
Some Discussion on the Low Latency Patch for Linux �

Yu-Chung Wang and Kwei-Jay Lin

Department of Electrical and Computer Engineering

University of California, Irvine

Irvine, CA 92697-2625

fwangy,kling@ece.uci.edu

Abstract

Some recent discussions in the Linux circle are on the low latency patch posted by Ingo Molnar. There

are de�nitely pros and cons on the usage of preemption points (or "schedule points" in Ingo's terminology).

The preemption point approach is to solve the problem that the Linux kernel is non-reentrant. In this

paper, we present the justi�cation for inserting preemption points and also study their distribution and

risk levels.

1 The latency of Linux kernel

Recently there have been some interesting discus-

sions in the Linux circle on the low latency patch

posted by Ingo Molnar [3]. Arguments for and

against the usage of preemption points [1] (or \sched-

ule points" in Ingo's terminology) in Linux have been

presented. The problem that preemption points are

addressing is the non-reentrant nature of the Linux

kernel. In Linux, a thread is executed in the kernel

mode when the thread issues a system call or when

there is an interrupt. In both cases, CPU will be

held by this thread until the thread leaves the kernel

mode. Therefore, other user threads will be blocked

even when they have a higher \priority" or \urgency"

than the thread in the kernel mode. For real-time

applications, this causes priority inversion when an-

other thread with an earlier deadline is waiting. For

multimedia applications, some time-critical opera-

tion may experience jitters when another thread is

executing long system calls.

2 Preemption points

In RED-Linux [2], the kernel is designed to lower its

response latency by using preemption points (PP).

When a normal system call executes to a PP and

if a real-time thread is waiting for execution, the

system call will be preempted. The kernel thread

executing the system call will yield CPU to the real-

time process waiting for execution by simply calling

\schedule()" voluntarily. Each of these preemption

points in RED-Linux looks like:

if (realtime_job_waiting) schedule();

By inserting the above statement in many places in

the kernel, whenever a real-time job with a high pri-

ority competes for CPU time, a kernel execution may

be preempted after a small block of code is executed.

If no real-time job is waiting, the overhead of PP is

just checking the ag.

A more critical issue for PP is that there is no mech-

anism to guarantee the kernel status will stay the

same before and after the preemption. The thread

calling \schedule()" must check if some variables of

the kernel have been changed. Usually, the thread

should discard all global variable values that were

held in local variables before its call to \schedule()".

In fact, preemption point is a necessary mechanism

even for a monolithic kernel. It is used by a kernel to

wait for slower resources. For example, when a pro-

gram issues a read system call, the kernel will send

a request for disk blocks to the hard drive. How-

ever, these data blocks usually are not ready within

a short time (e.g. 10 ms). The kernel can either

enter a busy loop waiting for data or call \sched-

ule()" to yield CPU. To improve the performance in

multi-tasking systems, the latter approach is usually

selected.

�This research was supported in part by UC/MICRO 99-073 and 99-074, Raytheon and GeoSpatial Technologies, and by

NSF CCR-9901697.



3 Fully preemptive kernel

Instead of using preemption points, another ap-

proach is to make kernel preemptible at any time.

However, even if a kernel is designed to be reentrant,

it still must disable preemption in sensitive codes

that access a shared data structure. Kernels pro-

tect their internal data structures by putting them

in critical regions embraced with semaphores or spin-

locks (although spinlock is not good for single CPU

systems). Many real-time OS's, such as LynxOS and

RT-Mach, are designed in this way. Assume a job is

waiting to start, and another thread is executing in

a critical region in the kernel mode. An OS cannot

transfer the execution to the waiting job until the

latter thread leaves the critical region. The kernel

latency is determined by the length of the critical

region with the longest execution time.

An interesting question is whether a fully preemp-

tive kernel is a better solution than using preemp-

tion points. In our opinion, the answer is not always

clear even if we ignore the code complexity of mak-

ing a kernel fully preemptive. In both cases, we must

prove that it is safe for preemption. The e�ort in

showing the correctness of a fully preemptive kernel

may not be easier than that of preemption points.

