Open Real-Time Linux

Chi-sheng Shih, Jiang Qian, Mangesh Jonnalagadda
Department of Computer Science, University of Illinois, Urbana, IL 61801 USA
{cshih, j-qian, jonnalag} @cs.uiuc.edu
Jane Liu
Microsoft Corporation, Redmond WA 98052, USA
janeliu@microsoft.com
Jia-ru Li
Cisco Systems, Inc., San Jose, CA 95184, USA

juru@cisco.com

Abstract

An open system allows independently developed hard real-time applications to run together with non-
real-time applications and supports their reconfiguration at run-time. The open system always accepts
non-real-time applications, but it never accepts a real-time application that may not be schedulable in
the system. Once a real-time application is accepted, its schedulability is guaranteed regardless of the
behaviors of other applications that execute concurrently in the system.

The paper describes the design and implementation of an open system in Linux and evaluates its
performance. The implementation consists of three key components: a two-level kernel scheduler, a
common system service provider, and real-time application programming interface (RTAPI). In Open
real-time Linux, real-time applications can use existing Linux system resources and services, and there
is no need to suspend the kernel in order to switch between real-time and non-real-time mode. The
performance evaluation of Open Real-time Linux shows that its overhead of context switching outperforms

any other available real-time linux system.

1 Introduction

The tremendous recent advances in hardware tech-
nologies have made it possible to run real-time ap-
plications with critical and stringent timing require-
ments on general purpose workstations and personal
computers concurrently with non-real-time applica-
tions. This paper describes the implementation and
the performance of a uniprocessor operating system
that provides an open system environment to multi-
threaded real-time applications. The term open sys-
tem has been used to mean many different things.
Here, we focus on the timing aspect. In effect, an
open environment provides each real-time applica-
tion with a slower virtual processor, isolating it from
resource contention by other applications in the sys-
tem. Consequently, the developer of each real-time
application that is to run in an open system can
choose to schedule the application according to an al-
gorithm best suited to the application. The fact that
the application can meet its real-time requirements

can be validated independently of other applications.

Upon receiving a request to start a new real-time
application, the open system subjects the applica-
tion to a simple but accurate test that uses only a
few black box parameters (e.g., required processor
bandwidth and shortest relative deadline) of the ap-
plication. The system accepts the application only
if the application passes the test. Once the system
accepts a real-time application, it schedules the ap-
plication according to the algorithm chosen by appli-
cation developer and guarantees the schedulability
of the application (i.e., the application meets all its
real-time requirements) regardless of the behaviors
of other applications. In contrast, the schedulabil-
ity of an application running on an existing operat-
ing system can be determined only by examining the
timing attributes of every task in every application
in the system. As a result, the system is closed to
independently developed applications whose detailed
timing attributes and resource usages are unknown.

The architecture of the open system described here

was developed by Deng, et al. [1, 2]. The system is
implemented by extending Linux. Like the Windows
NT version implemented by Deng et al., the open
real-time Linux extension also consists of three key
components:

1. a two-level kernel scheduler and an admission
mechanism, which provide timing isolation and
real-time performance guarantee;

2. a prototype of service providers that deliver
common system services (e.g., file server, net-
work protocol stack handler); and

3. a set of real-time application programming in-
terface(RTAPI) functions with which real-time
applications specify their real-time attributes
and communicate with service providers.

This paper describes the Linux extension that makes
the operating system open. A performance evalu-
ation study was done to determine the increase in
scheduling overhead introduced by the extension and
the performance of a communication server when
used to support a real-time CORBA application. We
present the performance data here.

Following this introduction, Section 2 discusses re-
lated works on real-time enhancements of Linux.
Section 3 presents an overview of the open real-
time system architecture, including the hierarchical
scheduling scheme and system service providers. Sec-
tion 4 describes the implementation of the open real-
time Linux extension that we will call ORiS Linux|[3]
for short hereafter. Section 5 gives RTAPI func-
tions and a real-time application example. Section
6 presents the results of our performance evaluation.
Section 7 concludes the paper.

2 Related Works

There have been several projects that aim at enhanc-
ing the real-time capability of Linux. Examples are
Real-Time and Embedded (RED) Linux, Real-Time
Linux (RT-Linux) and Kansas University Real-Time
(KURT) Linux. RED [4] provides a framework to in-
tegrate three scheduling paradigms (i.e., time driven,
priority driven, and share driven) within a system.
Like ORiS Linux, RED also uses a two-level sched-
uler. Although RED’s two-level scheduler provides
scheduling flexibility to fulfill different real-time re-
quirements of different applications within a system,
it does not provide timing isolation among applica-
tions. By our definition RED Linux is closed.

Real-Time Linux(RT-Linux)[5] is the first effort to
support hard real-time in Linux. RT-Linux imple-
ments its own real-time kernel underneath the origi-
nal Linux kernel. Non-real-time tasks are scheduled

by the original Linux kernel, and real-time tasks are
scheduled by the real-time kernel. RT-Linux works
as the original Linux system when there is no real-
time task. Once there is any real-time task in the sys-
tem, the real-time kernel suspends the original Linux
kernel, and hence all non-real-time tasks, to execute
the real-time task. RT-Linux can isolate real-time
tasks from non-real-time tasks, but not real-time
tasks in different real-time applications. The only
communication method between real-time and non-
real-time tasks is pipe, which is inefficient. The most
serious limitation is that real-time tasks cannot use
any Linux kernel service.

