Predictability in Embedded Linux and Commercial Requirements

Masatoshi Iwasaki Tatsuo Nakajima
Department of Computer and Information Science
Waseda University
3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
pingoo@dcl.info.waseda.ac.jp, tatsuo@dcl.info.waseda.ac.jp

Abstract

In Japan, many companies who are building complex embedded systems such as cellular phones and
digital televisions are considering to adopt embedded Linux for their products. Most of these companies
have been adopted the ITRON real-time operating system as their operating systems, but the function-
alities are not enough to build complex embedded systems because ITRON does not provide memory
protection, and file systems and network systems are provided as additional middleware components.
Many future embedded systems need to access various services on the Internet, and Linux already pro-
vide a lot of middleware to reduce development cost dramatically.

Japan Embedded Linux Consortium consists of about 100 companies in Japan is now discussing on how
to migrate from ITRON-based embedded systems to Linux-based embedded systems. Especially, many
companies are interested in whether embedded Linux can satisfy timing constraints for their products or
not.

Our paper describes requirements on timing constraints that should be satisfied in their products.
We have been discussing the requirements in the Real-Time Working Group of Japan Embedded Linux

Consortium, and we like to show whether current Linux can satisfy the requirements.

1 Introduction

Many manufacturers who are building embedded sys-
tems in Japan have been adopted ITRON to their
products. Recently they are considering to use Linux
as a replacement of ITRON. Because ITRON is lack-
ing some major features of modern operating systems
such as file system, networking, and memory protec-
tion. Also, they do not offer multimedia functionali-
ties and various middleware.

But the migration of operating systems is not easy.
The manufacturers have to review whether Linux can
satisfy their requirements. They might change in de-
velopment environments and hardwares if they de-
cide to adopt Linux for their products. There are
many types of embedded systems in Japan. All
of them do not need Linux. Multimedia and net-
work attached devices such as PDA and access ter-
minals for wireless networking have been already
adopted Linux. On the other hand, small and price-
constrained devices will adopt ITRON and other
RTOSes. All products belonging to this category
have to be extremely high responsive and very in-
expensive. Adopting Linux to these devices is so

hard because the migration to Linux costs high and
there are no need for fully functional operating sys-
tems. Just they hope is simple, fast and inexpensive.
Other devices that are needed to meet their timing-
constraints as same as traditional RTOSes but also
wanted to be more functionalities than them are the
main target of the discussions in this paper.

In the following sections, we show the various as-
pects of embedded systems in Japan and what their
manufacturers expect to Linux. At first , we in-
troduce Japan Embedded Linux Consortium, Em-
blix . In this section, we explain why Emblix are
founded and what the members of Emblix are dis-
cussing. In Section 3, we describe the relationship
between embedded systems and ubiquitous comput-
ing. Section 4 presents the detailed description of
embedded systems in Japan. And requirements for
adopting Linux to RTOS-based embedded systems
are introduced in Section 5. In Section 6, we show
the real-time capabilities of Linux kernel: minimizing
non-preemptable sections and high resolution timer.
Section 7 shows the simple experiments and results
on the hardware that are really used as embedded
systems, not x86-based high performance worksta-



tions but ARM, MIPS and SH. Finally, Section 8
concludes the paper.

2 Japan Embedded Linux Con-
sortium

Japan Embedded Linux Consortium(Emblix) has
been established from July of 2000 to promote Linux
in embedded areas in Japan. Currently, about 100
members have been involved in our consortium. The
members include Sony, Panasonic, Toshiba, IBM,
NEC and Fujitsu. In our consortium, the above
members have been discussed various issues to adopt
Linux for their embedded products. In the section,
we present a background and current activities of
Emblix, and show our future plan. In the next sec-
tion, we also would like to describe the relationship
between ubiquitous computing and embedded sys-
tems, and our opinions to show the importance of
ubiquitous computing in future embedded system
communities.

2.1 Linux and ITRON

In Japan, a lot of industrial embedded products
has adopted the ITRON specification operating sys-
tem(ITRON). ITRON is not an actual operating sys-
tem implementation. It specifies the kernel interface,
and many vendors has been implemented the specifi-
cation for their products. Also, many RTOS vendors
have sold products to implement the specification.
The specification contains basic functionalities such
as scheduling, thread managements, and simple inter
process communication. Thus, respective companies
have been implemented a lot for software on the op-
erating systems. Currently, the operating systems
have been adopted by many products such as digital
televisions and cellular phones that are developed in
Japan.