For example, let us look at the following lines that

show the variable access pattern in a program,

1. a

2. a

3. ab

4. ab

5. ab

6. abc

7. ac

8. c

9. c

Three variables, a, b and c, are used in 9 statements

and must be protected. In a preemptive kernel, it is

usually done in the following way.

lock(a)

1. a

2. a

lock(b)

3. ab

4. ab

5. ab

lock(c)

6. abc

unlock(b)

7. ac

unlock(a)

8. c

9. c

unlock(c)

In this case, the latency of the kernel is the whole

segment. However, we can provide another solution

by inserting the following code right before line 8 for

a possible preemption:

{ unlock(c) schedule() lock(c) }

In this way, the latency is two statements less than

the preemptive kernel solution described earlier.

Unfortunately, this naive solution may not be safe.

The value of \c" may be changed during \schedule()"

since other jobs are allowed to access \c". We must

make sure that all actions performed in the \sched-

ule()" statement do not change variables unexpect-

edly. One solution is to require the execution to al-

ways go back to line 1 to repeat all lines if there is

a preemption. More detailed analysis could be per-

formed so that the execution need not restart from

line 1 but maybe from line 3 or even line 6. This

will be the performance di�erence between a good

preemption point and a not so good one.

The above example shows that preemption points are

useful in most cases. In the next section, we study

the preemption points proposed by Ingo Molnar [3]

(and compare it to ours in [1]). We believe the exer-

cise is important in order to make the Linux kernel

a truly real-time kernel in the future.

4 Analysis of Ingo's patch

There are 46 preemption points in Ingo's patch for

Linux 2.2.16. As we have discussed before, the most

critical issues about the preemption point approach

is the safety of the code. One of the biggest concerns

against using preemption points is that preemption

points seem to be selected randomly for reducing

kernel latency. Therefore, we study the preemption

points in Ingo's patch and classify them according

to their locations and the level of risk. From the lo-

cations of preemption points, we can see where the

latency bottleneck may be. We thus may have a

better idea on where to insert additional preemption

points to further improve the kernel latency.

For the level of risk, we tried to verify whether pre-

emption points are safe or not. From our study, we

�nd that most of the preemption points used by Ingo

are quite intuitive. Some of his preemption points

simply replace those existing preemption code in the

original Linux kernel.

2



4.1 Level of risk

The levels of risk are de�ned as follows.

� Safe: A safe preemption point presents no risk

at all. It may be before a native preemp-

tion point like interruptible sleep on or some

well-known safe situation like copy from user

or wait on bu�er.

� High: It means that the safety of these points

is doubtful.

� Medium, Low: These preemption points usu-

ally present no problem inside the function con-

taining these points. But more rigorous study

should be conducted. Since the caller of the

function may save some global data on its local

stack, if some global data are changed during

the preemption, there is a possibility for incor-

rect behaviors afterward. In our study, there i

no clear distinction between medium and low

risks. They are classi�ed simply by intuition.

� Undecided: It means that we haven not yet

done a detailed study on these preemption

points to clearly understand the possible e�ect.

Out of the 46 preemption points, 34 of them are safe,

one of them is considered as high risk, seven of them

are low or medium risk and the other four are unde-

cided.

The only high risk preemption point

is in \fs/ext2/namei.c" in the function

\ext2 �nd entry()". The ext2 �le system puts a

linked name list inside a directory node. This func-

tion is used to search for a speci�c �le name in an

inode. This preemption point tries to break down

the search into smaller pieces by allowing preemp-

tions inside the loop. However, it is dangerous unless

the inode has been locked before preemption. Oth-

erwise other processes may delete the current inode

and casue invalid execution after the preemption.

To �x this problem, our suggestion is just to remove

it since a preemption point have already been de�ned

inside \wait on bu�er". The size of one node is only

4096 bytes for the ext2 �le-system. It does not take

that long to scan the data in a single node.

4.2 Location of preemption points

Table 1 shows the preemption point distribution. 10

preemption points are inside the console driver be-

cause Ingo has rewritten the console driver. There-

fore, it may be considered as just one preemption

point.

