FLEXIBLE USER/KERNEL COMMUNICATION FOR
REAL-TIME APPLICATIONS IN ELINUX

Christian Poellabauer, Karsten Schwan, Richard West, Ivan Ganev,
Neil Bright, Gregory Losik
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
{chris,schwan,west,ganev,ncb,gregor } @cc.gatech.edu

Abstract

Many distributed applications require real-time and quality of service guarantees, which need to be
observed even under changing resource requirements and resource availability. Our group is developing a
version of the Linux kernel, termed ELinux, that offers mechanisms to deal with dynamic resource changes
and to exploit and adjust to runtime changes in user needs, with the goal of leveraging both in order to
improve the effective quality of service experienced by end users. Our approach is to construct runtime
extensions for the Linux kernel that offer suitable functionality for quality of service management for real-
time applications. The resulting ELinux kernel described in this paper offers an innovative mechanism,
termed ECalls, that permits even unprivileged users (without superuser privileges) to add or modify the
services provided by the operating system kernel. ECalls also permits such user-defined extensions to
interoperate with user-level applications, such that the timing requirements of service- and application-
level functions are met. Specifically, ECalls permits users to add application-specific event handlers to the
kernel, and it implements lightweight synchronous or asynchronous user/kernel communications for use by
those handlers. ECalls (Event Calls) addresses several issues in the user/kernel communication occurring
for real-time extensions: (1) using multiple methods of control transfer exhibiting alternative real-time
behaviors, (2) integrating the scheduling of tasks and of events, (3) using shared memory structures to
avoid explicit data passing between kernel services and application, and (4) enabling reductions in the

frequency of control transfers with event-specific call filters and delays, and by event batching.

1 Introduction

Dynamic changes in resource requirements and avail-
ability make real-time and quality of service guaran-
tees for distributed applications difficult. Our group
is developing technologies that are able to deal with
dynamic resource changes and to exploit and adjust
to runtime changes in user needs. Specifically, we
are developing runtime configuration methods to be
applied to open source operating systems suitable
for embedded platforms, with our current work fo-
cused on the Linux OS kernel. Our group’s aim is
to continuously manage user needs and the platform
resources applied to these needs, without rebooting
the underlying systems. Consequently, the configu-
ration methods we are creating are themselves rep-
resented as dynamically loaded code modules. The
resulting ELinuz (Extensible Linux) system permits
applications to extend the operating system kernel

with precisely the quality management features they
require. For instance, a multimedia streaming ap-
plication may extend the kernel with functions that
efficiently monitor available network bandwidth, so
that it may then change compression levels and its
manner of packet delivery to adjust its operation to
resource availability.

To exploit the advantages of kernel-based services,
a flexible interface between applications and kernel
services is required, such that service requests and
responses can take place in a timely manner. The
main part of this paper introduces such an interface
implemented for the ELinux system, enabling appli-
cations to choose dynamically from different meth-
ods of event delivery from user to kernel and kernel
to user.

The remainder of this paper is organized as follows:
The next chapter introduces ELinux, Georgia Tech’s
implementation of a QoS-aware version of the Linux

operating system. ELinux is an ongoing effort, where
some of the modifications and enhancements intro-
duced in Chapter 2 are finished and others are still
being implemented. Chapter 3 introduces ECalls,
a flexible interface between user and kernel space
allowing applications to efficiently use the services
provided by kernel extensions. Chapter 4 introduces
some of the mechanisms implemented in ECalls in
further detail, and Chapter 5 concludes and summa-
rizes this paper.

2 ELinux Overview

ELinux is our group’s effort to build a version of
Linux able to deal with dynamic resource changes
and able to exploit and adjust to runtime changes
in user needs. ELinux not only offers basic mech-
anisms for runtime system extension, but it also
supports several extensions specifically targeting the
real-time domain. These extensions are implemented
as kernel-loadable modules.

Real-Time CPU Scheduling. One of the exten-
sions offered by ELinux is a hard real-time scheduler
that replaces the standard Linux scheduler. DWCS
(Dynamic Window-Constrained Scheduler) [11, 12]
schedules processes according to their service con-
straints: a request period T and a window-constraint
z/y. The request period is the maximum tolerable
interval between servicing two requests of a pro-
cess, where the end of a request period determines a
deadline by which a process must be serviced. The
numerator x of the window-constraint is the number
of times a request for a process can be serviced later
than the deadline or not serviced at all for every y
requests. Given a set of processes, DWCS is able to
bound the delay of service to a process, even in over-
load scenarios (when processor utilization is larger
than 100%). Furthermore, feasible schedules exist
as long as the utilization does not exceed 100%. De-
tails about the real-time capabilities of DWCS can
be found in [9].

