode & the same time. Those two procedures handle
only one processat atime.

When rt_sem wait() returns, sted from_linux() is
cdled. Notice that when the process exeated
rt_task_init() the pointer to the RT_TASK structure
of the red time agent task was gored in the task
structure of the Linux process in variable
this rt_task[Q].

The function sted from linux() adds the red time
agent to the list of processes that Ixrt_schedule() is
concerned with. It sets the state of the Linux process
to TASK_LXRT_OWNED so Linux will not try to

DIAPM-RTAI Position Paper, Nov 2000

restart it while in hard red time mode. It increases the
goodhesspriority of the idle processbecaise we neel
to use it later and we want it scheduled as on as
possble. It queues a bottom half function to execute
Ixrt_do sted(). Finally, it cdls <hedule(). The
processis now in limbo.

Noticethat in the initiali zation described conceptually
above, flag exec sigfun was st. The first transition
from false to true changes a lot of things. In
init_module() LXRT sets the signal function of the
red time task representing the current process to
exeaute Ixrt_sigfun(). Recdl that the signal function
is aways executed immediately after the context
switch which means that Ixrt_sigfun() gets executed
whenever the red time scheduler re-starts Linux.
When flag exec sigfun is false, Ixrt_sigfun() is an
empty function. When exec sigfun is true,
Ixrt_sigfun() cdls Ixrt_schedule() and then disables
hard interrupts. This means that as ©on as thereis an
agent task in the task list of Ixrt_schedule(),
Ixrt_schedule() gets cdled whenever rt_schedule() re-
starts Linux. We will come bad to Ixrt_schedule()
later. Let's now worry about the process sill in limbo.

At some point, the bottom half agorithm executes
Ixrt_do sted() that will re-schedule itself in the
bottom half until three onditions are true: the
running CPU is not already in hard red time mode,
the state of the process in limbo is equal to
TASK_LXRT_OWNED and the aurrent processis an
ide task. When the onditions are met,
Ixrt_do sted() disables global interrupts, sets the
pstate of our process to READY and cdls
Ixrt_schedule(). The next time the process wakes up,
it will be runningin hard red time mode. Notice that
pstate is the state variable used by Ixrt_schedule().

When the processfinally wakes up global interrupts
are enabled, the goodhesspriority of idle isreset to its
normal value, the semaphore sted_give sem is
relessed and the rt_make hard_red_time() cdl
returns to user space with a simple iret instruction.
Noticethat ret_from intr() cdls are not all owed while
in hard red time mode.

LXRT Scheduler

As we have seen above, the function Ixrt_schedule()
isasigna function that gets cdled every time Linux
gets re-started by the red time scheduler when at least
one processisin hard red time mode.

The LXRT scheduler behaves in a similar way as the

red time scheduler except that it has its own task list
and is concerned with task state variable pstate. When

16

RTSS2000- Red Time Operating Systems Workshop

the function executes, it disables global interrupts and
then tries to find a task with pstate equa to the
READY state.

If it finds none, it restarts Linux if it was not the
previous task, and resets Ixrt_hrt flags (if it was
previoudy set) thus enabling system cdls return
throughret_from _intr().

If it finds one, it sets the pstate variable of the
RT_TASK representing Linux to READY (i.e. it
stops it because it was also RUNNING) if Linux was
the previous task, it re-starts the hard red time
processand sets Ixrt_hrt flags (if it was not set) thus
disabling system cdl s return through ret_from_intr().

Like the Linux scheduler, Ixrt_schedule() executes
rthal.switch_mem() immediately before the context
switch in order to load the locd descriptor table and
the a3 register etc. If need be, the mprocesor stadk
is saved and restored immediately before and after the
context switch.

Notice the usefulness of the hardware éstradion
layer concept: rthal.switch_mem is smply a pointer
to the native function Linux uses to switch the
memory to the next process

On exit, the scheduler enables global interrupts.

LXRT Switching from hard to soft
red time mode

Typicdly, a user gspace process cdls
rt_make soft red_time() to switch bad to soft red
time mode in order to exit normally with the exit()
function (a system call).

The rt_make soft red time() cdl enters the kernel
and first waits on semaphore sted_give _sem. Again,
the purpose of this ssmaphore is to exclude dl other
processes from trying to enter or leave hard red time
mode & the same time.

When rt_sem wait() returns give_badk_to_linux() is
cdled. This function removes the process from
Ixrt_schedule's task list, deaements
nr_linux_rt_process if non zeo, schedules the
exeadtion of Ixrt_do_give bad() in the bottom half
gueue, and then cdls Ixrt_schedule() to force a
context switch. Again, the processisin limbo.

Notice that when mr_linux_rt_process reades zero

things gart to come badk to normal. Each time
Ixrt_sigfun() is executed, the flag exec sigfun is st

DIAPM-RTAI Position Paper, Nov 2000

equa to nr_linux rt_process Thus, the
Ixrt_schedule() cdl in gve badk to_linux() will be
the very last one if nr_linux_rt_processreaded zero
when it was deaemented.

At some paint, Ixrt_schedule() will restart Linux and
the bottom algorithm will exeaute
Ixrt_do_give bad(). This function ads in a similar
way as its counterpart Ixrt_do_sted_from_linux(). It
will re-schedule itself in the bottom half until three
conditions are true: the running CPU is not arealy in
hard red time mode, the state of the processin limbo
is equal to TASK LXRT_OWNED and the arrent
processis an idle task. When the conditions are met,
Ixrt_do give badk() will set the process sate to
TASK_INTERRUPTIBLE and smply cdl
wake up_interruptible(). The processwill eventually
be scheduled to run by Linux.

