
LOOSELY COUPLED TOOL INTEGRATION
ARCHITECTURE FOR EMBEDDED LINUX

Seung Woo Son, Hyung–Taek Lim, Chae–Deok Lim, Heung–Nam Kim
Embedded Software Research Team

ETRI–Computer & Software Research Laboratory
161 Gajeong–dong, Yuseong–gu, Daejeon, 305–350, KOREA

{swson,htlim,cdlim,hnkim}@etri.re.kr

Abstract

When developing applications under embedded Linux, there is a range of software tools to assist the
development process. However, they are so tightly integrated that it is not only difficult to integrate into
IDE but also hard to add an additional tool. They are communicating with each other through their
own protocols so that there is much communication overhead between host and target machine. In this
paper, we propose loosely coupled tool integration architecture based on lightweight RPC mechanism.
The proposed architecture is mainly composed of two agents running on host and target side respectively.
To integrate various tools in a seamless way, we suggest well–defined host–to–target protocol and inter–
tool protocol. Host agent mediates request from several host tools and interacts with the target agent.
The host agent set out a set of common APIs needed for host–resident tool integration. The target agent,
the counterpart of the host agent, is a kind of debug demon which servers request from the host agent.
As designed for embedded software development, the size of target agent is about 108KB and consumes
less than 5% of CPU time. With the open tool architecture, we easily integrate various host tools using
open APIs.

1 Introduction

Embedded Linux is getting popular in embedded sys-
tem market because of its flexibility of use and var-
ious target support without any royalty [6]. When
developing embedded applications under embedded
Linux, there are many tools that support the devel-
opment process. Industry’s best–known free software
development tool is GNU toolkit. However, the com-
ponents in GNU toolkit were originally designed for
developing desktop applications in a Unix–like en-
vironment [2]. These inherent limitations made de-
velopers hard to choose a Linux as their embedded
software solutions.

In traditional embedded software development en-
vironment like Tornado [11], Spectra [8] and Esto
[3], there are already their own IDEs which make
it easy to develop embedded applications(IDEs are
dominating tool). In Linux side, there exist two
ways of approach in embedded Linux toolkits. One
is simple approach that relies heavily on the GNU
tools. The other is complex approach that provides
GUI tools. However, the user interface is a kind of
GUI/command line integration, so that it is difficult

for a new Linux developer to become accustomed to
the environment [1].

In addition, these tools are tightly coupled, so that
it is difficult to add third–party tools [7]. Tightly
coupled means that each tool in development toolkit
communicates with each other with its own commu-
nication mechanism. Even a rapid change in Linux
kernel and its development tools make it difficult for
commercial tool vendors to adapt a powerful IDE
based on open architecture.

In this paper, we propose loosely coupled tool inte-
gration architecture for embedded Linux. The pro-
posed architecture is the extension of our previous
tool architecture for embedded Linux with same tool
architecture. We adapted many features from tradi-
tional architecture and made some modification on
it.

This paper is organized as follows; Section 2 dis-
cusses the tool integration architecture. The design
and implementation of the proposed architecture is
described in section 3. Section 3.1 and section 3.2
describe the internal structures of our architecture.
The evaluation of the proposed architecture is de-
scribed in section 4. Finally, conclusion and future



work are discussed in section 5.

2 Tool Integration Architec-
ture

Even in development of embedded software, IDE im-
proves productivity and quality of code. To provide
embedded programmers with flexibility in choosing
tools and targets with a IDE, underlying tool archi-
tecture is important. In terms of tool integration
architecture, there are three options [7]:

• tightly integrated/closed system,

• loosely integrated/open system,

• distributed object approach.

In tightly integrated system, if a tool wishes to
talk to another tool then a one–to–one communica-
tion link is established between the two tools. This
approach meets considerable user dissatisfaction be-
cause it is difficult for users to add an additional tool
[7]. Many toolkit for embedded Linux, like Red Hat’s
ELDS [1], choose the closed architecture.

In the loosely integrated system, the integration
involves tools communicating via a ’controller’ which
is central to the IDE. This approach accommodates
both first and second level integration, but it re-
quires the definition of a communication mechanism
between each tool and the controller [7].