The preemption points in the kernel core are related

to \fork" and \exit". In these two cases, we need

to copy a lot of data structures like �le descriptors,

page table, �le-systems and signals to the forked pro-

cess from its parent process in \fork", and to remove

them in \exit". In both cases, it may take a long

time when a lot of �les or memory are allocated by

the processes.

The preemption points in the memory management

are all related to page deallocation. When a process

requests a page, if there is not enough number of

free pages in the system, the memory system will try

to either get a page from bu�ers or swap a page to

the secondary storage system. Both of them require

scanning the list to pick up the candidate. Since

there are a lot of pages in the system, it may take a

long time to do that.

Others are related to memory copy to and from user

space. Many of these preemption points may soon be

included in the mainstream Linux kernel since Linus

Torvalds has expressed the opinion that he would like

to adopt them in the near future.

In summary, the �rst group of preemption points are

used to reduce the time spent on list traveling. In

the memory system, the list is the page table. In the

�le system, it is bu�er cache or directory cache. In

the kernel, it is the �le descriptor table or the signal

table. The second group is related to memory copy.

The console driver needs to copy the physical screen

data to and from private bu�ers. The kernel needs

to copy data to and from user space.

Comparing Ingo's patch with the preemption points

in RED-Linux [1], we �nd many of them are the

same. There are more in Ingo's patch than ours.

However, at least two of our preemption points are

not in Ingo's patch. One is in the keyboard driver

code. The other is in the Unix socket code. The key-

board driver preemption point may reduce the kernel

latency in the order of several hundred microseconds.

We believe these two preemption points should be in-

cluded to make Ingo's patch more complete 1.

5 Preemption points in the

original kernel

Some may question whether only 46 preemption

points would be enough to make Linux kernel "pre-

emptive". Since Linux kernel is a big software with

more than 2 million lines of codes, many expect

that much more preemption points should be needed.

One reason why 46 PP's may be enough is that Linux

already has many preemption points in the code even

before the Ingo's patch. A simple study using the

1Both Ingo's patch and RED-Linux's preemption points are included in the REDICE-Linux 2.0 distribution from REDSonic

3



Table 1. Preemption Point Distribution

fs 14

core kernel 9

memory management 9

IPC 1

console driver 10

memory copy to user 3

following shell command can show how many pre-

emption points already exist in the original kernel.

grep need_resched $(find . -name '*.c')|wc

The result from the above command on Linux ver-

sion 2.2.15 is 42. For example, the following is taken

from \drivers/char/mem.c" in Linux 2.2.15 without

any low latency patch.

do {

unsigned long unwritten

= clear_user(buf, PAGE_SIZE);

if (unwritten)

return size + unwritten - PAGE_SIZE;

if (current->need_resched)

schedule();

buf += PAGE_SIZE;

size -= PAGE_SIZE;

} while (size);

The line calling \schedule()" is in fact a preemption

point. In other words, preemption points have been

used by kernel developers for a long time to improve

the responsiveness of Linux kernel. They may not

be written like \conditional schedule()" as in Ingo's

patch or \MBP()" on RED-Linux 2.0.35. But the

idea and the structure are the same.

6 Summary

In this paper, we have discussed the reasons why

preemption points are useful to reduce the kernel la-

tency. We have also analyzed the preemption points

included in the Ingo's patch. Although the patch

may look random at �rst, we believe Ingo's patch

(together with ours in RED-Linux) is very useful if

kernel latency is a concern for real-time applications.

Since the inclusion of preemption points causes only

minimum extra delay in normal kernel operations,

we suggest the adoption of these patches in all Linux-

based systems.

References

[1] Y.C. Wang and K.J. Lin. Enhancing the real-

time capability of the Linux kernel. In Proc. of

5th RTCSA'98, Hiroshima, Japan, Oct 1998.

[2] Y.C. Wang and K.J. Lin. Implementing a gen-

eral real-time framework in the RED-Linux real-

time kernel. In Proc. of RTSS'99, Phoenix, Ari-

zona, Dec 1999.

[3] Ingo Molnar, http://people.redhat.com/mingo/lowlatency-

patches/.

4