KURT [6] provides not only a finer time resolution for
Linux kernel but also different kernel modes to con-
trol the scheduling of system resources for real-time
processes. Depending on the requirements of appli-
cations, the kernel can switch its scheduling mode
among normal mode, mix real-time mode, and fo-
cused real-time mode at run time. When in the
focused real-time mode, the system disables soft-
ware interrupts and thus isolates the interferences
from non-real-time applications. However, KURT
provides limited scheduling support and works best
when real-time applications are scheduled in a clock
driven, cyclic manner.

Our work differs from these existing real-time ex-
tensions. ORIiS Linux focuses on providing timing
guarantees and isolation to complex, multi-threaded
real-time applications, while other real-time exten-
sions deal with the schedulability of each individ-
ual real-time task (or process). The open system al-
lows different applications to be scheduled according
to different scheduling algorithms and uses a simple
but accurate acceptance test for admission control.
Other real-time extensions use one scheduling algo-
rithm to schedule all real-time tasks (or processes)
and either use global schedulability analysis for ad-
mission control or provide no admission control.

3 Open Real-time System

Again, the open (real-time) system described here
intends to provide each real-time application execut-
ing in the system with a virtual slower processor and
thus isolates it from other applications in the sys-
tem. For the sake of discussion here, we normalize
the speeds of all virtual processors with respect to
the speed of the physical processor; the speed of the
physical processor is 1. To develop a real-time ap-
plication, Ay, its developer first chooses a scheduling
algorithm ¥, to schedule jobs (i.e., threads) in Ay.
The schedulability of the application is then analyzed
based on the assumption that the application exe-
cutes alone on a slower processor of speed oy, which

is less than 1. The minimum speed o}, at which A
is schedulable is called its required capacity (In other
words, if the execution time of a real-time job on the
physical processor is e, the execution time used for
the purpose of schedulability analysis is ﬁ) The
required capacity of every real-time application is de-
termined by its developer. We say that the real-time
application Ay, is schedulable in the open system if
all jobs in Ay meet their deadlines when Aj runs
together with other applications in the open system
and the order in which jobs in Ay are executed is
determined by algorithm Y.

Within the open system, the workload consists of
real-time applications, called A;, As, ..., Ay in
Figure 1, and non-real-time applications. The sys-
tem uses a two-level hierarchical scheme to schedule
them. All non-real-time applications are executed by
the server Sy, while jobs of each real-time application
Ay, are executed by server Sy for k > 1. The lower
level scheduler, called the OS scheduler, maintains
and schedules all the servers in the system.

Non-Real-Time Applications Real-Time Applications

AL Az Av
e e F

O Oeee ™ U
N\ 7 | }

Bk o J=1t

Passive Server

OS Scheduler
(EDF)

Open Real-Time Linux

FIGURE 1: Open Real-Time System

Each server has a scheduler. The server scheduler
maintains a ready queue, which contains the ready
jobs of the application(s) executed by the server.
When a server is scheduled by the OS scheduler,
it executes the job at the head of its ready queue.
Specifically, the server scheduler of Sy schedules all
the jobs in Ay based on the scheduling algorithm ¥y,
of the application. The server scheduler of Sy sched-
ules jobs in all non-real-time applications according
to the time-sharing algorithm. (In ORiS Linux, the
original Linux scheduler is the server scheduler of
So-) As Figure 1 shows, all the servers, server sched-
ulers and the OS scheduler are in the kernel. Details
on the principles of the two-level scheduler, the inter-
actions between the OS scheduler and server sched-
ulers, and the criterion used for admission test can
be found in [2].

System services for network and file access are pro-
vided by system service providers, or simply service
providers. Each service provider is implemented as

a user level application and executes on a passive
server. Unlike a server that executes an application
whose size is at least equal to the required capacity
of the application, passive server has a very small
size, and its budget is replenished periodically. The
server uses its budget only for administrative pur-
poses. The processor time required by the service
provider to perform any service is charged to the ap-
plication requesting the service. This idea is bor-
rowed from processor reserve concept by Mercer, et
al. [7].

OO0 00
OO 000
Ready Job Queue

Client Application [| System Service Provide!
Ak Ssi

Suspend Job Queue

-

Passive Server
PS
0s
Scheduler
Open Real-time Linux

FIGURE 2:

Ready Queue
(EDF)

System Service Provider

Figure 2 gives an overview of the interaction among
a system service provider (SSP), its passive server
PS and a real-time client application Aj. The ap-
plication requests for a service by sending the ser-
vice provider a request that is accompanied by a
budget and a deadline for consuming the budget.
In response to the request, the service provider cre-
ates a job Jj, called work job, to handle the request.
Among the parameters of a work job are its budget
and deadline, which are equal to the respective values
given by the request. The job is inserted in the ready
queue of the passive server PS on the EDF basis ac-
cording to its deadline. The budget and deadline of
the passive server are equal to these parameters of
the work job at the head of the queue.

4 Implementation

We implemented the ORiS Linux by extending the
Linux 2.0.36 kernel. In this implementation, the
attributes of each real-time application are stored
in a KSERVER data structure and a RTtask data
structure. The KSERVER declares the scheduling al-
gorithm, required capacity, and other attributes of
the real-time application. Each real-time application
consists of one or more (periodic) real-time tasks.
The attributes of each real-time task are specified by
its RTtask data structure. (When there is no source

of confusion, we call a real-time application a RTtask
hereafter.)