When the process finally wakes up global interrupts
are enabled, the goodhesspriority of idle isreset to its
normal value, the semaphore sted_give sem is
released and the rt_make soft_red_time() cdl returns
to user space with a ret_from intr() cdl as for any
other Linux system cal.

Notice the trap handling spedal case of a hard red
time task that must be terminated becaise of an
exception. If the task does a division by zero in the
kernel we cannot use any Linux function that
references current becaise it is not defined. "current”
isan inline function that will return garbage whenever
in RTAI red time mode. Thus, the bottom half setup
procedure is avoided and the processis waken wp in
the Linux context via astandard RTAI servicerequest
that eventually calswake up_interruptible().

We dedded to sted from and give badk to an idle
processbecaise it was easier to implement at first and
allowed the validation of the LXRT concept. It does
cause ashort interruption of the program flow which
is not a major problem as user's are not expeded to
seesaw between the two modes. Future development
may look into the posshility of stealing from and
giving bad to any process

Finaly, the ned for the sted give sem semaphore is
clealy seen when comes the time to gve two
processes bad to Linux. If they are given bad at the
same time, the wake up_interruptible() cdls are
exeauted badk to bad with the result that the second
one succeals and the process that should have been
started by the first one falls in limbo and stays there
for ever. Without the semaphore, we could infringe
the cadina rule: for eat procesor, there is to be
only one processin the kernel at atime.

17

RTSS2000- Red Time Operating Systems Workshop

LXRT ONX like Synchronous IPC
Services

Raw synchronous messaging has always been there in
the RTAI schedulers with the rt_rpc(), rt_receve()
and rt_return() primitive functions.

Using the raw proxies functionality added last yea
and the &isting messaging primitives the basic QNX
like messging primitives were implemented in
LXRT to obtain a symmetricd API:

e pid_trt_Alias attach(*name);

e pid_trt_Name_attach(*name);

e pid_trt_Name locate(*host, *name);

e int rt_Name_detach(pid);

e int rt_Send(pid, *smsg, *rmsg, ssze, rsize);

e pid_trt_Receive(pid, *msg, maxsize * msglen);

e pid_trt_Creceive(pid, *msg, maxsize, *msglen,
delay);

e int rt_Reply(pid, *msg, size);

e pid_t rt Proxy attach(pid, *msg, nbytes,
priority);

e int rt_Proxy_detach(pid);

e pid_trt_Trigger(pid);

Again, full APl symmetry means that one can use the
above functions to dosynchronous messaging within
the kernel, within user space or between the kernel
and user space The memcpy() function is used and
therefore the implementation is not as efficient as one
designed to use shared memory (like the Unix server
example). However, the memcpy() function will
allow to extend the functionality of the QNX like
primitives over the network.

Notice that the pid_t pid's returned by the functions
above have nothing to do with the standard Linux
pid's. Think of them more & handles as they are
managed internally by the implementation. Also, pid's
are encoded in the lower 16 hts only, and therefore
can be differentiated from small negative aror
numbers.

Recdl that natine RTAI names are 6 charaders long
(because they are encoded into 32 hts). The function
rt_ Name_attadh() is meant to be used by kernel task
that do not automaticdly have anative name. In user
space one would use rt_Alias attach() passng a
pointer to anull asthe agument in order to oktain the
pid. The pointer can point at an optional 31 charaaers
long string holding an alias name. Function
rt Name locate() looks for equivalence with both the
native and the dias nameif any.

DIAPM-RTAI Position Paper, Nov 2000

Raw proxies

Raw proxies are red time tasks realy to send a pre-
canned messages (creaed by an owner task) to the
owner task. In pradice the proxy is the task pointer
of a red time proxy agent task sitting there doing
nothing, always ready to send the pre-defined proxy

message.

A red time task or an interrupt handler that knowns
the proxy can use the function rt_trigger() to wakeup
the proxy agent who in turn will send the proxy
messages to the owner of the proxy. The number of
messages that will be sent is equal to the number of
times rt_trigger() will have been cdled. rt_trigger()
does not block. It does not wait for areply.

APl Function Prototypes

pid_t rt_Name_attach (char *native_name);

Registers a native name for the cdling task with
LXRT and returns the pid of the task. Once this cdl
has been made, the task can use the family of
synchronous | PC functions.

Native names can be up to 6 charaders long
excluding the null at the end. Acceptable charaders
are numeric and upper case dphabetic. The alditi onal
charaders '$' and '_' are dso valid. This design
congtraint results from the fad that native names are
encoded into afour bytes unsigned long.

The functionis not available in user space

If native_ name points to a null string, the function
will automaticdly creae a name of the form
"T_XXXX" where XXXX is the hex ASCII
representation of the returned pid. As the pid is
unpredictable, the rt_ Name locate() function is meant
to be used for names agreed upon u front and
registered with rt_Name_attach().

pid_t rt_Alias attach(char *any_name);

The implementation alows the user to register an
alias names that can be up to 32 charaders long
including the null at the end. The rt_Name locate()
function seaches through the list of native names and
also chedks for the dias namesif any.

User space program first use
rt_task_init(nam2num(name), ..) to initialise the red
time agent. In so ddng, they supply a native name
automaticdly. The program obtains the pid from the
returned value of the function. If an alias name is not

18

RTSS2000- Red Time Operating Systems Workshop

required the agument should be apointer to a nul
string. The usage of the function is mandatory in user
space

The function returns the pid t if successful.
Otherwise returns an error code:

 EBUSY - name drealy exists.

