Teaching Real-Time Control Using Free Systems Software

Kenneth H. Jacker
Computer Science Department
Appalachian State University

Boone, NC 28608 USA
khj@Qcs.appstate.edu

Abstract

The paper begins with a short description of the Department’s real-time course and its required group
projects. This is followed by an overview of the hardware and systems software used in a specific real-
time control laboratory assignment. After a discussion of the analysis, design, and implementation of the
project, the paper concludes with a brief look at future work.

1 Introduction

The theory and practice of real-time systems is
diverse and interesting [9, 10, 11, 23]. Topics include
scheduling (rate monotonic, earliest deadline first,
priority inversion, etc.), quality-of-service (streaming
audio and video), data acquisition and reduction,
and digital signal processing (spectral analysis,
adaptive digital filters, echo suppression, etc.).

Another particularly engaging area for
university-level instruction is real-time control.
Using computers to control traffic lights, oil
refineries, video games, or the space shuttle requires
specialized hardware and software in addition to
advanced computer science knowledge.

1.1 CS4620: Real-Time Systems

A senior/graduate-level course (CS4620) within the
Computer Science Department at Appalachian State
University has been taught once a year since the
early 1980s. Though some time is spent covering
more traditional real-time topics, the majority of the
semester concentrates on real-time data acquisition
and control.

Other papers have discussed the evolution and
structure of the course [7, 8]. Starting with
a single low-performance personal computer (PC)
and operating system (DOS), the course now uses
three high-speed PCs and free systems software.
The advantages of using commodity, off-the-shelf
computers and free open source software cannot be
over stressed.

1.2 Student Projects

(CS4620 consists of three hours of lecture each week
and a three hour laboratory. The lectures focus
on more theoretical aspects (e.g., analog-to-digital
converter design, POSIX threads, software modeling,
and Fourier analysis) whereas the labs are devoted
to the application of real-time data acquisition
principles. A new programming assignment is
given each week with students working in two- or
three-person groups. In addition to printed hardcopy
of all source files, each group must demonstrate its
application in action.

The following sections present one such project:
the “six segment display driver”, ssdd or (sd)?.
After first describing the particular hardware and
free systems software required by ssdd, a detailed
description of the project follows.

2 Project Hardware

2.1 Data Acquisition Board

Although the application could use the PC’s
serial and/or parallel ports for its inputs and
outputs, a more general approach is taken.
Since other course assignments involve analog
input and output, multi-function I/O boards
were purchased from National Instruments (NI).
Each PCI-MIO-16XE board contains three

major sub-systems: analog-to-digital conversion,
digital-to-analog conversion, and a group of eight
bi-directional, transistor-transistor logic (TTL)
compatible, digital ports. The direction of each
digital port is set via software during ssdd’s
initialization.

FIGURE 1: Seven Segment Display

2.2 Seven Segment Display

The most visible hardware component of the ssdd
project is a single seven segment display (SSD).
These electronic devices are common in digital
watches, microwave ovens, alarm clocks and many
other consumer products.

Segments In its simplest form, a SSD (see
Figure 1) consists of seven “lines” or “segments”
each of which is composed of multiple light-emitting
diodes. Each segment is identified by a lower-case
letter: a, b, c, ..., g. A particular segment is enabled
by setting its corresponding pin to a digital one and
disabled by using a digital zero. Note that the state
of each segment is independent of the others.

Digital Interface Only the first six segments
(a-f) of the SSD are controlled by ssdd. The
low-order six bits of the digital interface are
configured for output and correspond to the
segments as follows:

| segment | - - f e 4 c

Useful Segment Patterns Not all of the 27
total segment patterns are useful. In fact, most SSDs
are driven by BCD-to-seven-segment decoders (e.g.,
the TT SN54L.S49) which only allow decimal digits
and a few other characters to be displayed. When
an interface permits the independent enabling of all
seven segments, some interesting pattern possibilities
arise (e.g., “goose soup”, “you lose, fella”, “dollar”,
“philosophy is cheap”, and even a few Chinese
ideographs [15]).

2.3 Debounced Switches

An earlier lab used simple two-position mechanical
switches. Students wrote programs that sampled
the state of the switches at high-speed. They
saw that a single depression of the switch resulted
in multiple zero-one transitions. Thus, these
unmodified switches produced false readings. To
avoid this problem, ssdd uses two “debounced”
switches [6] for input: swO and sw1.