A RTtask in turn consists of one or more periodic
real-time jobs. A periodic job is a task in the Linux
kernel; the task is released to execute periodically.
The run-time state of a periodic job is maintained
by -TASK_RTEXT data structure.

There is no need to keep track of the individual tasks
in non-real-time applications since the open system
does not provide time isolation to non-real-time ap-
plications. These tasks are normal Linux tasks, and
they are referred to as non-real-time tasks below. In
the remainder of this section, we first describe new
and modified data structures in the extension that
implement the ORiS Linux. We then describe the
modification of the kernel scheduler to support the
hierarchical scheduling scheme mentioned earlier and
the implementation of real-time task scheduling, task
release, and system service providers.

4.1 Data Structures

Data structures used in ORiS Linux can be classified
into three categories: data structures for OS sched-
uler, application server, and real-time tasks.

OS Scheduler. The OS scheduler is implemented
as a server. The ready queue of the server main-
tains the run-time state of OS scheduler. The queue
is defined by the data structure ReadyServerQueue.
ReadyServerQueue contains a pointer to KSERVER of
each eligible server (i.e., a server whose budget is not
zero and its ready queue is not empty). Servers in
the OS ready queue are prioritized in the order of
their deadlines.

ReadyServerQueue is initialized with the non-real-
time server, SO (called Sy earlier), when the system
boots. SO is a total bandwidth server [8]. The server
always stays in ReadyServerQueue since we view idle
task, whose task id is 0, as a ready task and therefore
the ready queue of SO is never empty and the server
budget is replenished as soon as the budget becomes
zero. In this way, we eliminate the cost of inserting
and removing SO from ReadyServerQueue repeatedly.

Application Server. KSERVER for each appli-
cation server contains server attributes, run-time
states, and several task queues. Server attributes
includes server type, server size, required capacity,
and scheduling algorithm.

In the current version of ORiS Linux, the applica-
tion specifies size and type of the server when it re-
quests a server to be created on its behalf. (In con-
trast, the system computes server’s size and deter-
mines server’s type in the NT version. We will return

shortly to discuss this difference.) The OS scheduler
subjects the request to an acceptance test and cre-
ates a server of the requested size if the acceptance
test passes. The run-time state of a server includes
the server ID, next event time, current scheduled job,
budget, and deadline. Like other schedulers, a server
scheduler for a real-time application maintains sev-
eral queues for tasks executing on a server. These
queues are task list, ready queue, and suspend queue.
A server is destroyed when the last task in its task
list terminates.

Real-Time Extension. To support real-time ap-
plications in ORiS Linux, we modified the run-time
task state data structure, task_struct, and added two
data structures. The new data structures are used to
maintain the attributes of real-time tasks and jobs;
they are called RTtask and _-TASK_RTEXT.

In Linux kernel, data structure task_struct declared
in include/linux/sched.h keeps the task state informa-
tion, including task priority, user id, and timer list.
Three variables are added to augment this structure;
they maintain the task state information for real-
time jobs.

struct task_struct{
/*Original task structure definition*/

/*Real-time task structure definition starts*/
struct " TASK_RTEXT *TaskRTExt;
struct task_struct ¥*RTnext_task, *RTprev_task;

}

Variable TaskRTExt is a pointer to the real-time
extension data structure of a real-time job. RT-
next_task and RTprev_task are used to maintain a list
of real-time jobs executed by a server. These three
variables are NULL for non-real-time tasks.

As discussed earlier, RTtask is a data structure used
to keep the attributes of a real-time task. Within RT-
task, we declare variables for task’s id, period (i.e.,
the length of the time interval between the releases of
consecutive jobs of the task), relative deadline (i.e.,
the maximum allowed response time of jobs in the
task), release phase (i.e., the release time of the first
job in the task), etc.

typedef struct _-KRTTASK{
LARGE_INTEGER id;
/* LARGE_INTEGER is defined as an
unsigned long integer.*/
period;
relativeDeadline;
executionTime;

LARGE_INTEGER
LARGE_INTEGER
LARGE_INTEGER

}RTtask;

Similar to real time task extension, real-time job ex-
tension TASK_RTEXT keeps track of the state of each
real-time job. The variables in this data structure
provide values of the job’s remaining execution time,
release time, deadline, pointer to its server, and so
on. Part of the data structure declaration is shown
below.

typedef struct _.TASK_LRTEXT{

LARGE_INTEGER priority;
LARGE_INTEGER releaseTime;
LARGE_INTEGER remainingExecTime;
LARGE_INTEGER deadline;
}TASK_RTEXT;
pid:0 ... pid:155 id:157
Y A I BT B
previ:}ask E p:;evila:ask
task_struct : ! e : ' I H Non-real-time task lis
"""""" i T T T T T T T T T T T TRealtime task st
Server: $ id:154 f E
D RTnext_tagk : ;
RTprev_tas| é é
Server: $ pid:lE‘;S pid215v8
RTnext_task
RTprev_task
TASK_RTEXT TASK_RTEXT. TASK_RTEXT
RTtask
FIGURE 3: Task list for non-real-time and