* EAGAIN - name spaceused up.

« ENOMEM - no memory to fulfill request.
e EINVAL -illega null pointer.

pid_trt_Name_ locate
(conts char *host, const char *name);

Locaes a process that has registered its name with
rt_ Name_attach() or rt_Alias attach(). If host is null
the search is made locdly. If host is not null then a
network seach occurs. If the name is located on
another computer, the initial VC (virtual circuit)
buffer sizewill be egqual to a default size of 512 bytes.
VC buffers grow dynamicdly. Notice that network
communicdions are not yet implemented. The
function returns a processid if successul, otherwise
it returns zero.

int rt_Name_detach(pid_t pid);

Removes the registered name axd deregisters the
process from LXRT. The pid parameter must be the
same & the one returned by rt_Name_attach(). When
a process dies, its name is be detached from the
system and al red time resources creaed by LXRT
will be freed. The function returns zero if successful,
otherwise return an error code.

pid_trt Proxy attach
(pid_t pid, char *data, int nbytes, int priority);

Creaes a cained message of length rbytes pointed to
by data. The proxy will be dtadched to processpid. If
pid is zero, the proxy will be atached to the cdling
process The proxy can be adgned a priority. A
value of -1 defaults to the priority of the cdling
process The proxy ads as a messenger aways realy
to send its message. A proxy can send a zeo hyte
message by setting nbytes to zero. The function
returns a processid on success. On error, the function
returns a negative eror code;

* EAGAIN - no freeprocessentries.
« ENOMEM - not enough memory.
 ESRCH - pid deesnot exist.

intrt_Proxy_detach(pid_t proxy);

DIAPM-RTAI Position Paper, Nov 2000

Releases the proxy previoudy creaed by the cdling
process Returns zero on success Otherwise, the
function returns a negative aror code:

e EPERM - you are not owner of the proxy.
e ESRCH - proxy does not exist.

pid_trt_Trigger(pid_t pid);

Trigger the proxy agent to send a message to the
process which owns the proxy. The cdling process
will not block. If more than one trigger occurs before
the proxy message is receved, that number of
messages will be recaved. The function can be cdled
from an interrupt handler provided it is the last cdl
the handler does. The owner of the proxy can trigger
the proxy to himself. The function returns the process
id of the task who owns the proxy. On error, it returns
anegative aror code:

ESRCH - pid does not exist.
EINVAL - pidisnot aproxy.

pid_trt Receive
(pid_t pid, void *msg, sizet maxsize sizet
*msglen);

Waits for a message from processpid. If pid is zero,
waits for a message or proxy from any process If a
message is waiting, up to maxsize bytes are @mpied
into msg. If a message is not waiting, the processwill
enter the RECEIVE blocked state. Messages are
gueued in priority order. RTAI alows to change this
to FIFO time order by removing the MSG_PRIORD
define in the scheduler source @de. If you spedfy to
receve from a task in particular and that task dies
while you are RECEIVED blocked on it then the
function returns -ESRCH. The number of bytes
transferred will be the minimum of that spedfied by
both sender and recever and will be cpied into
msglen. The maximum number of bytes that can be
transferred is unlimited as the messaging buffers
grow dynamicdly. Recéave changes the state of the
sender from RPC to RETURN blocked. The function
returns the pid of the sender on success, otherwise it
returns a negative eror code;

ESRCH - Processpid dces not exists.

int rt_Send(pid_t pid, void *smsg, void *rmsg, size t
sdze size trsize);

Sends the message pointed to by smsg to the process
identified by pid. Any reply will be placel in the
buffer pointed to by rmsg. The size of the sent
message will be s9ze while the size of the reply will

18

RTSS2000- Red Time Operating Systems Workshop

be truncaed to a maximum of rsize bytes. The
number of bytes transferred will be the minimum of
that spedfied by both the sender and the recaver.
After sending a message, the task will block in the
RPC state waiting for areply. If the recaving process
is RECEIVED blocked and realy to recave a
message, the transfer of data into its address gace
will occur immediately and the recever will be
unblocked and made ready to run. The sending
processwill enter the RETURN blocked state. If the
recever is not realy to receve the message, the
sender enters the RPC blocked state. The transfer will
not occur until the recaver executes a rt_ Receve()
cdl. The function returns the a¢ua number of bytes
receved in the reply message (zero is allowed),
otherwise the function returns a negative eror code:

* EINVAL - message length invalid.
« ENOMEM - insufficient memory to grow buffer.
» ESRCH - processpid dces not exist, or died.

int rt_Reply(pid_t pid, void *msg, size t size);

Replies sze bytes of data to the processidentified by
pid. The number of bytes ®nt will be the minimum
of that spedfied by baoth the replier and the sender.
The data transfer occurs immediately and the replier
does not block. Reply changes the state of the sender
from RETURN blocked to READY. The function
returns zero on success otherwise returns a
negativeeror code:

* EINVAL - messge length invalid.
e ENOMEM - insufficient memory.
e ESRCH - processpid does not exist.

pid_t rt_Creceive(pid_t pid, void* msg, size t size,
RTIME delay);

A non blocking form of rt_Receave(). The function
returns zero if no messages from any pid are avail able
for an immediate transfer when delay is %t to zero.
When delay is non zero, the function will wait up to
delay tics for a message to transfer. The functions
returns either apid if atransfer occurred or zero at the
expiration of the delay.

