USING REAL-TIME LINUX IN SAFETY-CRITICAL APPLICATIONS

Thomas E. Bihari
AMT Systems Engineering, Inc., 1760 Zollinger Road, Columbus, OH 43221
bihari@amtsys.com

Prabha S. Gopinath
TestQuest, Inc., 7566 Market Place Dr., Eden Prairie, MN 55344
prabha.gopinath@testquest.com

Abstract
Real-time Linux variants are being considered for use in safety-critical applications in medicine, avia-
tion, and other areas. The open-source philosophy has much to offer in these applications, but certifica-
tion concerns impose additional requirements on the verification processes applied to these applica-

tions.
1 Introduction

Linux and its various real-time extensions
(collectively "Real-Time Linux") are argua-
bly among the more reliable software sys-
tems in use today. The open-source phi-
losophy encourages the rapid detection and
correction of software defects, and the rapid
dissemination of the corrected software to
the user community.

Safety-critical application in medicine, avia-
tion, and other areas are increasingly in need
of the capabilities, such as networking and
graphical interfaces, provided by a full-
featured operating system like Real-Time
Linux.

However, adoption of Real-Time Linux for
safety-critical applications is hampered by
the requirements placed on such software by
the agencies that certify these products, for
example the Federal Aviation Administra-
tion and the Food and Drug Administration
in the USA.

2 RTCA/DO-178B guidelines

As an example, consider avionics software.
In the USA, the FAA advocates the use of
the RTCA/DO-178B software development
guidelines by developers of avionics soft-
ware. These guidelines specify processes

and data items (e.g., code, documents) re-
lated to:

e Software Project Planning

e Software Development (requirements,
design, coding, integration)

e Software Verification (review, analysis,
testing)

e Software Configuration Management
Software Quality Assurance

o Liaison with Certification Authorities

The requirements for these processes de-
pends on the failure condition categorization
of the system, and the software's potential
contribution to system failures. DO-178B
defines Software Levels A through E. Level
A is assigned to those systems for which a
failure of the system would likely be catas-
trophic. Level E is assigned to non-safety-
related systems. Most avionics systems fall
into Levels B through D.

While there is some flexibility in the struc-
turing of the data items, DO-178B generally
suggests the following "documents" (among
others):

e A document containing the system re-
quirements.

e A document containing the software
requirements.

e A document containing the software
design.

e The source code modules.

o The executable code module(s).

e A document containing the test cases.

The contents of each of these documents
must be traceable to related points in the
other documents. For example:

e Each software requirement must trace to
one or more system requirements, and
vice versa.

e Each software design point must trace to
one or more software requirements, and
vice versa.

e Each test case must trace to one or more
software requirements, and vice versa.

3 The DO-178B verification proc-
ess, in brief

The FAA certifies entire systems (e.g., a
navigation system), not individual software
subsystems such as an embedded real-time
operating system. Therefore, it is not suffi-
cient to verify a real-time operating system
entirely as an isolated subsystem.

DO-178B places a strong emphasis on veri-
fication. Each data item must be verified via
some combination of reviews, analysis, and
testing. Any change to one data item re-
quires re-verification of that data item and
all other data items that are traceable to/from
it. Data items that are human-readable are
typically verified by review. Executable
code is typically verified by testing. The
higher the software Level (E to A), the more
rigor and independence (i.e., the person de-
veloping the data item cannot verify it) is
required in the verification.

Testing of the executable code has the fol-
lowing objectives:

o The executable code complies with the
software requirements (i.e., the executa-
ble code satisfies each software re-
quirement).

e The executable code is robust with the
software requirements (i.e., the executa-
ble code detects and handles erroneous
situations).

e The executable code is compatible with
the target hardware (e.g., the code runs
fast enough, fits in the available mem-

ory, etc.).

As a verification of the testing itself, the
results of the execution of all tests cases is
analyzed to verify that the tests exercise al/
of the software (structural coverage analy-
sis). The definition of "all" depends on the
software Level.

e For Level A software, each condition of
every decision point must be exercised
independently ("modified condition /
decision coverage").

e For Level B software, each branch of
every decision point must be exercised
("decision coverage").

e For Level C software, every statement
must be exercised ("statement cover-

age").