real-time tasks

Figure 3 gives an example to illustrate the task lists
maintained by the system. In the upper portion,
we show the task list of non-real-time tasks. This
double-linked list starts with idle task with pid O
and contains all non-real-time tasks in the system.
This is the task list maintained by the original Linux
kernel. We therefore call it Linux task list. In this
example, there are two real-time servers, S; and S
(i-e., two real-time applications.) There is one RT-
task within server S; and two RTtasks within server
So. Fach RTtask has only one real-time job. Dashed
rectangles in this figure represent the task_structs of
real-time jobs. When a real-time application creates
a real-time job by calling system call RT_add_job(), a
RTAPI function which we will describe later in this

section, its task_struct is removed from the Linux task
list and appended to the task list of the server of
the calling real-time application. As a consequence,
real-time jobs will not be scheduled by the Linux
scheduler, Sy. Task list of each server is linked by
RTnext_task and RTprev_task pointers instead. Al-
though task_struct of real-time jobs have been re-
moved from the task list of Sy, array task[] keeping
the pointers to all tasks in the system still keeps the
pointer to real-time jobs. Therefore, the real-time
jobs are visible via ps command.

We use two data structures, TASK_RTEXT and RT-
task, to keep track of real-time attributes of each task
L. The reason is the relative deadline of the job may
be greater than task’s period. If this is the case, we
can have more than one real-time job for the real-
time task at the run time.

4.2 Two-Level Scheduler

Like other desktop operating systems, Linux uses
a time sharing scheduler to schedule tasks. This
scheduler is implemented by function scheduler() in
linux/kernel/sched.c. Function scheduler() takes three
steps to schedule a task in the way shown in Figure
4. Linux kernel calls function scheduler() to find the
next task when the current executing task completes
or is blocked or a clock interrupt occurs. When func-
tion scheduler() starts, it first checks the interrupt
queue to see if there is any queued interrupt and ex-
ecutes the interrupt service routine if there is any.
The second step finds the next ready task to execute
by comparing the remaining quota? of each task on
the task list. The third step does the context switch
if the next ready task is not the current task.

Schedul e()

Original Linux ORIS Linux

Step 1:

Check the interrupt queue Check the interrupt queue

Step 2:

Pick the next ready server

Step 1: }

If SO is the next ready server

_________________________ - Step 2-1:
X Pick up the next
Step 2: SO0's server scheduler non-real-time task

Pick up the next task

Else
Step 2-2:
Pick up the next
real-time task

1

Step 3: }

Step 3:

Context switch if required Context switch if required

IThe current implementation assumes that the relative deadline is no greater than the task period.
2Linux kernel gives each task 1000 unit of clock tick when a task starts. The quota decreases by 1 for each clock tick when

the task executes.

FIGURE 4: Schedule() function in original

Linuz and ORiS Linuz
In ORIiS Linux, the first and third step are un-
changed. Within the second step of OS scheduler,
the scheduler finds the next ready server from the
ready server queue first. The server scheduler of the
next ready server is then called to find the next ready
task. If the next ready server is Sy, the second step
of the original Linux is used to find the next ready
non-real-time task. Otherwise, if the server is a real-
time server, the scheduler of the server is called.

Two level scheduler

asmlinkage void schedule(void) {
/* Step 1: Check interrupt queue */

/* Step 2: Find the next ready server */
nextSer = RTGetHighPriorityServer();
/* Pick the next server*/

if (nextSer == S0)
then /* Schedule non-real-time tasks*/
/* Step 2 of original schedule(): find the */
/* next task to run */

else /* Schedule real-time tasks*/
next = nextSer->getNextJob(nextSer);

/* Step 3: Context Switch */

}

FIGURE 5: Two Level Scheduler

The modification of function schedule() is shown in
Figure 5. After the first step, the OS scheduler finds
the next ready server by calling function RT GetHigh-
PriorityServer(). RTGetHighPriorityServer() returns
the highest priority server in the ready server queue,
ReadyServerQueue. Since EDF policy is used, the
highest priority server is the server with earliest
deadline. If the next server is the non-real-time
server, SO, the second step of original Linux sched-
uler is executed. Otherwise, real-time server sched-
uler, getNextJob(), is called to find the next ready
real-time job from its ready queue.

Within real-time server, KSERVER, function pointer
variables getNextJob and extractNextJob point to the
functions to find and remove the next ready real-time
job from server’s ready queue. When the system cre-
ates the server, it assigns these two functions accord-
ing to server’s scheduling algorithm. For instance,
the function to find the next ready task for Rate
Monotonic algorithm[9] is implemented as function
getNextRMJob() in linux/kernel/rm.c. Suppose that
jobs executed by a real-time server S1 are scheduled
according to the Rate Monotonic algorithm. The
function pointer variable is set by using

S1->getNextJob = getNextRMJob.

Whenever function S1->getNextJob() is called, func-
tion getNextRMJob executes instead. Thus we elimi-
nate the time spent to check to the type of scheduling

3Tick size is 1 millisecond on Alpha platform

algorithm of each server to call different scheduling
function.

4.3 Real-time task Scheduling

Specifically, the scheduler for each server is imple-
mented by two functions, getNextJob and extractNex-
tJob. getNextJob finds the next ready job on server’s
ready queue, returns the pointer of the job’s task
structure, and leaves the job on the ready queue.
Function extractNextJob is only called when the job
completes. The function not only returns the pointer
but also removes the job from the ready queue. The
extractNextJob function then appends the newly re-
moved job to the suspend queue of the server if the
job is to be released later to run again (i.e., there are
more instances to run.) Otherwise, it removes the
job from the system.