LXRT queue blocks (gBlk's)

gBlk's are simple structures that contain a pointer to a
function and the time & which the function must be
exeauted. The gBIk's are linked into a list. A family
of functions are provided to manage them.

The functions are of the type:

DIAPM-RTAI Position Paper, Nov 2000

e void (*handler)(void *data, int event)

and therefore the ssimple structures also include the
arguments data and event. The gplicaion may or
may not use aty of the aguments. gBlk's use a
dynamicdly allocated roat structure cdled the tick
gueue. The tick queue is creaed with the
rt_InitTickQueue() function. Any task that will use
gBlk's must initiali ze the tick queue.

The tick queue uses an elementary structure cdled a
QueueHook on which gBlk's are linked to form a
gueue. Queue management functions are provided to
manage queues of gBIK's.

gBlk's are usually managed within the task. When a
gBlk exeautes it is guaranteed that it can manipulate
the task data a@omicdly. A gBlk function is like a
mini-thread that wakes up when the task is blocked
waiting. Scheduling functions are provided to control
how the gBIk's will be executed.

Dynamic gBIlk's

The tick queue @n reference both static and dynamic
gBlk's. Plain RTAI kernel red time task can use both
gtatic and dynamic gBlk's. LXRT soft and hard red
time tasks must use dynamic gBlk's only. gBlk's are
always managed and exeauted in plain RTAI hard
red time context even if the cde of the gBIk function
isin user space

Dynamic gBlk's are one-shot objed. They are
initialized from a pod of free gBlk's and they are
automaticdly returned to the freepadl before they are
exeauted. The only way to get a dynamic gBIk to
repea is to schedule it with the rt_gBlkRepeat()
function. In fact, rt_gBlkWait() forces a single-shot
exeaution and is usually used with static gBIk's.

The function rt_gDynlInit() takes the gBIk from the
free list if one is avalable. Otherwise it cdls
rt_malloc() to creae one. At completion time, the
dynamic gBIk is returned to the freelist which gets
cleaed by cdlingrt_gDynFree().

Plain red time task should not attempt to free the
memory themselves. Rather, they should cadl
rt_qbDynFree(-1) to empty the free list completely.
This minor constraint leaves the posshbility to trade
gBlk's among tick queuesin the future.

gBlk functions can re-enter LXRT

For LXRT soft and hard red time tasks, the gBlk
function can re-enter LXRT as long as the function

20

RTSS2000- Red Time Operating Systems Workshop

type (as defined in struct rt_fun) is not greder than 1.
This constraint will disappea inthe nea future.

Also, while re-entering the task cannot block in the

red time scheduler because the Linux context cannot
resume until the gBIk function completes.

aBlk management functions

void rt_qBIkWait(QBLK *qgblk, RTIME tics);

Insert a gBlk in the Tick queue, after dequeuing it if
need be (if it was arealy queued), to be exeauted
after the given number of ticks have expired.
Spedfying a tick count of O is the norma way of
inserting agBlk after all currently expired gBlk's.

void rt_qBIkRepeat(QBLK *qblk, RTIME tics);

Insert a gBlk in the Tick queue, after dequeuing it if
need be, to be exeauted after the given number of
ticks have epired. After completion, the gBlk is
reinserted in the queue with the same delay if it is not
cancdled or dequeued within the gBIk function itself.
Noticethat atick count of O dces not reped.

void rt_qBlkSoon(QBLK *qgblk);

Insert a gBlk at the head of the Tick Queue after
dequeuing it if neaed be. The gBIk will be executed
before any alrealy expired gBIKk.

void rt_qBlkDequeue(QBLK *qghlk);

Unhook a gBlk from a queue and notify (i.e. exeaute
the QHOOK cancd function) the queue manager. The
gBlk is not released. If the gBlk was not queued this
function does nothing.

void rt_qBlkCancel (QBLK *gblk);

Dequeue if it was hooked, and release agBIk.

gBlk scheduli ng functions

void rt_qL oop(void);

The gplicaion waits for the exeaution of all pending
gBlk's. The function returns when the tick queue is
empty.

void rt_qReceive(void);

The agplicdion recaves messages and/or proxies

from other tasks while excuting pending gBlk's at the
same time.

DIAPM-RTAI Position Paper, Nov 2000

void rt_qStep(void);

The gplicaion neals to manage the synchronisation
itself as other things may be more important than the
pending gBIk's. The return value tells the gplication
if a gBlk is pending or not and if so, when the next
gBlk should be exeauted.

void rt_qSync(void).
The gplicaion was doing something very important
and now needs to execute and release dl expired

gBlk's in the Tick Queue. gBIk's that expire during
this processwill also be completed.

Queue mangement functions

It isalso passhle to creae hooks to which gBIk's can
be linked to be scheduled later on. This feaure @an be
used to implement a bottom half like mechanism to
exeaute lessimportant functions at a more gpropriate
time. gBlk's can be used by a red time interrupt
handler provided it uses the tick queue of a @-
operating red time task.

