PRETTY PICTURES IN HARD REAL-TIME

P. N. Daly, C. F. Claver, D. Dryden, R. Gomez and B. Abareshi
National Optical Astronomy Observatories
950 N. Cherry Avenue, P. O. Box 26732, Tucson AZ 85726-6732, USA
pnd@noao.edu

Abstract

The WIYN Tip-Tilt Module (WTTM) was developed as an adaptive optics solution to image degra-
dation due to atmospheric instability and dynamics. The WTTM was successfully commissioned onto
the WIYN 3.5m telescope in February 2002 and is currently undergoing shared risks commissioning. In
this paper we review the software design of the WI'TM and present some results from the commissioning

data.

1 Introduction

The WIYN Tip-Tilt Module (WTTM) has been de-
scribed in previous workshop proceedings and else-
where [1, 2, 3]. An engineering schematic of the hard-
ware, as attached to the instrument adapter stage, is
shown in figure 1. The software required for WTTM
operation is [4, 5, 6, 7]:

system: Red Hat Linux 7.3.
kernel: kernel 2.4.18.
variant: RTAI rthalbg.

pcischb: di16ct and dio316 in-house drivers.
gui: LabVIEW 6.0.2.

lvrtl: LabVIEW interface to RTAI.

mbuff: shared memory devices 0.7.1.

A graphical overview of the software is given in fig-
ure 2.

FIGURE 1: WIYN Tip-Tilt Module.

c
]

¥
&

Realtine

(o0
Lz
{0
({0

i
H

|
-

A

R

&

.

E"'ES
-
s
o

=
4
7

(] et e
O Realti e Linux task

D Shated wemory buffer

APDdate flow
DID dats flow
——= LVA deta flow
—> STA data flow
—= Globs!/Comurand duts Alow
* Message data flow
Values data flow
— Focus data flow
—= Guider data flow

FIGURE 2: WTTM Core Architecture.

2 Real-Time Core

As can be seen from figure 2, the real-time core com-
municates with user space using both real-time fifos
(for modest amounts of character based data) and
shared memory segments (for bulk data). There is
also a global shared memory section.

2.1 Real-Time Fifos

There are five real-time fifos used in the software as
follows:

/dev/rtf63 The cmd fifo accepts incoming com-
mands from user space and acts upon them
within the fifo handler.

/dev/rtf62 The msg fifo returns fixed-length mes-
sages from any task to user space to avoid well
known problems with using printk from a real-
time kernel. Such messages can be disabled by
setting rtDebug to 0 (off).

/dev/rtf60 The mem fifo returns an array of 25
items associated with some aspects of the sys-
tem.

/dev/rtf59 The gdr fifo returns guider demands
which are massaged by a user space program
before transmission to the telescope control
system.

/dev/rtf58 The fes fifo returns focus demands
which are massaged by a user space program
before transmission to the secondary control
system.

The fifo handler simply waits in a tight loop for data
to arrive on the command fifo /dev/rtf63. This data
is structured in a simple, but elegant, way:

#define INT_SIZE sizeof (int)

#define CHR_SIZE sizeof (char)

#define SHR_SIZE sizeof (short)

typedef struct {

union {
char cval[INT_SIZE/CHR_SIZE];
short sval[INT_SIZE/SHR_SIZE];
int ival;

} data;

} TASK_MSG;

Typically, the value cval[0] represents an incoming
command. If so, the value cval[1] gives the task num-
ber to apply the command to. The value sval[l] usu-
ally contains the value of some variable. There is no
error checking on the communications path. So, for
example, we can set the frequency of the APD task
to, say, 2500 Hz using;:

TASK_MSG cmd = {{{0}}};
cmd.data.cval[0] = TASK_FREQUENCY;
cmd.data.cval[1] APD_TASK;
cmd.data.svall[1] 2500;

This data structure can then be passed along the fifo
in the usual way.