Real-Time Network Packet Scheduling.
DWCS is also capable of scheduling network pack-
ets, where the period T is the interval between two
service requests to a packet stream, and the numer-
ator x of the window-constraint x/y is the number
of packets that can be transmitted late or even lost
for every window of y packets in a stream. The same
real-time guarantees as described above apply. Con-
sequently, the packet scheduling extension of ELinux
permits applications to control their outgoing packet
streams, which is particularly useful for server-based
applications, such as media and web servers.

QoS-aware Implementation of Sockets. The
DWCS-based packet scheduling supported by
ELinux does not offer the ‘convenient’ interfaces end
users may require for controlling their servers’ out-
put streams. The ‘QSocket’ interface implemented
in ELinux uses the Linux kernel’s recently developed
framework for the implementation of QoS technolo-
gies, the latter supporting a set of queuing disciplines
that include Class Based Queuing (CBQ), Stochastic
Fair Queuing (SFQ), and Random Early Detection
(RED). We have added DWCS to this list of queu-
ing disciplines, but are also improving the interfaces
provided to end users. Specifically, access to the QoS
architecture of Linux is currently quite cumbersome;
it is typically through the netlink protocol, specifi-
cally designed to allow users to call kernel-internal
functions. In response, we are implementing a socket
library that adds QoS parameters to what appear to
be regular socket calls. This library, called QSock-
ets, extends the original attribute list of socket calls
by a text string containing QoS parameters for the
corresponding socket stream. Qsockets allow users
to assign and modify per-stream QoS-attributes dy-
namically for DWCS and other queuing disciplines
supported by Linux.

Resource Monitoring — ECalls and Monitor-
ing Handlers. Quality management is not possible
without understanding dynamic resource availabil-
ity. Toward this end, we have implemented a general
mechanism for extracting such resource informa-
tion from the kernel, termed ECalls, and we are
demonstrating its utility by construction of specific
resource monitoring kernel extensions. The ECall
interface and functionality is described in detail in
this paper and is overviewed below. Next, we de-
scribe briefly one of the monitoring extensions we
are currently constructing. Specifically, we are im-
plementing a network monitor in the ELinux kernel
that will allow applications to gather information
and statistics about network utilization, loss-rate,
etc., in an application-specific manner, thereby per-
mitting them to enact application-level adaptations
to try to adjust to dynamic changes in network be-
havior. The monitoring tools reside within the kernel
such that only network information desired by the
application (using filters) and network statistics are
passed to the user-space. We are basing our imple-
mentation on Linux Socket Filters (LSFs).

ECalls - Asynchronous and Synchronous
User/Kernel Communication. To efficiently ac-
cess user-provided kernel extensions, such as the
CPU and network schedulers and the monitoring
handlers described above, the E(vent)Calls mecha-

nism implements event-based communications from
user to kernel space and vice versa. While ECalls
is the topic of the remainder of this paper, we first
outline the nature of the distributed quality manage-
ment systems we are constructing with ECalls, with
monitoring extensions, and with the user-specific
and real-time kernel extensions described above.

Adaptive Resource Management with
ELinux. Our general approach to quality of service
management is the runtime adaptation of resources
used by applications. This is achieved by enabling
applications to determine or at least influence the
adaptation decisions being made on their behalf.
This approach is spelled out in more detail in a paper
describing the Dionisys quality of service infrastruc-
ture [10], which permits applications to determine
how, when, and where adaptations take place. This
is done by executing application-specific handler
functions with service providers, including those in
the kernel. Such handlers have two tasks: (1) they
monitor current resource usage and (2) they adapt
resource allocation in conjunction with application
needs. Our previous implementation of Dionisys was
as a user-level resource manager on Solaris. Our on-
going work includes the implementation of suitable
handlers as well as the resulting handler interactions
within the kernel and across the user/kernel bound-
ary in ELinux. In this case, monitor and handler
functions can reside either within the application in
user space or in loadable kernel-modules in kernel
space. Thus, the ECalls mechanism described in this
paper is a critical element of the manner in which
quality management is performed in ELinux.