For a rate monotonic server (i.e., a server whose
scheduler uses the rate-monotonic algorithm) and
other fixed priority servers, 256 FIFO queues with
distinct priority are used to store the ready tasks.
Priority of each real-time job is mapped to one of 256
priorities by constant ratio mapping[10]. The mini-
mum and maximum rate for rate monotonic schedul-
ing is given in linux/include/linux/rm.h by MinRate
and MaxRate respectively. Function getNextRMJob,
which is the getNextJob function for rate monotonic
server, uses a bit string to keep track of the back-
logged queues. The job at the head of the highest
priority queue is then chosen as the next ready job.

4.4 Task Release

Real-time jobs are released by timers. After a real-
time task is moved to the task list of the server that
will execute it, the function RT_Start_job() sets the
timer to release the job of the task according to the
phase of the task. Subsequently, the timer callback
function RT_job_timeout(), which is implemented in
linux/arch/i386/process.c, sets the timer to release
latter jobs in the task periodically.

Since Linux kernel only checks its timer list at clock
ticks which are 10 milliseconds apart on x86 plat-
form®, the timer callback function may not be in-
voked precisely at its expiration time unless the re-
lease time coincides with a clock tick. The inaccuracy
of the timing of timer callback invocation affects both
the acceptance test of real-time applications and the
implementation of the two-level kernel scheduler. As
for the acceptance test, tick size (i.e., the period of
clock ticks) is treated as an extra blocking time. Sim-
ilarly, the two-level scheduler is implemented as a

tick scheduler: new threads are added to the sched-
uler’s ready queue and preemption can occur only at
each tick time. As a result, when a job is released,
it can be blocked for as much as the duration of the
tick size. The OS scheduler must give the real-time
application a larger server size than its required ca-
pacity in order to mask the effect of this blocking[2].
This results in a lower processor utilization.

Also, we had to take special care in implementing the
two-level scheduler to correctly handle the job releas-
ing and server deadline expiration. If a job is released
in the same tick interval as the the deadline of the
server executing the job, we must make sure that
the job’s release timer callback function is invoked
before the deadline expiration timer callback func-
tion. Otherwise, if the deadline expiration callback
function were executed first, the OS scheduler would
replenish the server before new job is inserted in the
server ready queue. As a consequence, the amount of
budget replenished would likely be wrong, moreover,
a wrong job might be executed by the server.

In Linux kernel, if two or more timers expire within
same tick interval, the later its expiration time, the
earlier its timer callback function is invoked. To en-
sure the correct invocation order of the timer, we
always adjust the expiration time of each job release
timer towards the end of its expiring tick interval,
and the expiration time of each server deadline timer
towards the beginning of its expiring tick interval.
For the same reason, when a job release timer call-
back function is invoked, we need to find if there
are other job release timers of the same server also
expiring in that tick interval. The OS scheduler re-
plenishes the budget for the server only in the last
job release timer callback function invoked for the
tick interval.

4.5 System Service Providers

Again, system service providers(SSP) in the open
system are user-level applications executing by a pas-
sive server. A communication server is implemented
in the ORIiS Linux. In the current version, the ar-
chitecture of SSP is as described in Section 3.2. (We
will show latter in Section 6.2 that this architecture
introduces overheads in creating jobs and redundant
initialization for each resource request. A new archi-
tecture that keeps these overheads small is proposed
in that section.)

The interaction between a client(a real-time job)
and the communication server is shown in Figure
6. Specifically, two function calls, mesg_recv and
mesg._send, are provided for sending and receiving
data via TCP. Real-time client jobs and the admin-
istrative jobs of the server communicate via message
queue and share memory. On the communication

server, two administrative jobs, sendWatchingThread
and recvWatchingThread, are created when the com-
munication server starts. These two administrative
jobs listen on the message queue to receive requests
from clients.

Real-time Job Administrative Job Work Job

Transfer budget

Create work job

\“ ~a—— Budget exhauste

r/"

FIGURE 6: Interaction between real-time
job and communication server

Blocked

Blocked

Replenish budget ——

Terminate

Time

When the real-time job sends a request to the com-
munication server, its remaining budget and deadline
associated with the budget are sent along with the
request, and the budget of client’s server is set to 0.
The server and hence the client job are suspended.
Upon receiving the request, the administrative job of
the communication server creates a work job to exe-
cute on the client’s behalf. The budget and deadline
of the passive server used to execute this work job are
set to the remaining budget and deadline passed by
the client. Work job executes till the task completes
or the budget is exhausted. In the latter case, the
budget of the passive server will be replenished at the
budget replenishment time of the client application’s
server so that the execution of the work job can con-
tinue. On the other hand, if the task completes while
the passive still has budget, the remaining budget is
discarded in the current implementation. In other
words, we assume there is no further work after the
request. Often, further work needs to be done af-
ter the work job completes. In the current version,
such a real-time task is split into more than one task.
Further work can be completed by carefully arrang-
ing the release phases of the spilt tasks.

5 Real-time Application Inter-
face and application frame-
work

ORiS Linux provides a set of application interface

for real-time applications. This section describes the

application interface functions and gives an example
of real-time applications.