Directive Command Parameter(s)
FIELD_ROTATION wsfr —r
FOCUS_INTERVAL wsfi —i
GUIDE_INTERVAL wsgi —i
GULFREQUENCY wsgf —f
HW_CLOCK wsc —c0 —cl —c2 —c3
HW_CLOSE whc —c
HW_DATUM whc —d
HW_DATUM_XVAL wsd —X
HW_DATUM_YVAL wsd -y
HW_DATUM_ZVAL wsd —z
HW_DATUM_DYNAMIC wsd —d
HW_OPEN whc —0
HW_RESET whc —r
HW_START whc —8
HW_STOP whc —X
HW_TCOUNT wst —t0 —t1 —t2 —t3
LOOP_X_GAIN WSg —X
LOOP_Y_GAIN wsg -y
LOOP_Z_GAIN wsg —7
LOOP_X_INTEGRATOR wsi —X
LOOP_Y_INTEGRATOR wsi -y
LOOP_HISTORY wsi —n
MEM_INIT wmc —i
MEM_RESET wmc —r
MOVE_X WSV —X
MOVE.Y WSV -y
RT_DEBUG wsdb —d
TASK_BEGIN wtst —a —d -1 —s
TASK_END wtsp —a —d -1 —s
TASK_REPORT wgr
TASK_UPDATE wstu —a —d -1 —s
TASK_ALGORITHM wsa, —f
TASK_CPUS wtsc —a —d -1 —s
TASK_FREQUENCY wstf —a —d -1 —s
TASK_SIMULATE wsts —a —d —1—s
TABLE 1: Real-Time Core Commands

FIGURE 3: LabVIEW Command Inter-
face.

There are 3 types of commands: those that can only
be used in open loop mode, those that can be used in
closed loop mode and system commands. All these
commands are shown in table 1. Not all commands

are required by the end user so a simple LabVIEW
command interface has been built to set the most
common parameters via the GUI shown in figure 3.

2.2 Shared Memory Sections

There are 15 shared memory sections created at ker-
nel module initialization time. All but one are 1 Mb
in size, the exception being the global shared memory
segment. These buffers are re-initialized after every
pause—resume operation. The memory sections are:

APDOQ: raw values from APD 0.

APD1: raw values from APD 1.

APD2: raw values from APD 2.

APD3: raw values from APD 3.

XERR: derived errors for the x-axis.

YERR: derived errors for the y-axis.

ZERR: derived errors for the z-axis.

DIOX: calculated mirror demands for the x-axis.

DIOY: calculated mirror demands for the y-axis.
GXERR: derived values for the x-axis guiding.
GYERR: derived values for the y-axis guiding.
FZERR: derived values for the z-axis focus.

LvAX: feedback mirror positions for the x-axis.
LVAY: feedback mirror positions for the y-axis.
GBLDATA: global data that is shared with user-space.

These memory segments can be dumped out at any
time and the resulting data run through a plotting
utility such as zmgrace to determine system opera-
tions. This technique has been used, very success-
fully, to explore the parameter space of the control
loop.

2.3 Real-Time Tasks

All the real-time tasks follow the same generic struc-
ture which includes a simulation mode. Each task is
assigned a unique number which is also its priority in
the real-time system. All tasks use the ‘sleep on exit’
mode (rather than ‘sleep on entry’). Each task has
an associated frequency (the rate at which it runs in
the real-time core) and an update rate (which is the
rate at which it sends data along the mem fifo to
awaiting user space applications).

2.3.1 The APD Task, Number 0, Priority 0

(Highest)

The function of this task is to read each APD chan-
nel, store values and calculate error corrections for
all 3 axes. As such it has the highest priority in the
system and can run at speeds up to several kHz.

When run, it checks to see if this is the first time
it has been run after a ‘% wcli resume’ operation
(or similar) and if so, reads the APDs and remem-
bers the values. It then goes to sleep until the next
scheduling point. When it wakes up, it checks to see
if a memory wrap is required (since we can only hold
1 Mb of raw data) and re-reads all APD channels.
It then calculates the difference with the last value
stored (and does the correct terminal count wrap)
and calculates the e;, e, and e, errors from:

3

e, = [(apdy + apdz) — (apdo + apds)]/ Y apd; (1)
i=0

ey = [(apdo + apdy) — (apda + apds)]/ Z apd; (2)

3
ez = [(apdo + apdy) — (apdy + apds)]/ D apd; (3)
=0

These derived values are then scaled by the field rota-
tion factor prior to being written to shared memory.
The field rotation is required to co-align the error
sensor axes with the tip-tilt mirror axes. It also cal-
culates a running average and variance.

If the task update rate is non-zero, data is sent along
the mem fifo in accordance with the values specified
in wttmTaskData.h. It is important to know that
row values are just that: snapshot data at the in-
stant the data is required. But the system also re-
turns accumulated data which is the present value
of the running average and variance. So, if we run
the task as, say, 500 Hz and specify an update rate
of, say, 20 Hz the raw data is a snapshot as though
the system was reading the APDs every %—second.
The accumulated data, in this case, is the running
average and variance of 500 / 20 = 25 data points.

If the mem fifo is active, the GUI shown in figure 4
becomes the main system monitor showing raw APD
counts (bottom) and derived error signals (top).

Typically, this task runs in about 10 us.

FIGURE 4: LabVIEW System Monitor.