However, most of embedded systems have became
very complex now. For example, a current cellular
phone in Japan contains a Web browser, a Java vir-
tual machine, e-mail software, and camera software.
On ITRON, these software modules are running on
a single address space. To implement these software
modules in a robust way, we need a more powerful
operating system. Linux currently supports various
CPU architectures, and many kernel modules can
be loaded dynamically. The characteristics are very
suitable for embedded systems. Therefore, many in-
dustries have considered that using Linux for their
products provides big merits for them.

2.2 Motivation of Emblix

As described in the previous section, many embed-
ded system products have adopted ITRON in Japan.
Therefore, there is a big barrier to adopt Linux for
their products because there are a lot of differences
between the operating systems. One of the most
important roles of Emblix is to identify and solve
problems to migrate ITRON to embedded Linux in a
smooth way. For example, most developers expect to
use existing tool chains to develop embedded systems
even if they adopt embedded Linux. Also, we need to
reuse a lot of software developed on ITRON because
we need to develop actual products very quickly, and
there is no time to rewrite entire programs on Linux
completely. Moreover, many people do not know is-
sues for using Linux in embedded areas such as legal
issues and worst case response time.

It is very important to discuss these issues publicly
to share a lot of knowledge about using Linux for
embedded systems. Emblix presents various issues
to adopt embedded Linux at many embedded system
forums, and defines specifications about technologies
related to the migration from ITRON to embedded
Linux.

2.3 Current Activities of Emblix

Currently, Emblix organizes four working groups to
discuss issues about embedded Linux. The first
working group discusses legal issues. The group is
especially talking about issues about GPL and its
impact to embedded products.

The second working group is working on the hybrid
architecture. Especially, we are working on mak-
ing a specification of “Linux on ITRON”. Linux on
ITRON defines a specification that executes Linux
on ITRON. Thus, both ITRON-based software and
Linux-based software can be executed on the same
system. This makes the migration from ITRON to
Linux very easy because we can still use existing
ITRON-based software with Linux-based software to
build Linux-based embedded systems.

The third working group is working on the develop-
ment environments for embedded Linux. The group
defines several specifications to use ITRON-based de-
velopment tools for embedded Linux.

The fourth working group is working on the real-
time capabilities of embedded Linux. Especially, the
group is interested in the worst case response time
of embedded Linux that reports in the paper. Also,
the group is working on the differences among several
real-time extensions of Linux.



2.4 Future Plan of Emblix

In Japan, currently several products that adopt em-
bedded Linux have appeared in the markets, and
many products based on Linux will be shipped next
year. We believe that the first phase of our role is
finished. However, we need to consider many issues
for building future embedded systems. For example,
we need to take into account security and privacy for
Internet appliances. Also, we need to take into ac-
count educational issues since traditional embedded
systems use various operating system platforms, and
it is not easy to use them for educational purposes.
We believe that Linux may solve many educational
problems due to its openness.

Currently, the most important issue in Emblix is how
to establish a open source community for embedded
systems. We still need many features in Linux to
build future embedded systems. Also, it is very im-
portant to provide various open source middleware
on embedded Linux to reduce the development cost
of future embedded systems. The open source mid-
dleware enables us to build various embedded sys-
tems in research communities, and it makes it very
easy to create various research prototypes and make
them actual products very quickly.

3 Embedded Systems
Ubiquitous Computing

and

In the future, ubiquitous computing environments[4,
8] will change our lives dramatically. The vision of
ubiquitous computing environments is to acquire in-
formation in our environments that are not available
before by using sensor technologies[1]. Also, the en-
vironments will make it possible to control many ev-
eryday objects by embedding very small and cheap
computers. One of the most important issues to real-
ize ubiquitous computing is to integrate a real world
and a cyber space in a seamless way. This makes
it possible to merge bits and atoms[6]. Thus, soft-
ware infrastructure for ubiquitous computing should
provide a world model that provides a model of our
world, which can be accessed by a program, and an
application can change its behavior and change the
real world by accessing the model[2]. Also, a model
in a cyber space can be manipulated by a physical
object[3].

In ubiquitous computing environments, we need to
consider ultra heterogeneity in various aspects such
as hardware platforms, application’s requirements,
and environmental divergence. For example, it is
not easy to develop software on respective hardware
platforms. Once a program is written, the program
should be executed on various platforms. However,

it is very difficult to achieve the goal since respec-
tive requirements are surprisingly different. We be-
lieve that it is necessary to take into account physical
environments such as resource constraints, distribu-
tion, and failure explicitly when designing programs.
Also, we think considering the each component’s as-
sumption and the dependencies among components
is very important to build ultra portable software.