5.1 Real-time Application Interface

A real-time application uses RT _init_server(KSERVER
*server) to request admission, that is, to execute as
a real-time application. In the current version, the
argument server declares the required capacity of
the application, the scheduling algorithm and server
type. When called by this function, the OS scheduler
to carry out an acceptance test. The current version
of ORIiS Linux supports only periodic tasks without
release time jitter and without nonpreemptable sec-
tion. Under this restriction, the server size needed
to guarantee schedulability is equal to the required
capacity of the applications. The acceptance test
simply checks whether 1 minus the total size of all
existing servers is no smaller than the required ca-
pacity. If the application passes the test, the system
creates a server and returns the id of the server.
Otherwise, “-1” is returned to reject the request.
As mentioned earlier, server size and server type are
determined by the system in the NT version. This
is necessary because that version also supports real-
time applications that may content for global re-
sources and hence may have nonpreemptable section.
When some parts of real-time jobs are nonpreempt-
able, the server size required to ensure the schedula-
bility of each real-time application also depends on
the maximum execution time of nonpreemptable sec-
tions of other real-time applications in the system.
The maximum execution time of all nonpreemptable
sections (i.e., the length of time any real-time job
is allowed to be nonpreemptable) is also a parame-
ter provided by each application when it requests to
execute as a real-time application.

The function RT_add_job(void (*fn)(void *), void
*data , RTtask *rttask) is called to add a task to
the task list of a server. Task’s attribute is speci-
fied in rttask. Specifically, rttask gives the ID of the
server, which is returned by the system after the ap-
plication containing this ask passed its acceptance
test. The period, maximum execution time, ready
time, relative deadline, and number of instances of
the real-time task are declared there. The function
pointer *fn() points to the function executed by the
real-time job.

RT _clone() is called by function RT_add_job() to clone
the task that executes a real-time job. ORiS Linux
also subjects each real-time task to an acceptance
test, and thus, independently validates that the task
is indeed schedulable on a virtual slower proces-
sor of speed equal to the server size. Acceptance
test is done according server’s reserved capacity and
scheduling algorithm, as well as task’s instantaneous
utilization. When called, RT_clone first carries out
an acceptance test. In order to create the task for
a real-time job, RT_clone() not only calls do_fork()

to create the new task but also initializes real-time
extension data structures. After calling do_fork(),
the parent task removes the child task from system’s
ready queue to prevent the child task being sched-
uled by non-real-time scheduler and puts the child
task into server’s suspend queue.

The function RT_start_job(int Serld) is called to start
the real-time applications on real-time server Serld.
RT start_job() is asynchronous.

At the end of each instance of real-time job,
RT_rewind() is called to determine whether the sys-
tem should release another instance of the real-time
job. If the current real-time job is not the last in-
stance of the real-time task or the real-time task has
infinite instances, kernel sets a timer at the next re-
lease time.

5.2 Real-time Application Example

Figure 7 shows an example of real-time application.
The required capacity is one half. This application
consists of one or more task and is scheduled by the
rate monotonic algorithm.

Real-Time Application Example

main()

int Serld:
TASK_RTEXT rtext;
KRTTASK tmp, tmp2;
KSERVER *server;

// Allocate memory for server and RTtask
/* Setup Real-time Application Server */
server->type = ConstantUtilizationServer;
server->algorithm = RateMonotonic;
server->size = 5000;
/* Acceptance Test */
Serld = RT_init_server((KSERVER *) server);
if (Serld == -1){
fprintf(stderr, " RT_init_server() fails");
return;

}

memset(RTtask, 0, sizeof(KRTTASK));
RTtask->id = Serld;

RTtask->period = 4;
RTtask->executionTime = 2;

/* Declare Real-time Application Task */

/* Assign Server ID */
/* Period length ticks) */

/* Maximum Execution Time */
RTtask->readyTime = 10;
/* Real-time task’s ready time*/
RTtask->relativeDeadline = 4;
/* Must less or equal than period*/
/* Number of instance.*/
/* Create a real-time job */

RTtask->totallnstance = 256;

ret = RT_add_job(Real TimeJobFunction_1,
(void *) NULL, (PKRTTASK)(RTtask));

/* Create other real-time tasks */
/* Start Real-time application */
ret = RT _start_job(Serld);

}

/* Declare the job content of real-time task */
void RealTimeJobFunction_1(void *data){
int ret;
for (::)
/* Do whatever you want here */
ret= RT_rewind():
if (Iret) break;

}

/* Declare the job content of other real-time tasks */

/* Check next release */

FIGURE 7: Real-time Application Ezam-
ple
After a constant utilization server with size 5000 (i.e.,

%) and the rate monotonic algorithm are set for the
server, the attributes of the first real-time task are

specified in the declaration of the RTtask structure
of the task. In this example, it is a periodic task
whose period is 40 milliseconds, i.e. 4 ticks, and
whose maximum execution time is 20 milliseconds.
Its relative deadline is 40 milliseconds. The task has
256 instances. (When Totallnstance is 0, the real-
time task will execute till the task is terminated us-
ing kill command.) The function RT_Add_job is then
called to specify the starting address of a real-time
task and create real-time task’s data structure RT-
task. Each instance of the first real-time task exe-
cutes the function Real TimeJobFunction_1() function.
The function RT_Add_job can be called more than
once to add other real-time tasks into a real-time
application server. By giving the id of the real-time
application server, function RT start_job() starts the
real-time application.