In traditional embedded software development,
there are already many IDEs which facilitate the de-
velopment process. Overall ease of using the devel-
opment environment is an important factor in choos-
ing the RTOS and its toolkit. For example, VxWorks
[12] has earned its popularity in embedded develop-
ment tool market because of its powerful IDE, Tor-
nado [11]. Many commercial IDEs adapt the open
architecture for better productivity and easy of use
[13]. In architectural view of point, the distributed
object approach may be the most suitable option.
However, it is difficult to adapt to a remote develop-
ment environment because using COM or CORBA
as communication mechanism may be too heavy for
the target machine which has usually limited com-
puting resources.

A growing number of embedded Linux tool ven-
dors are now offering toolkits with IDE. However,
they are mainly focusing on simplifying the task of
embedding Linux.

3 Design and Implementation

This section explains the design and implementation
of our tool integration architecture. The architec-

ture is originated from the architecture for RTOS
in which kernel and applications tasks (or threads)
are running on a single memory space like VxWorks
[12], VRTX [8] and Qplus–T [4, 5, 3, 9]. We modify
our previous architecture, so that new architecture
is appropriate for embedded Linux.

The central ideas of the proposed architecture are
as follows:

• Minimal overhead on the target.

• Centralized communications with the target.

• Open architecture to make it easy to add third-
party tools.

The following two agents are important, because
they mediate all contact between the host–resident
tools and the target:

• The TA(Target Agent) is the target–resident
component that handles request from host
tools.

• The HA(Host Agent) is residing on a host
machine and manages communication between
various host tools and a TA.

Figure 1 illustrates the role of these two agents
in our architecture. With these two agents archi-
tecture, we can support embedded programmers for
embedded Linux with same tool architecture. Under
the Linux development environment, tools in Figure
1 include gcc, gdb [10], remote shell, some target
monitoring or profiling tools, etc.

FIGURE 1: HA, Tools and TA

3.1 TA and host–target interface

Host–target interface has almost same protocol as
the previous interface, QDI(Qplus Debug Interface)
[9]. The TA carries out requests transmitted from
the HA, and replies with the results. The TA con-
tains a compact implementation of UDP/IP, which
supports an RPC messaging protocol called QDI.



The QDI protocol is a minimum set of the services
necessary to respond to requests from the host tools.
These protocol requests include memory read/write
operations, breakpoint/event notification services,
and process control. The QDI protocol uses the Sun
Microsystems specification for External Data Rep-
resentation (XDR) for data transfer. Since the TA
is also a process running on embedded Linux, the
TA can execute in user mode. This limits debugging
aspect of an embedded application to an application–
level debugging.

Figure 2 illustrates the internal structure of TA.

FIGURE 2: Internal structure of TA

The trace thread is in charge of processing ptrace–
dependent services for a process. The main thread
initializes TA when TA starts up and repeats receiv-
ing QDI request from HA, dispatching a QDI func-
tion, handling ptrace–independent services, and re-
turning results to HA.

If an application program is to be traced in tar-
get, TA’s main thread creates a trace thread, which
in turn forks an application process. If more than
one application program is to be traced, as many
trace threads are needed.

Upon receipt of a ptrace–dependent QDI request,
the main thread forwards it to the trace thread.
Then, the trace thread processes the request and re-
turns results to the main thread, which in turn re-
turns results to HA. While the trace thread is waiting
for stop signal from of the application process, the
main thread can handle other QDI requests.

The main and trace thread use global variables to
share data, which results in almost no memory copy,
and use semaphores to synchronize them.

3.2 HA and Inter–tool Interface

The HA runs on host systems. All tools access a
target through HA, whose responsibility is to satisfy
each tool’s requests. The HA manages all of the de-
tails of communicating with the target, so that tools
are not concerned themselves with host–target trans-
port details. The host tools use the QTI protocol
[4, 5] to communicate with HA.

The HA includes following modules to support
inter–tool interface [4, 5].

• Session management

• Information support

• Event management

• Debugging support

Since the RTOSes like VxWorks [12], VRTX [8]
and Qplus–T [5] are running on single space memory
system, such management modules for object mod-
ule, symbol table and target memory are required.
However, since Linux has file system, the object mod-
ule loading is not required. HA’s role in our archi-
tecture is a communication mediator between host–
resident tools and TA.

Figure 3 illustrates the internal structure of HA.

FIGURE 3: Internal structure of HA

The HA is mainly composed of four components;
stub, front–end, core, and back–end. The stub is
a static library(libqti) and each tool communicat-
ing with HA must be statically linked with it. If a
tool call a stub function, the stub function calls the
front–end function. The front–end function can use
make use of HA’s core function. If the request from
a tool needs communication with TA, that front–end
function calls a back–end function which sends QDI
protocol to TA.