QHOOK *rt_gHookI nit
(QHOOK **Ink, void (*cancd)(void *, QBLK *),
void *);

Allocae and initidise a QHOOK. Returns zero on
error or returns the pointer and setsthe link Ink if any.

void rt_qHookRelease(QHOOK *ghk);
Release and freethe memory of a QHOOK.
void rt_qBIlkBefore(QBLK *cur, QBLK *nxt);

Insert the qBlk before another gBIk in a queue. If it
was hooked it will first be unhooked.

void rt_qBIkAfter (QBLK *cur, QBLK *prv);

Insert the gBIk after another gBlk in a queue. If it was
hooked it will first be unhooked.

void rt_qBIkAtHea(QBLK *cur, QHOOK *hook);

Insert the gBlk at the head of a queue. If it was
hooked it will first be unhooked.

void rt_qBIkAtTail(QBLK *cur, QHOOK *hook);

Insert the gBIk at tail of a queue. If it was hooked it
will first be unhooked.

21

RTSS2000- Red Time Operating Systems Workshop

QBLK *rt_qBlkUnhook(QBLK *ghlk);

Remove the gBlk from a queue. The gBIk is not
released and the cancd function not cdled.

LXRT Exception Handling

The LXRT module now mounts a handler to ded
with procesor generated exceptions. These
exceptions or traps use the lower 32 vedors of the
IDT. The previous approach was to simply ignore
trap handling. It worked as long as the red time mde
was bug free Often, the dightest mistake would crash
or reboot the wmputer or damage something that
came bad later to make the user's life miserable.

A default trap handler is installed by the schedulers.
The API function rt_set rtai_trap_handler() is
provided to change the default trap handler algorithm
that smply suspends afaulty RTAI red time task.

LXRT implements a more sophisticated trap handler
to ded adequately with exceptions in the following
Cases:

e A soft red timetask is running in user space No
spedal adion taken and the exception is simply
passd to the Linux handler. As explained above,
function do_exit() will cdl
linux_process termination() to delete the agent
task and relesse awy red time resources the
processmay have registered.

* A plain red time task is running. As for the
default handler the task is suspended. We choose
not to delete the task to make it possble for a
module to dump the task structure and its stadk
after the fad.

e The ayent of asoft red timetask isrunning in the
kernel. A service request is pended to send the
signal SIGKILL to the Linux task then the
function Ixrt_suspend() is cdled to stop the
agent. Notice that control never returns to the
trap handler.

A hard red time task isrunning in user space In
this case we cdl function gve bad to_linux()
from the trap handler to return the processto soft
red time and then do_exit(SIGKILL) is cdled to
terminate the process

* A hard red time task is running in the kernel.

Here function Ixrt_suspend() is cdled to return to
the Linux context followed by a

DIAPM-RTAI Position Paper, Nov 2000

give bad_to linux() cdl to come bad to soft
red time mode and finally a do_exit(SIGKILL)
cdl is done to kill the process Function
linux_process termination() completes as
explained above.

* A gspeda case occurs if a gBlk is executing a
user spacefunction. In this caseit is necessary to
reload the locd descriptor of the Linux current
process that was changed by the the
rthal.switch_mem() cdl in function exec func().
After the reload (i.e. a second cdl of function
rthal.switch_mem() with appropriate aguments)
the exception is dedt with similarly to the plain
red time task case described above.

Notice that there is not much that can be done if an
exception like a division by zero occurs in an
interrupt handler. However, that remains true for all
systems.

The CPL (current privilege level) is not chedked if the
exception is generated by the processor. Thus trap
and interrupt descriptors have a DPL (descriptor
privilege level) of zero. The IF (interrupt enabled
flag) flag is not affeded by processor generated
exceptions.

The DPL level of atrap descriptor can be changed to
3 to dlow cdling the trap with the int $n instruction
from user space Notice that there is no error code
pushed on the stack in that case.

A stadk switch occurs if the handler's privilege level
is small er than the CPL of the interrupted procedure.

Page fault exceptions occur all the time in the Linux
context. Usually the user space program needs a
VMA not currently mapped in physicd memory. An
error can ocaur if the kernel tries to accessuser space
memory with abad panter argument. The Linux page
fault handler deds nicdy with that problem as
explained in file eceptiontxt in the kernel
documentation.

The LXRT extendability concept

The origind LXRT used an array of structures
rt fun_entry called rt fun to hold the function
pointers © that one of the system call register
argument could be used to figure out the matrix index
of the function pointer and the number of word long
arguments to passto the function.

The matrix rt_funisloaded in memory as global data
when LXRT is garted by insmod. Some other module

22

RTSS2000- Red Time Operating Systems Workshop

could aso define a similar matrix of rt_fun
structures. Clealy, if LXRT used a pointer to access
the base matrix of rt_fun structures, it would be ale
to access a different matrix using a simple pointer
management indexing scheme.

This is the @ncept behind the RT_LXRT_COM
module. To suppat extendability, LXRT now uses a
matrix of 16 dfferent pointers to arrays of
rt_fun_entry structures cdled rt_fun_ext. The paointer
to LXRT's base matrix is locaed at index 0. Hence,
up to 15 dher modules can use the LXRT system cdl
inteface

The ed result is that RT_COM kernel module
functions like:

e rt_com_setup(...)

e rt_com_set param(...)
e rt_com_read(...)

e rt_com_write(...)

e rt_com_bout free(...)

e rt_com clr_in(...)

e rt_com_clr_out(...)

e rt_com_set mode(...)

e rt_com_rd_modem(...)
e rt_com_wr_modem(...)
e rt_com_error(...)

where implemented easily with a simple header file
and a trivial module & part of the symmetric API
without modyfing LXRT at all. In other words, they
can be used in user space(both soft and hard red time
modes).