Digital Interface The two high-order bits in
the NI digital sub-system are used to determine the
state of the two switches. After being configured for
input during initialization, the application is able to
obtain the state of each switch via bits 7 and 6 as
shown below:

| bit# | 7 6

| switch | swl swO0 - - - - - - |

2.4 Keyboard

The final device needed by ssdd is the keyboard.
As explained below, the program presents a
curses interface to the user. Different options
of the program are specified using unbuffered and
“uncooked” character input obtained from the
keyboard.

3 Free Systems Software

Prior course offerings used proprietary software
environments [7]. The first version of the course
used a PC and ASYST (an extended version of
Forth). Later, with the help of a grant from
the National Science Foundation, the course moved
to a high-performance mini-computer manufactured
by Concurrent Computer Corporation. Though
the Real-Time Unix (RTU) operating system and
real-time libraries were excellent, the hardware and
software maintenance costs were too high for our
Department.

Learning from the past, the course has returned
to the PC platform. This time, however, the
operating system and support software are free.

3.1 Linux and the FSF

The majority of the systems software used in the
real-time course is based on the excellent GNU
packages developed and distributed by the Free
Software Foundation (FSF). In addition to gee, gas,
ld, gdb and related utilities, other freely-available
programs (e.g., gnuplot, scilab, tcm and zfig) form
the foundation for all software development and
laboratory assignments in CS4620.

By far the most important software component
is the Linux kernel itself. Even modern Linux kernels
are not suited for real-time work. Though they
do support soft real-time (using the SCHED_FIFO
scheduling mode), they do not include hard real-time
schedulers that can guarantee task scheduling
deadlines. The exciting “preemptible kernel patches”
[12] can reduce average latencies from hundreds of
milliseconds (ms) to the 1-2 ms range. For slow data
acquisition sampling rates, these approaches are fine.
However, when the rates approach 5 kHz or greater,
a hard real-time system is needed. See [10] for a
discussion of hard, firm, and soft real-time systems.

3.2 RTLinux

Many real-time operating systems (RTOSs) are
available for Intel, PowerPC, SPARC, and Alpha
processors — both free and commercial. Examples
of the latter include Compaq’s RSX, Wind River’s
VxWorks, and QNX [5]. Like Concurrent’s RTU,
these are excellent, full-featured and mature systems.
Unfortunately, there are two disadvantages in using
these products: cost and lack of source code.

Examples of free RTOSs are KURT [20],
RED-Linux [24], RTAI [3, 13, 14], and RTLinux
[1, 2, 25]. Only RED-Linux, RTAI and RTLinux
contain true hard real-time schedulers. For the past
four years, the real-time course has used RTLinux
originally developed by Victor Yodaiken and Michael
Barabanov while at the New Mexico Institute of
Mining and Technology.

RTLinux treats the entire conventional Linux
kernel as the lowest priority real-time thread.
Typical applications are divided into two cooperating
entities: a single non-real-time Linux process, and
multiple real-time threads. All time-critical portions
of the application reside on the real-time “side”.

The remaining elements (user interface, data display,
file input and output, networking, etc.) are placed
within the standard Linux process.

Naturally, the real-time and non-real-time
components must be able to communicate with
each other. RTLinux provides this capability
with real-time FIFOs (first-in, first-out) and shared
memory (see Figure 2). Since the FIFOs are
synchronous, no special mechanism is needed to
ensure reliable inter-process communication. Shared
memory, however, requires the use of some type of
synchronization facility.

FIFOs

/]]]]I
Rea-Time)—— TT[[]
T~}

Shared Memory

Linux
Process

FIGURE 2: FIFOs and Shared Memory

3.3 COMEDI

Modern data acquisition systems need software to
access their digital and analog hardware. Though
students could be asked to write a custom device
driver for the NI board [18], the task would exceed
both their background and available course time.
Instead, CS4620 uses the Linux Control and Mea-
surement Device Interface (COMEDI) [19] created
by David Schleef while at the Lawrence Berkeley
National Laboratory.

This software consists of two major components:
device drivers (implemented as loadable Linux
modules) and libraries. Both user space (comedilib)
and kernel space (kcomedilib) libraries are available.
Kcomedilib was created specifically for use within
real-time Linux threads.