In our projects, we are currently working on devel-
oping middleware for ubiquitous computing environ-
ments. We believe that our middleware will sup-
port various future ubiquitous computing applica-
tions such as smart space applications, entertainment
applications such as robotic and game, and ad-hoc
interpersonal communication applications. If there
is no right middleware support, it is very hard to
implement these applications.

We are currently organizing the following four
projects: Autonomic Components, Pervasive
Servers, Universal Interaction, and Smart Mate-
rials. The autonomic component project provides a
component framework for ultra heterogeneous en-
vironments for building ultra portable applications.
The framework makes it possible to adapt a com-
ponent according to application requirements, plat-
form requirements and environment requirements
by supporting dependencies among components and
assumptions of each component explicitly. In the
pervasive server project, a large number of micro
servers are embedded in our environments. Some
servers contain sensors to provide information about
the real world, and other servers allow us to con-
trol actual objects from programs. A mobile server
that is wearable by each person integrates several
pervasive servers near from the mobile server in an
ad-hoc way. We are developing several applications
on a mobile server to show the effectiveness of our
approach. The universal interaction project allows
us to use any interaction devices to access various
services. For example, a control panel can be shown
at the nearest display from a user, and the panel
can be navigated by various input devices such as a
PDA, a cellular phone, and a game console. Also, the
structure of the presentation is changed according
to a user’s situation. If a user can use both a large
display and a small display, a video will be shown
on the large display, but a control panel is appeared
on the small display. Also, in the project, we are
working on how several services are composed with-
out noticing multiple services from a user. In the
smart material project, a world model is created by
using various sensor technologies. Also, the project
is developing a framework to accessing the world
model. In the future, various sensors are contained
in everyday materials. The goal of the project is



to extract various information from everyday object
without a great effort.

One of the most important issues in our projects is
that ubiquitous computing middleware will become
future embedded system middleware and offer ad-
ditional values to current embedded systems. This
means that embedded Linux is a candidate for an op-
erating system for ubiquitous computing. Also, we
need to cooperate with industries in embedded areas
to achieve the vision of ubiquitous computing. For
example, in our previous projects, we have imple-
mented HAVi on Linux[5] with Fujitsu LSI Solution
Limited. Our experiences show that current embed-
ded technologies are important foundations to realize
ubiquitous computing. One of future roles of Emblix
is to bridge the gap between embedded technologies
and ubiquitous computing technologies to make our
future lives more fruitful because various future ap-
pliances and services related to embedded systems
will need ubiquitous computing technologies. We
believe that merging between ubiquitous computing
and embedded system is one of important keys to
improve Japanese economy.

4 Current Status of Embedded
Systems in Japan

4.1 Features

The primary intention of Japanese embedded system
manufacturers on making their product are reliable ,
highly responsive and low cost hardware that comes
from making their products inexpensive.

Embedded systems developed in Japan were origi-
nally hardware oriented design. The functionalities
accomplished by software were very small.

4.1.1 Reliability

All of manufacturers think that their embedded
products must be stable and reliable. Because re-
liability of products has been a major factor that
consumers judge whether it is fine product to buy
in Japan. For examples embedded products have to
reboot and recover safely even if there is a sudden
stop of a power supply. There should be no or few
instructions for their users when the products is in
trouble. Because "easily and safely to use” means
reliable for consumers in Japan.

4.1.2 Low Response Time

From the point of usability, high response is the most
important factor. The products are forbidden to an-
noy users. To be high response is also the quality

of the product. For example, electronic music in-
struments must meet response time of 1ms between
pressing button and making sound whenever the sys-
tem load is high.

4.1.3 Low Cost Hardware

In making embedded systems, mass production is a
key factor for their prices, especially embedded sys-
tems for home electronics devices. To accomplish
this, many companies prefer to select inexpensive
hardware for their products. Because it affects the
price that the consumers pays. It limits the soft-
ware functionality in order to that low cost hardware
decreases the available size of memories and perfor-
mance of CPU compared to higher one.

4.1.4 RTOS

Because of features described above, many compa-
nies adopt RTOS to their products. Most of RTOS
offer high response and low hardware spec. ITRON is
the most popular RTOS in Japan. ITRON itself is a
specification for building real-time operating systems
for embedded systems. The specification is open and
freely available. The manufacturers use this specifi-
cations for making their embedded systems.