4 Evaluation

The low overhead on the target is important because
the target system is usually a low–end device. Our
approach adapt lightweight RPC for back–end mod-
ule, so that it put low overhead on the target. The
binary size of TA is just 108KB and consumes about
5% of total CPU time. These small size and low
overhead target daemon is appropriate for low–end
devices, like PDA or WebPAD.

Our architecture encourages users and third par-
ties to customize our environment and to add fea-
tures to it. The proposed architecture is structured
to make adding tools easy.

Following is the procedure to add a new QTI and
QDI under our architecture.

1. define a new QTI and QDI protocol to add,



2. define a data structure that a new protocol will
use,

3. define function,

A new QDI and QTI is defined in the correspond-
ing header file as below.

#define QTI_FILE_PUT 200

#define QDI_FILE_PUT 200

If there exists parameters that the stub and front–
end function will use, users should define the param-
eters in structure data type. To add a new proto-
col into HA, users should define four functions; stub
function, front–end function, back–end function, and
XDR function. As depicted in Figure 4, the stub
function calls front–end function. The front–end
function is divided into QTI service function (start-
ing with qtisvc) and QDI service function(starting
with tgt). The front–end function calls back–end
function whose name starts with rpcCore.

Comparing the execution time of steping over
memcpy() statement with gdb/gdbserver, our ap-
proach is 4 msec slower than that of gdb/gdbserver.
Stepping over assignment statement is less than 1
msec slower. We believe that several msec of delay is
tolerant to the users considering the easy of adding
a new tool.

FIGURE 4: The relation among stub,
front-end and back end

5 Conclusion and Future Work

In this paper, we propose a loosely coupled tool in-
tegration architecture under embedded linux. The
open system has advantages over the closed sys-
tem in that it is appropriate for extending IDE and
adding a new tool easily. Since our architecture is
the base of our IDE for embedded software develop-
ment, lower overhead on the target is important. We
attained the lower overhead on the target via UDP
with XDR. Though it is a bit slower than just us-
ing gdb/gdbserver as a debugging environment, our
architecture is scalable than gdb/gdbserver.

Linux provides many advantages of an open source
distribution model. But along with many advantages

of Linux come the usual drawbacks of an open source
project. The rapid changes in Linux itself make it
difficult for tool vendors to maintain their develop-
ment tools within their own IDEs. We will extend
our architecture tolerant to rapid change in develop-
ment tools in Linux environment.

References

[1] Jerry Epplin. A developer’s review of
red hat’s embedded linux developer suite.
http://linuxdevices.com/, Nov 2001.

[2] Bill Gatliff. Embedding with GNU: GNU de-
bugger. Embedded Systems Programming, pages
80–94, Sep 1999.

[3] K.Y. Lee and et al. A design and implemen-
tation of a remote debugging environment for
embedded internet software. ACM SIGPLAN
Workshop on LCTES, Jun 2000.

[4] C. D. Lim and et al. A tool broker in remote
development environment for embedded appli-
cations. IASTED AI, pages 757–761, Feb 2000.

[5] C. D. Lim and et al. Middleware for platform
independent toolset to develop real-time embed-
ded applications. RTCSA, pages 49–53, Mar
2002.

[6] John Lombaro. Embedded Linux. New Riders,
2002.

[7] L. P. Maguire, T. M. McGinnity, and L. J. Mc-
Daid. Issues in the development of an integrated
environment for embedded system design, Part
B: design and implementation. Microprocessors
and Microsystems, pages 199–206, 1999.

[8] Microtec. VRTXsa Real-Time Kernel: Pro-
grammer’s Guide and Reference. Microtec,
1997.

[9] S. W. Son and et al. Debugging protocol for re-
mote cross development environment. RTCSA,
pages 394–398, Dec 2000.

[10] Richard Stallman. Debugging with GDB.
Cygnus, 2002.

[11] WindRiver Systems. Tornado User’s Guide 2.0.
WindRiver Systems, Inc., 1999.

[12] WindRiver Systems. VxWorks Programmer’s
Guide 5.4. WindRiver Systems, Inc., 1999.

[13] Peter Varhol. Integrated software tools improve
productivity and code quality. Electronic De-
sign, pages 62–70, October 1999.