Besides providing a robust application program
interface (API), COMEDI function calls are device
independent. This is achieved through an extra
software layer between the library functions and
specific data acquisition device drivers. Some of
the common boards supported by COMEDI include
those manufactured by Analog Devices, National
Instruments, and Data Translation.

Control
MONITOR

Thread

SWO0

FIGURE 3:

4 Analysis: What?

The main behavior of the ssdd application (see
Figure 3) is to create different dynamic, cyclic
patterns using the first six segments of the SSD. The
frequency at which patterns repeat is determined by
the “metabolic rate” (see below) which has a default
value of 1 cycle per second.

Upon program startup, a “splash screen” is
momentarily displayed followed by a top-level menu
showing a list of various available “modes”. Once
a mode is selected, the SSD immediately displays
the corresponding pattern and a mode-specific screen
(see Figure 4) is shown on the monitor. In addition,
all screens display the current time and date which
are updated each second. Note that a given mode
continues until another is selected or the program
terminates.

| Mode: Clockwise 02 Dec 6 12:00 |
| |
| mr: 1.00 Hz |
| |
| swl ===> mr++ swO ===> mr—— |
FIGURE 4: ssdd Mode-Specific Screen

4.1 Modes

The project requires a total of seven modes. One
of the modes is called the “mystery mode” and is
created by the group members. Following is a short
description of three typical modes.

Test In order to verify that the SSD interfacing
hardware (supplied by the instructor) has been wired
correctly and that the SSD itself is not defective,
a test mode is run automatically during program
initialization. This simple mode enables all six

KEYBRD

The ssdd Application

segments and disables all six segments three times
at a rate of 1 cycle (i.e., all segments “on” and all
segments “off”) per second.

Alternating Us This mode consists of two
patterns: an “upper U” (segments a, b and f) and
a “lower U” (segments ¢, d and e). The two “Us”
bounce up and down at the current metabolic rate.

Clockwise Here, the pattern consists of an
illuminated segment going around the perimeter of
the SSD in a clockwise direction. Each of the
segments a, b, ¢, d, e, and f are successively enabled
and then disabled.

4.2 Metabolic Rate

As mentioned earlier, the metabolic rate (mr)
determines the frequency of the dynamic patterns
being displayed on the SSD. It begins at one cycle
per second, but can be increased or decreased by
depressing (single clicking) the left (swi1) or right
(sw0) switch respectively.

The maximum mr is limited to 30 Hz. Changing
patterns on the SSD appear as a “blur” at
frequencies greater than about 30 Hz. The center
of each mode screen contains the current mr which,
like the date and time, is updated dynamically.

5 Design: How?

The ssdd application uses both real-time
and non-real-time components. The primary
responsibility of the real-time components is
monitoring the state of the two switches and ensuring
that the proper SSD segments are enabled at
the metabolic rate. The standard Linux process
(running on the non-real-time side) manages the

screen, routes keyboard inputs/commands to the
real-time threads, and receives messages from the
real-time side indicating changes in the metabolic
rate. As shown in Figure 3, real-time FIFOs are
used to pass commands and updated metabolic rates
between the Linux process and the real-time threads.

5.1 Threads

Most students use two groups of RTLinux threads.
Two threads are created each of which has the
purpose of monitoring one of the switches. The work
of sequencing and cycling the segments for each mode
is given to separate “mode threads”. Note that all
threads in ssdd are periodic.

Before each thread can begin executing, it must
first be created and scheduled. An internal data
structure is instantiated which includes the thread’s
priority, period and other information. Once the
thread exists, its execution is requested. ~When
the thread actually begins running depends on its
activation time and priority as specified in a node
within RTLinux’s “run queue”.

Part of the difficulty of this project lies in
accurately detecting single- and double-clicks of
the switches. The problem is simplified by using
debounced switches. The logic, however, is still
complicated. Each group is required to model the
switch behavior using a state transition diagram
(STD). The switch-monitoring threads, therefore,
are finite state machines. An example of such a
model is shown in Figure 5.