4.2 Embedded Linux Trends in Japan

Japanese manufacturers joining Emblix are consid-
ering to use Linux as an operating system for their
products. The embedded system manufacturers
joined to Emblix can be divided into three groups by
their positions to Linux. The members belonging to
the first group are adopting Linux to their products
or already adopted. They have a plan to sell Linux-
based system and some are selling them now. In this
group, the product that they made are mostly re-
lated multimedia and networking functionalities such
as Sony CSV-E77[17] which is Linux-based PVR and
Sharp SL-5500[18], Linux-based PDA. They actively
use Linux to their products because ITRON and
some other RTOS doesn’t have multimedia and net-
working support by default. The problem of partic-
ipants in this group is GPL. Many embedded sys-
tem manufacturers say it is disadvantage for them
to disclose hardware specifications and source codes
in public because there are many know-hows to build
embedded systems and GPL makes them widely
available. The embedded systems in this category
needs more than 100ms for response. That is not
difficult for Linux to satisfy it.

The second group is consists of the manufacturers
that are wondering to adopt Linux to their prod-
ucts. In fact, they want to replace RTOS that they



are using to Linux. As described in the previous
sections, Linux has some advantages for support-
ing multimedia and networking compared to other
RTOSes. They also have a plan to adopt middleware
to enhance the quality of them although they can’t
use high performance hardware because it raises the
costs of these devices. The most important problems
for them is whether Linux can satisfy their timing-
constraints. The embedded systems produced by the
manufacturers in this group have to meet strict dead-
lines. These systems are expected to work with less
than 1ms latency. We have mentioned the require-
ments of electronic music instruments as example.
Recently many researches shows that the latency of
Linux kernel can be minimized less than 1ms. But
these results are derived by experiments examined
on x86-based high performance hardware. That is
not effective for the member of this group. They
are working on more poor hardware environments
for their products.

The embedded systems in the last group doesn’t need
Linux. They have to work less than a few hundreds
or tens of micro seconds. In addition, they are not re-
quired complex task and there are no plan for adding
some other features. A/D converter and some car
navigation systems are included in this category.

5 The Real-Time Capabilities
of Linux

5.1 Priority Inversion

In real-time systems, predictability is the primary
factor of building reliable system. Preventing to en-
hance predictability is caused by priority inversion.
In Linux kernel, the kernel locks and interrupts are
the sources of priority inversions.

Whenever the process invokes a system call, it locks
the kernel entirely until the system call completes.
The kernel can’t reschedule during processing a sys-
tem call, even if there are processes that have higher
priority than the processing one.

Priority inversion also occurs at interrupt process-
ing. Programmers can’t define the level of priorities
for each interrupt device because Linux doesn’t sup-
port interrupt level.

5.2 The Real-Time Enhancement of
Linux kernel

We have mentioned that a big kernel lock causes pri-
ority inversion and makes the response time of the
system worse. In this section, we show some ap-
proaches to improve the Linux kernel. The factors

that cause the latency of the kernel can be separated
three major factors .

e Timer resolution
e Scheduling jitters
e Non-preemptable sections in the kernel

The most important factor is timer resolution. If we
don’t avoid the latency of timer resolution, we can’t
see any jitters less than 10ms which is a default pe-
riod of system tick [9]. Scheduling jitter is thought
as less important than others when the process runs
with high priority. But if there are many processes
which contains real-time processes and normal pro-
cesses that runs as user-interface, scheduling jitter
affects the response time and the usabilities.

5.2.1 Minimizing Non-Preemptable Section

By now there are three major techniques to minimiz-
ing non-preemptable sections.

e Preemptable kernel
e Low-latency kernel
e Preemptable Lock-breaking kernel

Preemptable kernel[10] is a fully-preemptable ker-
nel. It can reschedule processes after finishing pro-
cessing interrupts if there are no spin-locks to dis-
able rescheduling. By applying this approach, higher
priority process can preempt kernel execution from
lower priority process.

Low-latency kernel[11] is the approach to insert pre-
emption points into the kernel. It can reduce non-
preemptable sections.

Preemptable lock-breaking kernel is mixed way of
above two approaches. Preemptable kernel can’t pre-
empt the kernel execution if there are spin-locks.
This approach breaks a long spin-lock into small
spin-locks. Two patches for preemptable kernel and
low-latency kernel can be applied for the same kernel
tree. It improves the response time of each individ-
ual patched kernel. Lock-breaking patch is based on
low-latency patch[10]. This approach seems to be
the best one of these[15]

These approach reduces the length of priority inver-
sion and improves Linux response time dramatically.