Event-based Communication. FECalls permits
quality management to take place on a single ma-
chine, but it does not support inter-machine quality
management actions, as indicated by previous and
ongoing research on distributed quality management
infrastructures. To address multi-machine quality
management, we are adding another critical mecha-
nism to the ELinux system, termed real-time events.
The resulting Artemis real-time event system is of-
fering an event communication library resident in
the ELinux kernel, based on which inter-service and
inter-machine events may be sent and received. In
this fashion, we will construct a distributed im-
plementation of the Dionisys approach to quality
management. With Artemis (a) applications can
communicate in an asynchronous and anonymous
manner with other processes at the same host or at
remote hosts, and (b) resource managers, residing
either in kernel space or in user space, can exchange
adaptation events within one host and across multi-

ple hosts.

An effort somewhat orthogonal to the work described
above, but also ongoing, is to more effectively use
the fast networks and large main memories now ex-
isting for many Linux machines. Towards this end,
our group is extending the Linux file system. One
outcome of interest to the real-time community will
be the file system’s ability to control data caching
and also the scheduling of caching actions, thereby
offering quality of service support for distributed file
management. The remainder of this paper focuses
on ECalls.

3 The ECalls
Module

A flexible user/kernel interface is required to allow
applications to exploit the performance advantages
and real-time properties they seek through runtime
kernel extension. The ECalls (Event Calls) mech-
anism is a lightweight facility for event-based, syn-
chronous and asynchronous communication between
user and kernel. ECalls has been implemented as
a kernel-loadable module in the extensible ELinux
kernel being developed by our group. ECalls allows
unprivileged applications to access the services im-
plemented by their (or other ECalls-equipped) kernel
extensions.

To define the functionality of ECalls, we distinguish
three different elements of event user/kernel and ker-
nel/user communications:

e Data Transfer,

(Event Calls)

e Event Delivery,

e Event Reception.

Some mechanisms, like Unix signals, do not include a
data transfer element (although Unix real-time sig-
nals are able to carry a 4-byte data value). Event
delivery can be as simple as setting a flag, or more
complex like transmitting a message over the net-
work. FEvent reception is the act of handling an
event’s delivery, typically by invoking a handler func-
tion. The implementation of ECalls addresses two
problems commonly found in general purpose oper-
ating systems like Linux [3]:

Data Passing Problem: Typically, data is passed
explicitly, e.g., within a system call. In ECalls, data
structures allocated when processes define the kernel
events of interest to them are located in main mem-
ory accessible from both user and kernel space; they
are used to avoid the explicit copying of data.
Control Passing Problem: The performance
problems of user/kernel communication methods

(like system calls) are well known. We introduce
modifications to traditional call methods that result
in improved system call performance through aggre-
gation and filtering of events via lightweight non-
blocking ECalls. In the reverse direction, from kernel
to user, we modify a real-time scheduler developed
by our group to efficiently combine the scheduling
of user-level processes and events. ECalls also aims
to reduce the cost and frequency of data transfer
and event delivery, to efficiently execute event han-
dlers, and to reduce the number of context switches
incurred during user/kernel and kernel/user interac-
tions.

Any kernel extension using ECalls and implemented
as a kernel loadable module (such as resource man-
agers or device drivers) is referred to as kernel ser-
vice in the remainder of this paper. Such an exten-
sion uses ECalls as follows. First, it registers with
the ECalls module, whereupon second, an applica-
tion is able to use this service via User-ECalls. At
the same time, third, other kernel services can use
Kernel-ECalls to notify an application of the occur-
rence of certain events. In both cases, events can be
accompanied by event data, which is copied into a
data segment shared between kernel and user space
and locked into memory.

We next describe the multiple (including real-time)
semantics of event communication implemented by
ECalls.

3.1 Data Transfer

ECalls uses two separate data segments per applica-
tion, which are locked into memory (to prevent pag-
ing) and accessible from both user space and kernel
space. The application uses the first data segment
to transfer data from user space to kernel space, and
the second data segment to receive data coming from
the kernel service.

The implementation of a kernel service using ECalls
decides how the structure of a data segment is inter-
preted. Figure 1 presents both methods: the data
segment in (a) is used by the application to trans-
mit data to the kernel service and is implemented
as a list of data entries. The kernel service supplies
the application with a C header file describing this
data structure. The data segment in (b) is imple-
mented as a ringbuffer with two pointers (front and
back) pointing to the beginning and the end of the
currently used part of the buffer. Since we use one
segment per direction and per application, there is
only one possible writer and one reader of this ring-
buffer, eliminating the need for synchronization.