RealTimeJobFunction_1 defines the work of the real-
time job in the first task. Real-time job is encapsu-
lated by an infinite loop. At the end of each instance
of real-time job, function RT_rewind() is called to de-
termine if there is any more instance to run. False
value of RT_rewind() indicates the end of the real-
time task and terminates the loop.

6 Performance Evaluation

We conducted a two-part study to evaluate the per-
formance of ORiS Linux. In the first part, we inves-
tigated the scheduling overhead of ORiS Linux and
compared it with that of the original Linux. By the
original Linux we mean RedHat Linux version 5.2
with 2.0.36 kernel. In the second part, we evaluated
the performance of a real-time CORBA application
on ORIS Linux. The performance measure used for
this purpose is completion rate, which is the ratio of
tasks meeting deadlines to total number of tasks.

A Pentium IT 266 PC with 64 MB RAM and 8 GB
disk driver was used for the first part of our evalu-
ation. Another PC equipped with Pentium Pro 200
processor and 64 MB RAM was used as a server in
the second part.

6.1 Scheduling Overhead

Our modification of the Linux task scheduler intro-
duces extra (scheduling) overhead. In particular, the
ORIiS Linux’s task scheduler checks the head of the
ready server queue for the next ready server no mat-
ter whether there is any real-time application or not.
If the next ready server is SO, the server for non-real-
time applications, the original Linux’s time sharing
scheduler is called. To determine the extra overhead
thus introduced, we compared the overhead of orig-
inal Linux’s task scheduler with that of the ORiS

Linux’s task scheduler. We measured the overhead
by the length of time required by step 2 in Figure
4, the step in which Linux and ORiS Linux operates
differently. Step 2 of function schedule() checks the
remaining quota of all tasks in the task list and picks
up the task with maximum remaining quota. There-
fore, the length of the task list affects the overhead
of step 2. In order to eliminate the impact of the
length of task list, we measured the overhead when
the system starts. Therefore, we can have the same
workload and can keep the task list as short as pos-
sible.

The distribution of this overhead is shown in Figure
8. We can see that the peak of overhead distribu-
tion moves from 0.2 microseconds to 0.4 microsec-
onds. Specifically, the extra overheads introduced
by ORiS Linux are approximately 0.2 microseconds.
The length of time the ORiS Linux’s task scheduler
takes to complete Step 2 is approximately time as
long as the time taken by the original Linux’s task
scheduler. However, task scheduling only happens
at every tick or when rescheduling is required. Com-
paring to the tick size, 10 milliseconds in Linux, 0.2
microseconds is small.

Scheduling Overhead for non-real-time tasks
45 T

briginal Lindx —
Open Linux &
40 g

35 1
30 | i 1

25 { 1

Percentage

15 1

10 H i
]

5 1Y =]]
,D o “ [
D mon bl N
0 0.5 1 15 2 25 3

Time(microsec)

FIGURE 8: Scheduling Overhead for non-
real-time tasks

Comparing to the scheduling overhead of non-real-
time tasks, the overhead of scheduling real-time tasks
is much larger. Original Linux’s scheduler finds the
next ready task and does the context switch. By
scanning the task list, original Linux picks up the
task with maximum remaining quota as the next
task. On the other hand, the scheduler of a real-time
server needs to find the next ready job from a set of
queues instead of one queue or list. Once the highest
priority queue is founded, the scheduler picks up the
job at the head of the queue and maintains the queue
in the correct order. For instance, the scheduler of a

server using the rate monotonic algorithm needs to
find the highest priority queue among the 256 FIFO
queues. This overhead occurs when the next ready
server is a real-time server only.

Scheduling Overhead for real-time tasks
12

dpen Linux‘ —

10 B

Percentage
(2]
T
1

O Il Il Il Il Il Il A
0 5 10 15 20 25 30 35
Time(microsec)
FIGURE 9: Scheduling Overhead for real-
time tasks

The evaluation result is shown in Figure 9. In this
evaluation, we executed a real-time task whose pe-
riod is 20 milliseconds and execution time is 10 mil-
liseconds. 3000 instances of this real-time task are
executed. We can see that most of overhead falls
into the range from 15 microseconds to 30 microsec-
onds. Comparing to other Linux real-time exten-
sions, ORIiS Linux has the smallest overhead. (For
example, the scheduling overhead introducing by
RED is around 1,700 microseconds when the tasks
execute on a Pentium IT 400 machine[4].)

6.2 Performance of System service
provider

A communication server that provides TCP connec-
tions is implemented in the current version. To inves-
tigate the performance of the communication server,
a real-time CORBA application was used to see if
ORIS Linux can finish jobs on time when the jobs
access the network.

The application contains a real-time client task and a
server task. The client task has periodic jobs that are
released for every 20 milliseconds and each job sends
a message to the server to request data and waits for
the result. The server keeps listening to serve request
messages. The client task executed on one machine
with Pentium IT 266 processor, and the server task
executed on another machine with Pentium Pro 200
processor. The required capacity for the client task
is one half, i.e., it executes 10 milliseconds for each 20

millisecond period. (Again, we assume the relative
deadline is equal to its period.) ORBacus[11] and
TAO[12] were used as the non-real-time and real-
time ORB respectively. The client tasks on ORiS
Linux were implemented with ORBacus and those
on the original Linux were implemented with ORBa-
cus and TAO.