5.2.2 High Resolution Timer

In a normal configuration, Linux kernel’ system tick
is equal to 10ms in all architectures except Alpha.
It indicates that periodic executions less than 10ms
are impossible if it uses the system default timer for
them. Such executions can be achieved by using RTC
for their timers. RTC, which is the high resolution



timer, can generate signals from 2Hz to 8192Hz. The
periodic processes can be notified by interrupts from
/dev/rtc. RTC is also sufficient when the period is
more than 10ms. As we have already mentioned,
timer transaction is processed at bottom-half and it
is unpredictable when it starts and how long it takes.

5.3 Other Problems

Some techniques to minimize non-preemptable sec-
tions and adopting high resolution timer is sufficient
for real-time processes. But it can’t work out the
unpredictability of bottom-half processing. Many
researches on x86-based high performance hardware
shows that there is no influence of the processing
time of bottom-half. But at low performance hard-
ware, the processing time might be increased and
prevent real-time and other processes. In fact some
engineers indicated at a workshop of Emblix. They
are worried that it occurs after they release their
products and claimed by customers as the products
doesn’t work correctly.

6 Experiments

In this section, we measured the delay of task wake
up time. We have chosen RTC for high resolution
timer. The process with scheduling FIFO receives
signals via /dev/rtc. It means that we did not mod-
ify the kernel source code. The processes are waked
up by a periodic signal with period 1ms which is less
than system ticks. Accessing RTC via /dev/rtc is
one of the way to accomplish high response without
any modifications to the kernel. We have adopted
I0zone[14] as a background load for measuring be-
cause the disk access often causes the worst case
delays[9]. This benchmarks double the size of a file
that it reads and writes as the time goes. RTC
generates 1024 times interrupts for 1 seconds. The
target kernels for this experiment are based 2.4.18
from kernel.org[16]. We use four kernels. The first
is vanilla 2.4.18. The other kernels are derived by
patching to vanilla kernel: Preemption patch , Low-
Latency patch and Preemption and Lock-breaking
patch. We have examined these experiments on Pen-
tium IT 350 MHz with RAM 128MB.

Latency[msec]

Latency[msec]

Latency[msec]

25

05

0

0

.
5000

10000

FIGURE 1:

15000

|

|

|

20000 25000
Elapsed time[msec]

30000

35000

40000

Latency measured on 2.4.18

45000

25

=
o

N
T

0.

@

0

L ‘.\J ’!’

I

L

Al

0

5000

10000

FIGURE 2:
emption patch

15000

20000 25000
Elapsed time[msec]

30000

L
35000

40000

Latency on 2.4.18 with pre-

45000

=
@
T

-
T

05

@

0

Jh.‘ 1“\

ot

L Hu‘ L

0

5000

10000

15000

20000 25000
Elapsed time[msec]

30000

35000

40000

FIGURE 3: Latency measured on 2.4.18
with low-latency patch

J
45000



25

15

Latency[msec]

05

e J‘h‘ ‘ e

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Elapsed time[msec]

FIGURE 4: Latency measured on 2.4.18
with preemption and lock-breaking patch

o

Figure 1 shows the result of an experiment with
2.4.18 vanilla kernel. The response time should be
about 1ms because of the frequency of RTC. But
with the vanilla kernel, the worst case is about
180ms.

The other results are derived from real-time en-
hanced kernels. See Figure 2, 3, 4. The results
of the preemption kernel are dramatically improved
than the one of the vanilla kernel. The low-latency
kernel is also superior to the vanilla kernel. The pre-
emptable and the lock-breaking kernel got the best
performance in these kernels and all latencies are less
than 1 ms.

7 Discussions

In this section, we discuss the difficulties of measur-
ing performance on non-x86 architecture. We needs
some conditions to measure latency of Linux kernel
with high resolution timer.

e The target must have high resolution timer
such as RTC.

e The target architecture must have cycle coun-
ters such as TSC on Pentium.

Many sample boards for embedded systems meet
first and third condition. But manipulating RTCs
and cycle counters for each board are not easy. Be-
cause the addresses of RTC varies on each board and
how to get values of cycle counters are different be-
tween each architecture. And the second conditions
is much more difficult. As far as we know, there
are two architectures which have device drivers of
RTC that support to generate periodic signals, x86
and ARM. Device drivers included other architec-
tures only support loading and restoring of the time.