A data segment organized as shown in Figure 1a has
the following structure:

struct ecall_data {
int flag;
unsigned long bit_pattern[MAX];
[data part]

X

The first entry, flag, is incremented each time a new
event is delivered and decremented each time an en-
try is read from the data segment; it therefore indi-
cates the number of pending events, i.e., events that
have been delivered but not yet received. The second
entry, bit_pattern, is an array of MAX words, provid-
ing one bit per data entry in the following data part.
The writer of the data segment sets the correspond-
ing bit in the bit_pattern, such that the reader can
apply simple bit operations to find the position of
new events and it therefore allows for faster access
to the data. The rest of the structure is the ac-
tual data part, which can include any kind of data
types (excluding pointers). The reader of a data seg-
ment starts looking for new events by investigating
the bit_pattern, starting from the MSB (most sig-
nificant bit) to the LSB (least significant bit), and
therefore implementing a priority ordering between
the data part entries.

The second possibility of data segment organization
is defined by the following data structure:

struct ecall_data {
int flag;
int fromnt;
int back;
[data part]
}

The first entry, flag, has the same purpose as de-
scribed above. Front and back are indexes to the
beginning and the end of the part of the ringbuffer
containing the data. The ringbuffer is implemented
in the following data part. Since there are at most
one reader and one writer to the ringbuffer, synchro-
nization constructs are not necessary.

3.2 Event Delivery and Event Recep-
tion

This section briefly introduces the different methods
of event delivery and event reception implemented in
ECalls.

3.3 User-ECalls

An application delivering a User-ECall to a kernel
service typically increments the flag in the data seg-
ment. The next steps depend on the type of User-
ECall used:

Application

front
struct {
entryl typel;
_| _entry2type2; | UserSpace -
entry3 types; Kernel Space
}
back

Kernel
Service

Figure 1: Example of data transfer using ECalls: The application transfers data to the kernel via the data
segment shown in a.) (organized as list of data entries) and receives data from the kernel via the data segment
shown in b.) (organized as ringbuffer).

1. Polling: The kernel service may decide to

poll for User-ECalls periodically if it runs fre-
quently enough (e.g., a kernel thread running
in an endless loop). It does so by calling the
poll function provided by the ECalls module,
which then checks the flags in all data segments
of all applications registered with the kernel
service. An alternative is to let ECalls poll
the data segments periodically with a period T
(provided by the kernel service). This allows
the kernel service to go to sleep until ECalls
finds a new pending User-ECall, in which case,
ECalls invokes a handler function in the kernel
service.

. Generic System Call: A generic system call
has been implemented. When an application
calls this generic system call to request a ker-
nel service, this call will be redirected dynam-
ically into the corresponding module, where it

occur when a system call returns. (3) The re-
turn value of the fast handler function deter-
mines if any or all of the tasks described in (2)
are performed. It also decides if it is necessary
to invoke a system call. In this case the Fast
User-ECall acts as a filter function, i.e., only
if certain conditions hold true (determined by
the fast handler function), a system call will be
executed.

. Delayed User-ECall: Again, the fast han-

dler function is invoked, but this time the time
of execution lies in the future, more precisely,
when the scheduler is invoked next. The ad-
vantage of this method is that several ECalls
to the same kernel service lead to a single invo-
cation of the fast handler function. As a result,
several events are aggregated into one.

will trigger the execution of a handler function 3.4 Kernel-ECalls

supplied by the kernel service.
The following mechanisms of event delivery (and any

3. Fast User-ECall: A Fast User-ECall differs combination thereof) are supported in ECalls:
from an ordinary system call in three ways:

(1) A non-blocking short-running service func- 1. Real-Time Signals: The kernel service raises

tion (called fast handler function) supplied by
the kernel service is invoked instead of a hard-
coded (possibly blocking) system call function.
(2) This function typically returns immediately
without bottom half handling (executing the
slow part of interrupts), signal handling, and
possible invocation of the scheduler, which may

a real-time signal to the application. The de-
tails of the implementation of real-time signals
are described in the POSIX.4 standard [5].