RTAI MINI-LXRT Tasklets Support
Module

The MINI_RTAI _LXRT tasklets module that is
explained hereafter adds an interesting new fedure
along the line of a symmetric APl (pioneeed by
DIAPM-RTAI) of al red time services inter-intra
kernel and user spacebath for soft and hard red time.
As a result, you have an even wider spedrum of
development and implementation options, allowing
maximum flexibility with uncompromised
performances. And of course, all LGPL open source

New services: tasklets and timers

The new services provided can be useful when hard
red time tasks, both in kernel and user space do not
need any RTAI scheduler services that could lead to a

DIAPM-RTAI Position Paper, Nov 2000

task block. This critical constraint should be dealy
understood

Such tasks are cdled tasklets and can be of two
kinds:

* Asimpletasklets,
» Timed tasklets (timers).

It must be noted that only timers need to be made
available both in user and kernel space In fad,
simple tasklets in kernel space ae nothing but
standard functions that can be diredly executed by
simply cdling them, so there is no need for any
spedal treament. However, in order to maintain full
usage symmetry, and to continue to alow the
possbility of porting applicaions from one aldress
space to the other, tasklets functions have been
implemented so they can be used in whatever address
space

Note that the Linux kernel offers smilar services.
They are not exadly the same because of the RTAI
symmetricd APl implementation, but the basic idea
behind them isfairly similar.

It should be dea that for such tasks the standard hard
red time tasks available with RTAlI and LXRT
schedulers can be a waist of resources and the
exeadtion of simple, posshbly timed, functions can
often be more than enough.

Examples of such applications are timed pdli ngs and
simple Programmable Logic Controllers (PLC) like
sequencing services. Obvioudly, there ae many other
instances that justify the use of tasklets, either simple
or timed. In general, such an approach can be avery
useful complement in controlling complex machines
and systems, both for basic and suppart services.

The implementation

The MINI-LXRT implementation of timed tasklets
relies on a server suppat task that executes the
related timer functions, either in one-shot or periodic
mode, on the base of their time dealline ad
acordingto their user asigned priority.

As explained above, plain tasklets are just functions
exeauted from kernel space Their exeaution needs
no server and is smply triggered by cdling the user
spedfied tasklet function at due time, either from a
kernel task or interrupt handler in charge of their
exeaution when they are needed.

23

RTSS2000- Red Time Operating Systems Workshop

Once more it is important to recdl that only non
blocking RTAI scheduler services can be used in any
tasklet function. Services that can block must
absolutely be avoided, as they will deallock the
timers srver task, executing task or interrupt handler,
whichever applies, with the result that no ather tasklet
functions will be exeauted.

User and kernel space MINI-LXRT applicaions
should cooperate axd synchronize by using shared
memory.

It has been cdled MINI-LXRT sinceit is a kind o
light hard red time server that can substitute both
RTAI and LXRT, if the constraints explained above
are satisfied. The MINI-LXRT module @an be used in
kernel and user space with any RTAI scheduler.

Its implementation hes been very easy to acamplish,
as it is nothing but what its name implies. LXRT
provided al the needed todls. In fad, it duplicaes a
lot of LXRT so that its final production version will
be fully integrated with it. However, at the moment, it
cannot work with LXRT.

As drealy done for shared memory and LXRT, the
function cdls for Linux processs are inlined in the
file mini_rtai_Ixrt.h. This approach has been
preferred to a library since it is smpler and more
effective. The cdls are short and ssimple so that even
if it is likely that only a few cdls are used for a
typicd process they do not add significantly to the
size of the program.

MINI-LXRT Services

The services made available by the MINI-LXRT
module (functions, maaos and variable names are
self explanatory, see &so example test.c) are:

struct rt_tasklet_struct *rt_tasklet_init(void)

void rt_tasklet_delete(void)

int rt_insert_tasklet(struct rt_tasklet_struct *tasklet,
void (*handler)(unsigned long), unsigned long data,
unsigned long id, int pid)

void rt_remove_tasklet
(struct rt_tasklet_struct *tasklet)

struct rt_tasklet_struct *rt_find_tasklet_by id
(unsigned long id)

void rt_tasklet_exec(struct rt_tasklet_struct *tasklet)

DIAPM-RTAI Position Paper, Nov 2000

struct rt_tasklet_struct *rt_timer_init(void)

void rt_timer_delete(void)

int rt_insert_timer(struct rt_tasklet_struct *timer, int
priority, RTIME firing_time, RTIME period, void
(*handler)(unsigned long), unsigned long data, int
pid)

void rt_remove_timer
(struct rt_tasklet_struct *timer)

void rt_set timer_priority
(struct rt_tasklet_struct *timer, int priority)

voidrt_set timer_firing_time
(struct rt_tasklet_struct *timer, RTIME firing_time)

void rt_set_timer_period
(struct rt_tasklet_struct *timer, RTIME period)

#definert_fast_set_timer_period(timer, period)

intrt_set timer_handler
(struct rt_tasklet_struct *timer, void
(*handler)(unsigned long))

#definert_fast_set timer_handler (timer, handler)

voidrt_set timer_data
(struct rt_tasklet_struct *timer, unsigned long data)

#definert_fast_set timer_data(timer, data)
void rt_tasklets use fpu(int use fpu)
RT_TASK *rt_timers_server(void)

The rt_fast... timer related maaos can be safely used
in kernel space & dternative to their standard
equivalents when the related data and timer structure
addressare avail able.

Remember to aways include the healer file
rtai_timers.h found in the modue diredory. It
defines druct rt tasklet struct and all the tasklet
functions prototypes and maaos.