Although there are some architectures that have an-
other high resolution timer replacing RTC, it also
takes many times to setting environments of mea-
surement.

There are also some difficulties about measuring on
embedded systems. The developing environments for
embedded systems are not as easy as the ones for
desktop computers. Most of the boards have serial
ports for console and this is the only way to manip-
ulate the entire system. And how to load boot im-
ages varies on systems. To work out this difficulties,
we can set our environment with NFS or some tech-
nique. But it also takes many times and it is better
to buy commercial software for developing environ-
ment than you do it yourself.

These situations indicate that measurements on var-
ious architectures are hard tasks and take many
times. On the other hand, Linux is ported many ar-
chitectures and there are some requirements to mak-
ing the real-time performance for each architecture
public.

8 Related Work

Linux/RT developed by Timesys corporation[12]
is fully-preemptable kernel for embedded systems.
MontaVistaLinux[13] has preemptable lock-breaking
kernels for many architecture and various boards.

9 Conclusion

In this paper we have described the requirements for
embedded systems to adopt Linux and the status
of embedded systems in Japan. We have also ex-
plained some approaches to improve response time
of the Linux kernel. And we have shown that the
latency of kernel by our experiments. As the result
shows, we can say that Linux can satisfy the require-
ments of embedded systems.

In the future, we have a plan to measure the latency
of kernel on various architectures and boards. It can
reveal the performance of each architecture and en-
gineers can decide which architecture to use for their
products. It will be a good motivation for manu-
facturers to use Linux as an operating system for
their products. Because many researchers have ex-
perimented the predictability of Linux and other op-
erating systems such as NetBSD and FreeBSD do not
provide enough information to be used in embedded
systems.



References

[1]

[2]

[4]

H.-W.Gellersen. A.Schmidt, and M.Beig]l,
“Adding Some Smartness tp Devices and Ev-
eryday Things”, In Proceedings of the Third
Workshop on Mobile Computing System and
Applications, 2000.

A. Harter, A. Hopper, P. Steggles, A. Ward, P.
Webster, “The Anatomy of a Context-Aware Ap-
plication”. In “Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile
Computing and Networking”, 1999.

H. Ishii, B.Ullmer, “Tangible Bits: Towards
Seamless Interfaces between People, Bits and
Atoms”, In Proceedings of Conference on Human
Factors in Computing Systems,1997.

T. Nakajima, et. al., “Technology Challenges for
Building Internet-Scale Ubiquitous Computing”,
In Proceedings of the Seventh IEEE International
Workshop on Object-oriented Real-time Depend-
able Systems, 2002.

T.Nakajima, “Experiences with Building Middle-
ware for Audio and Visual Networked Home Ap-

pliances on Commodity Software”, In Proceed-
ings of ACM Multimedia 2002, 2002.

Nicholas Negroponte, ” Being Digital”, BeingVin-
tage Books, 1996.

R.Want, T.Pering,
M.Kumar,M.Sundar, J.Light,

G.Danneels,
“The Personal

Server: Changing the Way We Think About
Ubiquitous Computing”, In Proceedings of
Ubicomp2002.

[8] Mark Weiser, “The Computer for the 21st Cen-
tury”, Scientific American, Vol. 265, No.3, 1991.

[9] Luca Abeni, Ashvin Goel, Charles Krasic, Jim
Snow, Jonathan Walpole “ A Measurement-
Based Analysis of the Real-Time Performance of
the Linux Kernel”, In Proceedings of the Real
Time Technology and Applications Symposium
(RTAS), Sep 2002.

[10] Robert M Love, Linux kernel
http://kpreempt.sourceforge.net/

patches,
[11] Andrew Morton, Linux scheduling latency,
http://www.zip.com.au/ akpm/linux/schedlat.html/

[12] Timesys cooperation , TimeSys Linux/RT,
http://www.timesys.com/

[13] MontaVista Software cooperation , Mon-
taVistaLinux, http://www.mvista.com/
[14] IOzone Filesystem Benchmark,

http://www.iozone.org/

[15] Clark Williams, Linux Scheduler Latency,

http://www.linuxdevices.com/articles/ AT8906594941.html

[16] Linux Kernel,http://www.kernel.org

[17] Sony Corporation, CSV-
E77,http:/ /www.sony.jp/products/Consumer /cocoon/
[18] Sharp Corporation, Zau-
rus SL-5500, http://www.sharp-

usa.com/products/ModelLanding/0,1058,698,00.html