Idle
IV) i i
sw
W
alarm(scmax) Not Sclicking
A ring .
Y _sw_|
Checking
sw ring
cancel alarm process_sc()
alarm(mcgmax)
Y
’ SC Pending ‘ ’ Not Dclicking ‘
SIV —_— .

cancel alarm nng
alarm(scmax)

Y

DC Pending

_sw |
cancel alarm
process_dc()
FIGURE 5: STD: Switch Behavior

5.2 RT FIFOS and FIFO Handlers

As requests are made by the user via the keyboard
(change of mode or program termination), they are
validated and then written to one of the real-time
FIFOs, the “control FIFO”. A second FIFO, the
“message FIFO”, is used to advise the Linux process
of changes in the metabolic rate. Two very different
methods are used to obtain the data being placed
within these FIFOs.

In order to avoid unnecessary processor
overhead by the real-time threads, a FIFO handler
is created during program startup. Instead of
constantly monitoring the control FIFO for new
input, the handler (a C function) is invoked
asynchronously any time new data arrives. Once
the handler gets control, it reads the new control
information and performs the requested action: stop
the current mode thread, terminate all threads, or
change the current mode.

A different problem appears on the
non-real-time side. Since the Linux process must
update the displayed date and time each second,
it cannot just issue a Unix read() on the message
FIFO. The process would “block” if no new mr was
in the FIFO. One solution to this problem is to use
select () [22] to monitor two file descriptors. One
descriptor corresponds to the message FIFO and the
second to “standard input” (for keyboard input).

Another approach is to use a standard Linux
thread within the non-real-time process which
updates the date and time asynchronously. This,
in effect, would make the process completely “input
driven”. In other words, select() would use a
“timeout” of zero, thus suspending the process until
input became available from either the message
FIFO or keyboard.

6 Implementation

Space does not permit a detailed discussion of a
typical implementation. However, a few comments
can be made.

Much of the code on the non-real-time side
concerns itself with displaying text on the screen and
menu management (also modeled as a STD). The
former uses curses [4, 21], a simple, character-based
interface first introduced in an early Berkeley
Software Distribution (BSD) release. Most students
seem to quickly understand how to effectively use the
package through a class lecture and sample code.

RTLinux began using POSIX threads [16] in
version 2.0. Though some non-portable extensions

are included (e.g., pthread make periodic np()),
most routines adhere to the POSIX standard. Many
sample programs are included in the RTLinux
distribution to help learn how to use real-time
threads and FIFOs. In particular, one fun program is
frank which repeatedly writes “Frank” and “Zappa”
to two FIFOs using two threads running at different
priorities. A standard Linux process reads the FIFOs
(using select()) and copies their contents to the
screen.

COMEDI does a good job of providing access
to most of the more advanced features (e.g., direct
memory access) of a wide range of data acquisition
boards while still retaining device independence.
Overall, using the digital interface with COMEDI
is quite easy. For example, once the direction of the
digital lines is specified with comedi dio_config(),
reading from and writing to the digital sub-device is
done via the comedi_dio bitfield() function.

Analog input and output, however, is much
more complicated. The most recent version of
COMEDI uses “commands” instead of a multitude
of functions with complex calling sequences. Though
(CS4620 does not currently use the newest version,
it appears that creating analog applications will be
much easier with the new APIL.

7 Future Work

7.1 Tecl/Tk Instead of curses

The use of curses is awkward and dated. Most of the
students would much prefer using a graphical user
interface instead of the simple character interface
provided by curses. In the future, students will
write the entire non-real-time portion in Tel/Tk
[17). Though time must be spent teaching the
fundamentals of this popular interpreted language, it
is easy to learn and will provide a much more modern
and attractive interface to the real-time applications.

7.2 Using All Segments via Encoding

The ssdd application should be able to control all
seven of the segments. Even though it will require
more complicated interfacing between the NI outputs
and the SSD, each of the seven segments can be
uniquely specified by encoding its “segment number”
(e.g., 001/a, 010/b, ..., 111/g) in the lower three
bits of the digital output. Another approach would
associate each of the 26 possible digital output values
with more complicated, multi-segment patterns (e.g.,
1001/ “upper U”, 1010/ “lower U”, etc.).