The functions rt_tasklet_init(), rt_timer_init(),
rt_tasklet_delete() and rt_timer_delete() are meant
to be used in user space only becaise the timer
structure must be dlocaed dynamically in kernel
space They bemme empty maaos in kernel space
where one must all ocate the tasklet structure.

FPU Suppat and aher technicditi es

24

RTSS2000- Red Time Operating Systems Workshop

The timers srver task assumes that timer functions
never use the Floating Point Unit (FPU). Otherwise,
the function rt_tasklets use fpu() should be used to
enable the use of the FPU if it is neaded by any timer
function, bath in kernel and user space The same
appliesto simpletaskletsin user space

In the kernel, the task, or interrupt handler, exeauting
any tasklet must enable the FPU by appropriately
using the fsave and frestore, and cleaing clts (see
rtai.h for the related maaos).

The function rt_timers server() returns the pointer
to the timer server itself. It has been useful during
development and it is maintained as an urdocumented
badk doa fedure. Recdl the basic rule that one
should never doablocking cdl.

The timers srver runs on a 2K stack, which should
be enough to run most timers tasklet functions in
kernel space If one needs a larger stack, one should
either recompile mini_rtai_Ixrt.c after setting the
maao STACK_SIZE in mini_rtai_Ixrt.h to what you
want, or simply load the timers srver module using
"Idmod ./rtai_timers StackSize=<xxxx>", where
<xXxxx>isthe new stack size

In user space the tasklet (or timer function) runs
within the memory of the processowning the handler
function so no problem should arise. Note however
that you must lock all the process memory (and pre-
grow the stack) so that it cannot be swapped aut. So
pre-grow all the memory the process will need, see
mlockall usage in Linux manuals or use the Ixrtlib
function lock_all().

There ae dso many very useful test cases that
demonstrate the use of most services, both in kernel
and user space (see diredory tests and related run
files).

Clealy, this module is a beta release ad there is till
work to be done.

LXRT Unix server

This example introduces the basic frame of a
generalized, per process UNIX server to be used by
hard red time LXRT applications that want to access
Linux 10 services.

Clealy, hard red time tasks are timed by Linux while
using the server. So the garanteeto satisfy hard red
timing constraints vanishes, even if they remain under
control of the LXRT scheduler (i.e. Linux cannot
schedule them diredly). There is a partial loss of

DIAPM-RTAI Position Paper, Nov 2000

efficiency with resped to plain Linux usage. In fad
we do not like such a solution very much and prefer
an application spedfic server. However users who
want to have it simple will find it useful, espeaally
during development.

How does it work?

The module shows the power of remote procedure
cdl as a unified inter tasks communicaion and
synchronization mechanism. There ae two switches
per Linux service request, a standard micro kernel
way of working. The mntext switches and the neal to
copying some data, are responsible for most of the
penalty the user has to pay for using this srver. The
response timeis not so bad anyhow. Those with QNX
experiencewill understand the mncept easily.

The function rt_start_unix_server() cdled before
the switch to hard red time mode forks the program
Junix_server who will ad as an agent to execute the
IO functions in soft red time mode (POSIX with
SCHED_FIFO scheduling). Shared memory is used
to avoid using memcpy() and thus minimize cd
overhead.

All the native 10 cdls are used by the agent and their
return valuesreturned "asis' to thered time task.

The function rt_end_unix_server() cdl instructs the
server to release the shared memory, rt_task delete()
his red time ayent, and exit normally. Any open files
are not closed automaticaly before exiting for now.

Once more if you neal faster response time use your
own server. Recdl that Linux should not be your
main concern while you are running herd red timein
user space It should be nealed just for some suppart
services to be executed sporadicdy when hard red
time serviceis not requested.

API Functions prototypes

The APl is pretty much standard except for the
function name rt_ prefix to indicate that the cdl can
be made while in hard red time mode. Refer to your
libc6 manua if you reed to understand how the
underlying Unix cdls behave. The following
functions have been implemented so far:

void rt_start_unix_server(void *task, int rt_prio, int
shmsize)

intrt_end_unix_server(void)

25

RTSS2000- Red Time Operating Systems Workshop

int rt_scanf(const char *fmt, ..)

intrt_printf(const char *fmt, ..)

int rt_open(const char *pathname, int flags, mode_t
mode)

int rt_close(int fd)

intrt_write(int fd, void *buf, size t count)

intrt_read(int fd, void *buf, size t count)

int rt_select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout)

off_trt Iseek(int fd, off_t offset, int whence)
int rt_sync(void)

int rt_ioctl(int d, int request, unsigned long argp, int
size)

LXRT liblxrt

Eff orts were made to provide GUI programmers with
the posshility to cary out their work without having
to install copies of the kernel and RTAI source trees.
Many excdlent GUI programmers are not interested
in and/or do not care éout kernel internals. The new
header filertai_Ixrt_user.h allowsto dothat.

There is also the issue that GUI appli cations are often
C++ based: KDE, Qt and QpTreads are packages that
come to mind. File rtai_Ixrt_user.h also makes life
easier for the g++ compiler. A C++ example was
added to the source tree to show how a C++ kernel
module can be written.

Tomasz Motylewski contributed the file touchall.c
that provides the function lock_all(). This function
grows the stadk and locks all the program memory
pages. The usefulness of a library arose from this
contribution as all user space programs that use
LXRT should cdl lock_all() - or at lesst do the
equivalent.