2.3.2 The DIO Task, Number 1, Priority 1

The purpose of this task is to move the mirror us-
ing derived error signals. As such it is the second
most important task in the system and can run at
speeds matching the APD task (although it should
not exceed it). This task, too, has two loops depend-
ing on whether or not it is the first time through the
function after a ‘% wcli resume’.

If it is the first time through the loop, it simply re-
initializes the memory pointers to keep in step with
the APD task. In subsequent iterations, it checks for
memory wraps and computes the running average of
the e;, ey and e, errors. After having obtained these
values, new mirror demand positions are calculated
and sent to the mirror. Note that these demand po-
sitions are usually used as dynamic datum values the
next time around.

The DIO task also maintains a separate running av-
erage for focus and guiding and passes the data along
the appropriate fifo after the appropriate interval has
elapsed. These raw focus and guide values are mas-
saged by user space applications to convert them to
reasonable demands for the telescope control system
and secondary control system. Thus the tip-tilt mir-
ror is moved at high speed (up to several kHz) but
any cumulative error is taken out much more slowly
(up to several milliHertz) via the telescope control
system.

Typically, this task runs in about 90 us because, to
move the mirror, demands are sent by dynamically
reprogramming the on-board chip for each axis.

2.3.3 The LVA Task, Number 2, Priority 2

This task reads the LVDTs on the PI chassis and
writes the data directly to shared memory segments
“lvax” and “lvay”. Typically runs at < 100 Hz. In
practice, this task is not enabled and the LVDT read
back is not performed.

2.3.4 The STA Task, Number 3, Priority 3
(Lowest)

This task reads the status of the PI chassis and re-
ports back the health of the system. Runs the slow-
est, with lowest priority, and provides a heart beat
at 1 Hz. In practice, this task is usually disabled
since it is obvious from the system behavior that the
instrument or working or not working.

3 Control Loop Algorithms
To date two algorithms have been implemented:

FIXED FREQUENCY In this scheme, the tasks run at
fixed frequencies. This is the most useful mode
in stable conditions with optimal seeing.

CONSTANT S/N In this scheme, the APD task
counts a certain number of photons and then
activates the DIO task directly. Any drop in
count rate, therefore, manifests itself in a dy-
namic slowing of the mirror update rate. In ef-
fect, this creates a constant signal/noise. This
scheme makes the observation less prone to ob-
scuration by thin cirrus or variable seeing.

The control loop in both cases is a Proportional-
Integral loop of the form:

x

My =[Go x &)+ o x Y €] (4)

r—w
where M, is the mirror position on the X axis, G,
is the proportional gain, I, is the integrator gain,
€, is the average error, e, is the instantaneous error
and w is the history window size. There is a sim-
ilar equation that covers the Y axis. Note that no
derivative term has been determined for this system

as it appears to be sufficiently damped.

4 Results

After a long delay, the WI'TM was brought to the
telescope during the T&E run of 26-28 February
2002. During this time the WI'TM was successfully
installed on the telescope and brought on-line. Basic
functionality of the WTTM was verified during the
first two nights. On 28 February 2002 the team suc-
cessfully closed the loop while observing the galaxy
NGC 2841. During this time multiple exposure im-
ages were obtained alternating between open-loop
and closed-loop images. In most cases the closed-
loop point spread functions (PSFs) showed signifi-
cant improvement in quality relative to the open-loop
PSFs.

In figure 5 we show radial profiles of the same star
in open-loop (pluses) and closed-loop (open squares)
exposures taken back-to-back. In addition to im-
provement in the FWHM there was ~50% increase
in peak intensity in the closed-loop images.

| g - L | T —rT T
0080 - -
e o, Closed 100hs
Gl W FHHM=5.3£I:
- 29 =0.56 arcsec
e g W
= E -
E Ak
§ ::::i ‘?’-ﬁ 300sec R band Exposure
=
™5 Open Loop
TE FWHM=6.3 pix
bl =0.71 arcsec
-
L N BRI, 1
L] 25 & v w
Radive
FIGURE 5: NGC 2841 Radial Stellar
Profiles.

The WTTM is currently using an engineering grade
EEV 2k x 4k 13% pm pixel device for commissioning
(on loan from GMOS). Even though this is an engi-
neering grade device not suitable for scientific imag-
ing, observations obtained were capable of showing
the marked improvement in image quality capable
with the WTTM.

In figure 6 we show uncompensated (left) and com-
pensated images (at 100Hz) in 30 second exposures
in the R-band. In this figure the compensated PSF
has a FWHM=1.00 arcseconds and the uncompen-
sated image has FWHM=1.29 arcseconds.

FIGURE 6:
ages.