. Kernel handler function: The kernel service

executes a short non-blocking function, either
supplied by the kernel service itself or by the

a) b))

trap_to_kernel;

save all_registers,

call_syscall_function;

if (bottom_halves pending)
call_bottom_halves,

if (need_resched)
call_scheduler;

if (signals_pending)
call_signal_handler;

return;

trap_to_kernel;

save_some registers,
call_fast_syscall_function;

if (return_value & run_syscall)

convert_into_syscall;

if (return_value & run_bottom_halves)

call_bottom_halves,

if (return_value & need_resched)

call_scheduler;

if (return_value & signals_pending)

call_signal_handler;

return;

Figure 2: Simplified pseudo code for system calls (a) and Fast (Delayed) ECalls (b).

application via another kernel-loadable mod-
ule. A timeout algorithm ensures that the han-
dler function finishes in time.

3. Kernel handler thread: As in 2., but here
the function is allowed to block and will be ex-
ecuted in the context of a kernel thread taken
from a thread pool.

4. User handler function: Again, as in 2., but
the function resides in user space (locked into
memory). This method raises severe security
problems, which we will not address in this pa-
per.

5. ECall-Scheduling: We modified the stan-
dard Linux scheduler and a real-time CPU
scheduler (DWCS [11, 12, 9]) to support the in-
tegrated scheduling of tasks and Kernel-ECalls.
Kernel-ECalls have priorities assigned influenc-
ing the scheduling decision in case several pro-
cesses have Kernel-ECalls pending.

4 Implementation Details

In the following sections we investigate some of the
mechanisms introduced above in more detail, namely
the ‘Fast’ and the ‘Delayed’ User-ECalls for events
originating in user space, and ‘Real-time signals’ and
‘ECall-Scheduling’ for events originating in kernel
space.

4.1 Fast and Delayed User-ECalls

The functionality of both Fast and Delayed User-
ECalls is basically the same: the kernel service pro-
vides a fast handler function, i.e., a handler function
that runs for a very short time and never blocks (e.g.,
to set or reset a flag, or to wake up a kernel thread).

For this purpose, a new software interrupt has been
implemented. A typical system call in UNIX per-
forms the steps shown in the (simplified) pseudo code
in Figure 2a.

The code for ‘Fast’ and ‘Delayed’ User-ECalls has
been modified as shown in Figure 2b. The execu-
tion of ‘Fast’ and ‘Delayed’ ECalls differs from the
execution of system calls in the following points:

e Only those registers are saved that are most
likely to be modified by the fast handler func-
tion. If other registers are used, it is the re-
sponsibility of the kernel service to save and
restore them.

e The return value of the fast handler function
determines if it is necessary to execute a system
call (which is allowed to block), either chosen
from the set of standard Unix system calls or
another function provided by the kernel ser-
vice.

e The return value of the fast handler function
also determines if it is necessary to execute
pending bottom halves, to deliver pending sig-
nals, or to invoke the scheduler.

These modifications allow us to use the fast handler
function as a filter function for system calls, e.g., a
‘Fast’ ECall can poll for a condition in the kernel
(e.g., the state of a socket) and, if necessary, invoke
a system call (e.g., the read system call). A ‘Delayed’
ECall, unlike a ‘Fast’ ECall, is not invoked immedi-
ately. Instead, its invocation is delayed until the next
invocation of the scheduler. When the scheduler exe-
cutes, ECalls polls for pending ‘Delayed’ ECalls and
executes them before a scheduling decision is made.
Note that a fast handler function has to be short and
non-blocking to prevent the system of unpredictable
behavior. If a fast handler function runs too long

a.)

non-real-time signals

real-time signals

o . .. 3 |2 ... e

order of signa handling

b) non-real-time signals

real-time signals

0.9 .. 19..31] |2 . . . &3
-3 @@ .
o I
4
9. SIGKILL 32... SIGRTMIN
19... SIGSTOP 63 ... SIGRTMAX

Figure 3: Standard Linux signal handling (a) and modified signal handling in ECalls (b).

ECalls ensures

that the real-time signals cannot be delayed by non-real-time signals by using the following sequence of sig-
nal handling: (1) SIGKILL and (2) SIGSTOP, (3) all real-time signals, and (3) all remaining non-real-time

signals.

(due to error or malicious behavior), a timeout algo-
rithm will abort it. Several ‘Delayed’ ECalls within
one time slice of a process result in only one invoca-
tion of the fast handler function (i.e., we aggregate
several ECalls into one).