Notice that any exception 14 while in hard red time
mode is interpreted as a program error and the
program terminated by the trap handler. No attempts
were made to map pages while in hard red time
mode. It would have ontradicted basic red time
principles.

The library builds both static and shared oljeds and
thus provides the gplicaion developer with al the

DIAPM-RTAI Position Paper, Nov 2000

flexibility he or she expedd to find in the Linux
environment.

Linux Trace Toolkit

Modern software systems are ever more cmplex.
Systems based on RTAI are no exception. Its red-
time nature and the faa that it takes control of the
Linux kernel make nothing to dminish this
complexity. Hence, understanding the dynamic
behavior of RTAI based systems can be difficult,
even to the best of insiders. The RTAI extensions to
the Linux TraceToolkit take this complexity away by
providing developers with the caability of tradng
and remnstructing dynamic system behavior.

To acomplish this, trace statements are inserted in
the execution path of key system code. Each trace
statement indicaes the event that occurred on the
corresponding path and provides a @ncise
description of the event. When Linux is compiled
with RTAI trace suppat, the arresponding RTAI
tracestatements will generate cdls to the RTAI trace
fadlity. This facility is the primary link between the
instrumented components of RTAI and the trace
driver which takes care of logging the traceal events.
If Linux is compiled without RTAI tracesuppart, the
trace statements are void and result in no cdls at all
(RTAI remains unmodified).

The trace driver's primary role is to bufer event
descriptions into its buffers. To increase flexibility,
the driver's behavior can be modified through the
ioctl() interface Taking care of this configuration and
taking care to commit the data buffered, the trace
daeanon ads as the primary link between the
developer and the trace system. By invoking it with
the alequate parameters, the developer has tota
control on the traceprocess from it's duration to the
events traced and the tracebuffer sizes.

Once the trace process is launched, al spedfied
events are traced and committed to a tracefile. Once
the tradng is complete, this tracefile is then used by
the visuali zation and analysis tool provided with LTT
to reconstruct the system's behavior during the trace
This tod can be used bah as a mmmand-line toal
and as a graphicd todl. In the later form, it provides
the developer with a control-graph view of the system
which enables him to see the different transitions in
control that occurred during the trace ad the reasons
of their occurrence. Furthermore, the tool uses the
information colleded to provide exad statistics about
different components of system performance
Contrary to other means of instrumentation, LTT
makes no approximations and does not rely on

26

RTSS2000- Red Time Operating Systems Workshop

samples. Rather, it provides an exad description of
the system's behavior.

Using the information provided, the developer can
isolate performance bottlenedks, solve
synchronizaion problems and confirm his
understanding of the system's behavior. The
commercial RTOS world is no stranger to such a
cgoability as many RTOS vendors provide such a
cgoability for their products. It is worth noting that
such a trace system was used by the JPL (Jet
Propulsion Laboratory) enginees to find the reason

why the Mars Pathfinder constantly reset and,
consequently, implement a solution. See the link
below for the full story.

LTT is available & the Opersys Home Site (see the
link below) and is distributed under the terms of the
GPL. Apart from and prior to providing RTAI trace
cgoability, LTT was designed to provide trace
cgoability to the Linux kernel. This capability
remains available and is independent of the capability
of tradng RTAI, though both cgpabilities can be
combined.

DIAPM-RTAI Position Paper, Nov 2000

27

RTSS2000- Red Time Operating Systems Workshop

Acknowl!edgements

Acknowledgements to the RTAI developers, listed below in any order, who have @ntributed towards the fast
production of this position paper. It is a pleasure to be part of such a team were -operation and consensus
buil ding are solid foundations for greaer achievements to come.

Lorenzo Dozio (dozio@aero.poli mi.it)

Stuart Hughes (stuarth@lineo.com)

Brendan Knox (brendank @lineo.com)

David Schled (ds@schleef.org)

lan Soanes (ians@lineo.com)

Pierre Cloutier (pcloutier@paseidoncontrols.com)
Paolo Mantegazza (mantegaza@aero.palimi.it), Maintainer
Steve Papacharalambouws (stevep@li neo.com)

Karim Y aghmour (karym@opersys.com)

Trevor Woolven (trevw@lineo.com)

Giuseppe Renol di (grenoldi @usa.net)

Tomasz Motylewski (motyl @stan.chemie.unibas.ch)
Emanuele Blanchi (blanchi @aero.palimi.it)

Speda adknowledgements are in order for DIAPM and Paolo Mantegazzain particular for his dedicaion and
commitment to RTAI. Paolo's innovative concepts like LXRT take root in more than 15 yeas of reseach and
experimental work in the field of PC based control systems.

Finally, adknowledgements are dso in order for the founders of red time under Linux, Victor Y odaiken and Michael
Barabanov.

References and Usefull URL's

» DIAPM-RTAI Home and Download Site,
http://ww. aero.polim.it/projects/rtai

* Red TimeLinux,
http://ww.real tinelinux.org

e Linux TraceToolkit Home and Download Site,
http://ww. opersys. conl LTT

* Red Timeand Embedded HOWTO,
http://ww. nech. kul euven. ac. be/ % Ebr uyni nc/ rt howt o/ i ndex. ht nl

* Reeves, G., "What redly happened on Mars?',
http://research. mcrosoft.com ~nbj/Mars_Pat hfi nder/ Authoritati ve Account. ht

3

SRR -- QNX API compatible message pasgng for Linux.
http://ww. hol oweb. net/~sinpl/srr_samhtm

DIAPM-RTAI Position Paper, Nov 2000 28