We investigated the completion rate under various
environments. The completion rate is defined as the
ratio of the number of tasks finishing on time to the
total number of tasks. Specifically, the scheduling
framework with 100% completion rate finishes all
jobs on time. To investigate the completion rate un-
der different system workload, a periodic task enforc-
ing workload is used to consume computation band-
width. This periodic task provides 10%, 20%, 30%,
40%, and 45% workload. The result is shown in Fig-
ure 10.

Completation Rate for CORBA applications

Open Linux + ORBa‘cus —
LINUX + ORBacus ---x---
LINUX + TAO/ACE ------
LINUX + TAO/ACE With early preemption &
100 & % : : .
. sof Tk E
IS \)
g
I
24 ,
c \ i
S 60 | L e
8 \ \
o
Q
£ \)
o \ X‘
© 40} Ly 1
\ -
20 k. 1
S
0 Il Il Il Il x
50 60 70 80 920 100
System Workload
FIGURE 10: Completion Rate Compari-

son for CORBA Applications

The minimum system workload shown in Figure 10
is 50%. This 50% workload comes from the CORBA
periodic task that executes 10 milliseconds for each
20 millisecond period. ;From Figure 10, we can
see clearly that the CORBA periodic task on ORiS
Linux can always finish on time no matter how heavy
the system workload is. On the other hand, once the
system workload exceeded 70%, it started missing
deadlines when it ran on the original Linux. This re-
sult shows that the system service provider can man-
age the system service well.

During the evaluation, we found that the system ser-
vice provider introduces high overhead. In current
design, the work job sending or receiving data on
behalf of a real-time job is created by the adminis-
trative job of the passive server, not by the real-time
job. Therefore, the work job does not inherit the task
attributes of the real-time job including file handler

table and variables. In such a circumstance, the work
job needs to make a new connection for each call.
This leads to unnecessary initialization cost. The
overhead to create a new task is also unnecessary.
An alternative is to execute the communication task
by the real-time job itself. In this case, we move the
real-time job from its application server to the pas-
sive server. When the communication task finishes,
the real-time job is returned to the original server.
With the reorganization, we can eliminate the cost
of creating a new task and making a new connection
for each transmission.

7 Summary

This paper gives an overview of an open system en-
vironment for real-time applications and describes
its design and implementation in Linux, called ORiS
Linux. To implement ORiS Linux, we replaced the
existing Linux kernel scheduler by a two-level kernel
scheduler, prototyped a system service provider as a
user-level application, and provided a set real-time
application programming interface. ORiS Linux al-
lows independently developed real-time applications
to run on Linux together with non-real-time appli-
cations. The schedulability of each real-time appli-
cation can be determined without global schedula-
bility analysis. Once ORiS Linux admits a real-time
application, it provides the application with timing
guarantees.

References

[1] Z. Deng and Jane W.-S. Liu, “Scheduling real-
time applications in an open environment,” in
Proceedings of Real-Time Systems Symposium,
(San Francisco, California), pp. 308-319, IEEE,
December 1997.

[2] Z. Deng, Jane W. S. Liu, L. Zhang, S. Mouna,
and A. Frei, “An open environment for real
time applications,” Real-time Systems, vol. 16,
pp. 155-185, May 1999.

[3] Real-time Systems Laboratory(RTSL), Depart-
ment of Computer Science, University of

[4]

[5]

[6]

[8]

[10]

[11]

[12]

Nllinois at Urbana-champaign, “ORiS Linux
— An Open Real-Time Scheduling Linux.”
http://pertsserver.cs.uiuc.edu/~cshih/ORIS.

Yu-Chung Wang and Kwei-jay Lin, “Im-
plementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Ker-
nel,” in Proceedings of IEEE Real-Time Systems
Symposium, 1999.

M. Barabanov and V. Yodaiken, “Introducing
Real-Time Unix,” Linuz Journal, Feb. 1997.

B. Srinivasan et al, “A firm real-time system
implementation using commerical off-the shelf
hardware and free software,” in Proceedings of
IEEE Real-Time Technology and Application
Symposium, pp. 112-119, 1998.

C. W. Mercer, S Savage, and H Tokuda,
“Processor capacity reserves: Operating system
support for multimedia applications,” in Pro-
ceedings of the IEEE International Conference
on Multimedia Computing and Systems, IEEE,
May 1994.

M. Spuri and G. Buttazzo, “Scheduling aperi-
odic tasks in dynamic priority systems,” Real-
Time Systems Journal, vol. 10, pp. 179-210,
1996.

C. L. Liu and J. Layland, “Scheduling algo-
rithms for multiprogramming in a hard real-
time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 4661, 1973.

John P. Lehoczky, Lui Sha, and Ye Ding, “The
rate monotonic algorithm: Exact characteriza-
tion and average case behaviour,” in Proceed-
ings of IEEE Real-Time Systems Symposium,
pp. 166-171, IEEE, 1989.

Object Oriented Concepts, Inc., “ORBacus.”
http://www.ooc.com/ob/.

Distributed Object Computing(DOC)
Group, Department of Computer Sci-
ence, Washington University, “TAQ.

http://www.cs.wustl.edu/ schmidt/TAO.html.