4.2 RT-Signals and ECall-Scheduling

RT-Signals. Currently, there are up to 64 signals
supported in Linux, 32 non-real-time, and 32 real-
time signals. Real-time signals differ from ordinary
signals in that they are queued to processes, they are
handled according to their priorities, and they can
carry some small amount of data. In Linux, signals
are handled in the following order (Figure 3a): (1)
All non-real-time signals (signals 0 to 31) and (2)
all real-time signals from signal 32 (SIGRTMIN) to
63 (SIGRTMAX), giving signal 32 the highest pri-
ority among all real-time signals. Since it is possi-
ble to catch non-real-time signals (except SIGKILL
and SIGSTOP) and execute user-defined handlers
instead of the default action, it is possible to de-
lay real-time signals unpredictably. Therefore, we
changed the order of checking for pending signals to
the order shown in Figure 3b: We first check the
two signals which cannot be caught (and which will
either exit or stop the application): 1. SIGKILL and
2. SIGSTOP. In step 3 we check all real-time signals
beginning with SIGRTMIN and finally, in step 4,
we check all remaining non-real-time signals. Using
this scheme we are able to prevent a real-time signal
from being delayed unpredictably by a non-real-time
signal.

ECall-Scheduling with the Linux Scheduler.
The Linux scheduler has been modified as fol-
lows: If a real-time process (a process in either
the SCHED_FIFO or the SCHED_RR queue) has
any Kernel-ECalls pending, it will be given prefer-
ence over processes with the same or smaller pri-
ority. If only non-real-time processes are runnable
(SCHED_OTHER queue), a process with Kernel-
ECalls pending will always be given preference.

ECall-Scheduling with DWCS. To be able to ef-
ficiently support real-time processes, we use the hard
real-time CPU scheduler DWCS (Dynamic Window-
Constrained Scheduler), which assigns each process a
period T, a runtime C, and a window-constraint x/y,
meaning that a process will be scheduled y-x times
for C time slots each, in a window of T*y time units.
Each process can be scheduled once in a period of T,
unless it is marked as work-conserving. In that case
it is possible to schedule this process several times
within a period. Details about DWCS can be found
in [11, 12]. The original DWCS algorithm works as
follows:

e The process with the shortest deadline (i.e.,
the time until its current period T expires) will
be selected. If several processes have the same
deadline, the process with the tightest current
window-constraint x/y is chosen.

e If all processes have been scheduled at least
once in their respective current periods, a
work-conserving process will be selected ac-
cording to the rules described above.

e If no real-time process is runnable, the next
available best-effort task will be selected.

In a different paper [9], we presented boundaries for
the worst-case delays of processes and showed that
we are able to guarantee schedulability as long as the
processor utilization U does not exceed 100%. We
modified DWCS such that processes with pending
Kernel-ECalls are given preference without violating
the real-time guarantees:

e If two or more processes have the same dead-
line, the process with an ECall pending is se-
lected as long as this does not result in an
immediate violation of the other process’ real-
time guarantees.

o If a work-conserving process has been selected
that already ran once in its current period, the
next process with an ECall pending is sched-
uled instead.

e If a best-effort task has been selected by the
scheduler, the next process with an ECall
pending is scheduled.

In addition, we introduce the notion of an ECall
server, which is a pseudo task with the attributes
x/y, T, and C determined in the following way: x/y
= 0/YMAX with YMAX being the highest possible
value for the denominator. This assigns the ECall
server the tightest window constraint possible. The
service time C is the same as the service time of the
process with the highest priority Kernel-ECall pend-
ing or C = 1 time slice if no Kernel-ECalls are pend-
ing. The rest utilization Ur of the system, which is
the mazimum wutilization minus the current utiliza-
tion, is used to determine the value of the period
T (T=C/Ur). Each time the ECall server becomes
the highest priority task, the process with the high-
est priority Kernel-ECall pending is selected instead.
If there are no Kernel-ECalls pending, the scheduler
selects a process according to the rules of the original
algorithm as described above.