7.3 RTAI

As mentioned in Section 3.2, RTAI (Real Time
Application Interface) also supports hard real-time
scheduling. Developed by Paolo Mantegazza in
the Aerospace Department at the Politecnico di
Milano, this alternative to RTLinux uses a very
similar programming model (e.g., the splitting of an
application into real-time and non-real-time sides,
using FIFOs and/or shared memory for inter-process
communication, etc.). Efforts will be made to use
RTAI in future course offerings.

8 Summary

This paper has described the use of free systems
software in teaching a university course in real-time
data acquisition and control. Though Real-Time
Systems requires significant prerequisites, most
students enjoy the technical nature of the course
and the challenges in implementing the lab projects.
Some of the difficulties of using RTLinux and
COMEDI will hopefully be reduced in upcoming
offerings of the course.

References

[1] Barabanov, M. Introducing Real-Time Linux.
Linuz Journal 34 (February 1997).

[2] Barabanov, M. A Linux-based Real-Time
Operating System. Master’s thesis, New Mexico
Institute of Mining and Technology, 1997.

[3] Cloutier, Pierre, Mantegazza, Paolo,
Papacharalambous, Steve, and Yaghmour,
Karim DIAPM-RTAI Position Paper. In Real
Time Linuz Workshop (2000), Thinking Nerds.

[4] Goodheart, Berny
Prentice Hall, 1991.

Uniz Curses Ezxplained.

[5] Hildebrand, D. An Architectural Overview of
QNX. In Proceedings of the USENIX Workshop
on Micro-Kernels and Other Kernel Architec-
tures (April 1992), USENIX.

[6] Horowitz, P., and Hill, W. The Art of Elec-
tronics, second ed. Cambridge University Press,

1989.
[7] Jacker, K. H. Real-Time Instructional
Technology: Experiences with Multi-User

Real-Time Systems. In Real-Time Systems Fd-
ucation (1996), IEEE Computer Society Press.

8]

[14]

Jacker, K. H. Teaching Simple Sound
Synthesis: Real-Time, Numeric and Symbolic
Computation. In Real-Time Systems Education
(1997), IEEE Computer Society Press.

Krishna, C. M., and Shin, K. G. Real-Time Sys-
tems. McGraw-Hill, 1996.

Laplante, P. Real-Time Systems Design and
Analysis: An Engineer’s Handbook, 2nd ed.
IEEE Press/IEEE CS Press, 1997.

Liu, W. S. J. Real-Time Systems. Prentice Hall,
2000.

Love, Robert Lowering Latency in Linux:
Introducing a Preemptible Kernel. Linux Jour-
nal 97 (May 2002).

Mantegazza, P., Bianchi, E., Dozio, L., and
Papacharalambous, S. RTAI: Real time
application interface. Linuz Journal 72 (April
2000).

Mantegazza, Paolo DIAPM-RTAI for Linux:
WHYs, WHATs and HOWs. In Real Time
Linuz Workshop (1999), Vienna University of
Technology.

Neumann, P. G. DisPlay’s the Thing. Software
Engineering Notes, V1/#1 (January 1989).

Nichols, B., Butlar, D., and Farrell, J. Pthreads
Programming. O’Reilly and Associates, 1996.

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

Ousterhout, J. K. Te¢l and the Tk Toolkit,
fourth ed. Addison Wesley, 1994.

Rubini, A. Linux Device Drivers, second ed.
O’Reilly & Associates, 2001.

Schleff, David Control and Measurement Device
Interface. http://stm.1bl.gov/comedi.

Srinivasan, B., Pather, S., et al A
Firm Real-Time System Implementation Using
Commercial Off-The-Shelf Hardware and Free
Software. In Proceedings of the 4th IEEE Real-
Time Technology and Applications Symposium
(June 1998).

Strang, John, Mui, Linda, and O’Reilly, Tim
Termcap & Terminfo. O’Reilly and Associates,
1996.

Stevens, W. R. UNIX Network Programming,
second ed., vol. 1. Prentice Hall, 1998.

Vandoren, A. H. Data Acquisition Systems.
Reston, 1992.

Wang, Y.-C., and Lin, K.-J. Providing
Real-Time Support in the Linux Kernel. In Pro-
ceedings of the 5th IEEE Real-Time Technology
and Applications Symposium (June 1999).

Yodaiken, V., and Barabanov, M. A Real-Time
Linux. In Proceedings of the USENIX Annual
Technical Conference (1997), USENIX.