100Hz, R-band 30 second Im-

In figure 7 we show 300 second exposures of NGC
2841 to show detailed image improvement in the
compensated case (right) versus the uncompensated
case (left). It was this image from which the stellar
profiles in figure 5 were extracted.

FIGURE 7: NGC 2841, 300 second expo-
sure.

After the initial run of success, the instrument was
returned to the laboratory for further work. Dur-
ing the lab work, the team discovered a 45 ms phase
delay in the error sensor position determination and
the application of the correction on the tip-tilt mir-
ror. This, effectively, limited the speed of the tip-tilt
corrections to ~20Hz!

Careful analysis of the real-time core showed that
memory initialization within the real-time core was
the culprit so this was moved to user space. The
phase delay dropped to ~80 us! Subsequent tests
in the lab showed that the system is now capa-
ble of performing closed-loop operation at 4000 Hz
without any limitations (less the availability of pho-
tons at such high rates). The WI'TM was returned
to the telescope for the 23 March 2002 T&E run
and the performance gains from the phase delay fix
were immediately apparent: typical improvements
in FWHM were 0.15 arcseconds or better in closed-
loop. The closed-loop rate was measured at 400 Hz
for a V=15.5 magnitude star or nearly double the
rate required in the original specification.

Lastly, during the T&E run in April 2002, the
WTTM delivered its best image quality to date
where a focus frame in the Gunn Z filter delivered
0.28 arcseconds and a 300 second integration deliv-
ered 0.33 arcseconds rivaling the Hubble Space Tele-
scope (HST) and setting a new record for the WIYN
telescope!

In figure 8 we show an image of the western edge
if globular cluster M92 in Gunn Z (0.31 arcseconds)
and Johnson R (0.33 arcseconds) depicting the im-
proved image quality over a large area of sky. In fig-
ures 9 and 10 we show the Ring nebula, M57, from
the WI'TM and from the HST. To the untrained ob-
server these images are virtually identical.

FIGURE 8:

FIGURE 9:

M92 in Gunn Z + Johnson R.

M57 in Ha + [NII] at WIYN.

FIGURE 10: M57 in [NII] from HST.

The WTTM is now being offered to the US astro-
nomical community for shared risks observing and
science papers are already beginning to flow [8]. In
figure 11 we show a colour composite image of the
Ring nebula ([OIII]=Green, Ha+[NII]=Red).

FIGURE 11: M57 in [OIII], Ha and [NTI].

5 Acknowledgments

Linux is a registered trade mark of Linus Torvalds.
RTAI is copyright Paulo Mantegazza et al, DI-
APM, Ttaly. mbuff is copyright Tomasz Motylewski.
NOAQO is the national center for ground-based night-
time astronomy in the United States and is operated

by the Association of Universities for Research in
Astronomy (AURA), Inc. under cooperative agree-
ment with the National Science Foundation. The
WIYN Observatory is owned and operated by the
WIYN Consortium, which consists of the Univer-

sity of Wisconsin, Indiana University, Yale Univer-
sity and NOAO.

References

[1] Daly, P. N. and Claver, C. F. 2000, Real-Time
Linux and LabVIEW as o Control Environment
for the WIYN Tip-Tilt Module, in Advanced
Telescope and Instrumentation Control Software,
Proceedings of SPIE Vol. 4009, H. Lewis, editor.

[2] Daly, P. N., Schumacher, G., Mills, D. and Ashe,
M. 1999, Real-Time Linux at the NOAO, Pro-
ceedings of the Real-Time Linux Workshop I, Vi-
enna.

[3] Daly, P. N. 2000, Real Time Linuxz and the
WTTM Project, in Astronomical Data Analysis

[4]

[5]

[6]

Software and Systems IX, ASP Conference Series
Vol. 216, N. Manset, C. Veillet and D. Crabtree,
editors.

Daly, P. N. 2000, The DUAL16CT Linux Device
Driver, WIYN Tip-Tilt Module Project, Tucson
A7 85719, USA.

Daly, P. N., 2002, The DIO316 Linux Device
Driver, WIYN Tip-Tilt Module Project, Tucson
A7 85719, USA.

Daly, P. N., 2002, The PCISC5 Linux Device
Driver, WIYN Tip-Tilt Module Project, Tucson
A7 85719, USA.

Daly, P. N. 2000, Interfacing Real-Time Linuz
and LabVIEW, Proceedings of the Real-Time
Linux Workshop II, Orlando.

Jacoby, G. H., Feldmeier, J., Claver, C. F., Gar-
navich, P. M., Noriega-Crespo, A and Quinn, J.
2002, Confirmation of SBS 1150+599A as an Ex-
tremely Metal-Poor Planetary Nebula, Astronom-
ical Journal (in press)