5 Summary and Related Work

Summary and Conclusion. Although some im-
portant parts of ELinux have been implemented, our
work is still at an early stage. ECalls, DWCS task
scheduling, and packet scheduling have been com-
pleted. The QSocket interface to the packet sched-
uler is being completed at this time. The Dionisys
infrastructure and Artemis are under development,
as is the kernel-level network monitoring facilities
using ECalls. When completed, these kernel exten-
sions will allow applications to monitor their resource

allocations, adapt these allocations via application-
aware resource managers, and adapt their own be-
havior to adjust to changing resource availability.
The current implementation of ELinux is based on
the Linux 2.2.13 kernel.

Extensibility in operating systems is key to flexibility
and configurability. We propose ECalls to support
the implementation of kernel services in modules by
supplying a flexible interface for real-time and best-
effort applications. ECalls distributes events in two
directions, from user space to kernel space and vice
versa. For events originating in user space, we intro-
duce two new kinds of lightweight system calls, Fast
ECalls and Delayed ECalls, both aiming at reducing
the frequency and cost of event communication and
context switches. For events originating in the kernel
we modified the standard Linux scheduler as well as
a hard real-time scheduler, DWCS.

Using DWCS, we are able to give the same hard real-
time guarantees for the worst-case scenarios as de-
scribed in [9], while giving preference to processes
with pending events, therefore improving the aver-
age case delay.

Related Work. Our work on ELinux is an ef-
fort to add real-time and quality of service char-
acteristics to the Linux kernel. Other approaches
include KURT [8] developed at Kansas University
and RTLinux [2] developed at the University of New
Mexico. Some of our work is based on upcalls,
proposed by Clark [4] to structure protocol code
into layers, which allows for efficient protocol im-
plementations. Gopalakrishnan and Parulkar [6] ex-
tended this idea to Real-Time Upcalls (RTUs), which
have been introduced as an alternative to real-time
threads and are intended for the implementation of
user-space protocols with QoS guarantees. Banga,
Mogul, and Druschel [1] introduce an event delivery
system allowing applications to register interest in
event sources like sockets. However, the application
still has to poll for events, whereas ECalls is able
to notify a process of pending events by executing
a handler function and raising its scheduler priority.
Finally, Saito and Bershad [7] describe an architec-
ture that allows users to supply application-specific
system call handlers in kernel extensions in the SPIN
operating system.

References

[1] G. Banga, J. Mogul and P. Druschel, A scal-
able and explicit Event Delivery Mechanism for
UNIX, Proc. USENIX Annual Technical Confer-
ence, 1999.

[2] M. Barabanov and V. Yodaiken, Real-Time
Linuz, Linux Journal, 1996.

[3] J. C. Brustoloni and P. Steenkiste, Evaluation of
Data Passing and Scheduling Avoidance, Proc.
7th International Workshop on Network and Op-
erating System Support for Digital Audio and
Video (NOSSDAV), 1997.

[4] D. Clark, The Structuring of Systems Using Up-
calls, Proc. 10th ACM Symposium on Operating
Systems Principles, 1985.

[5] B. O. Gallmeister, POSIX.4: Programming for
the Real World, O’Reilly, 1995.

[6] R. Gopalakrishnan and G. Parulkar, Ef-
ficient User Space Protocol Implementations
with QoS Guarantees using Real-Time Upcalls,
IEEE/ACM Transactions on Networking, 1998.

[7] Y. Saito and B. Bershad, System Call Support in
an Extensible Operating System, Software - Prac-
tice and Experience, 1999.

[8] B. Srinivasan, S. Pather, R. Hill, F. Ansari and D.
Niehaus, Firm Real-Time Implementation Using

Commercial Off-The-Shelf Hardware and Free
Software, Proc. 4th Real-Time Technology and
Applications Symposium (RTAS), 1998.

[9] R. West and C. Poellabauer, Analysis of a
Window-Constrained Scheduler for Real-Time
and Best-Effort Packet Streams, Proc. 21st IEEE
Real-Time Systems Symposium, 2000.

[10] R. West and K. Schwan, Ezperimentation with
Event-based Methods of Adaptive Quality of Ser-
vice Management, Technical Report GIT-CC-99-
25, 1999.

[11] R. West and K. Schwan, Dynamic Window-
Constrained Scheduling for Multimedia Applica-
tions, Proc. 6th International Conference on Mul-
timedia Computing and Systems (ICMCS), 1999.

[12] R. West, K. Schwan, and C. Poellabauer,
Scalable Scheduling Support for Loss and De-
lay Constrained Media Streams, Proc. 5th Real-
Time Technology and Applications Symposium
(RTAS), 1999.