If some portions of the executable code are
not exercised during testing, they are ana-
lyzed to determine the cause, and then re-
solved. The possibilities are:

e The requirements-based test cases were
incomplete - some requirements were
not adequately tested. In this case, bet-
ter test cases should be developed.

e The requirements were incomplete. In
this case, the requirements should be
enhanced and test cases added to cover
them.

e The code is "dead code" that has no ef-
fect and is not needed. It should be re-
moved.

e The code is "deactivated code" that is
not needed during normal operation but
is useful in other circumstances (e.g., a
hardware jumper may activate it during
bench testing). In this case, analysis and
testing should be used to show that the
code cannot be executed in normal op-
eration.

4 Verifying Real-Time Linux

Verification of Real-Time Linux consistent
with DO-178B would seem to require a sig-
nificant effort, and, in its full generality, it
would. However, the problem may not be
as intractable as it appears.

4.1 Partitioning

DO-178B makes allowances for verifying
individual software subsystems within a
single system to different Software Levels,
if the system is proven to be partitioned into
subsystems that isolate faults. Hardware-
based memory protection and other isolation
techniques may be used to minimize the
likelihood that a failure of one software sub-
system can trigger a failure of another sub-
system. If this can be accomplished, then
the system can be partitioned into a (small,
if possible) safety-critical subsystem and a
(larger) non-critical subsystem. This archi-
tecture may be reasonable, for example, for
a medical device that controls a potentially
dangerous treatment process, while also
printing paper reports.

4.2 Real-Time Linux subsets

Many real-time applications require only a
minimal real-time kernel. Real-Time Linux
is already available in minimal configura-
tions that, for example, fit on a floppy disk.
These minimal configurations could be veri-
fied with much less effort than would be
required for a full configuration.

4.3 Open-source data items

One of the advantages of the open-source
philosophy is the opportunity for many users
to invest individually moderate amounts of
effort, but collectively large amounts of ef-
fort.

The standard methods required to perform
DO-178B compliant verification are not par-
ticularly complex. Relatively straightfor-
ward, web-based forms for requirements,
tests, etc., could manage the process.

4.4 Embedded support for auto-
mated testing

Testing needs to be done, in most cases, for
each entire system or product containing
Real-Time Linux, with a corresponding va-
riety of software configurations and hard-
ware platforms.

This situation is ideal for the development
and use of embedded support for automated
testing tools, for testing both Real-Time Li-
nux and the entire system into which it is
embedded. Proper use of automated testing
drastically improves the speed and accuracy
of the testing process. Test cases can be
accumulated and re-run for each system un-
der test.

5 Conclusion

The possibility of verifying Real-Time Li-
nux in this way raises several questions:

o Would verifying Real-Time Linux be
worth the effort? It has been our ex-
perience that when we apply rigorous
verification to a system as complex as
Real-Time Linux, we always discover
bugs, some serious. Furthermore, the
effort required is not considerably more
than is typically expended on ad hoc
testing. Even if Real-Time Linux were
not to be used on safety-critical systems
requiring certification, the increased re-

liability would probably be valuable for
commercial products and other widely
used systems. The standardization of
embedded support for automated testing
itself would have a significant pay off.

Who would manage and maintain the
effort? This effort would require more
structure than is typical for open-source
efforts. Is the open-source philosophy
amenable to an effort that must be struc-
tured?

Who would contribute to the effort?
Would the development community
contribute to this effort with the same
enthusiasm that they contribute to the
development of Real-Time Linux?

References

[1] RTCA, RTCA/DO-178B, Software

Considerations in Airborne Systems
and Equipment Certification, 12/1992.

	Introduction
	RTCA/DO-178B guidelines
	The DO-178B verification process, in brief
	Verifying Real-Time Linux
	Partitioning
	Real-Time Linux subsets
	Open-source data items
	Embedded support for automated testing

	Conclusion

