RTLinux POSIX API for IO on Real-time FIFOs and Shared
Memory

Cort Dougan Matt Sherer

Finite State Machine Labs
Socorro, NM 87801
{cort,sherey@fsmlabs.com
http://www2.fsmlabs.com/ cort/
http://www?2.fsmlabs.com/ sherer/

Abstract removing them. This new and completely
POSIX compliant method for creating and op-
The primary means of communication beerating on real-time FIFOs deprecates the old
tween RTLinux threads and Linux processédev/rtfO though/dev/rtf... method.
are RTLinux FIFOs. These have been linfhe new method is simpler and more flexible.
ited by the fact that there was a static nunHowever, programs that rely on the older mech-
ber of them and their names were restricted amism will continue to be supported and the
/dev/rtfO through/devi/rtf... . Start- /dev/rtf* entries will remain. Additionally,
ing with RTLinux/Pro 1.2 and soon Opemsupport for shared memory has been done in a
RTLinux, we have added a means for creatiOSIX-compliant method that also allows for
RTLinux FIFOs and shared memory with arbarbitrary names and locations.
trary names and locations that can be operated
on with ordinary UNIX semantics.

2 Creating a RTLinux FIFO

1 Overview Creating and using a real-time FIFO is no dif-
ferent than doing the same under a UNIX sys-
In this paper we describe a new RTLinutem. Fig.1l shows code that will create, open
POSIX-compliant API for creating arbitrarand then close a real-time FIFO. The same code
ily named real-time FIFOs, performing asynzompiles and runs properly under Linux as well
chronous and synchronous IO on them amdg RTLinux. It is now possible to write, test and

http://www2.fsmlabs.com/~cort/
http://www2.fsmlabs.com/~sherer/

int fifo(void) pthreadt thread

{
int fd; void *thread codgvoid *t)
if ((fd = mkfifo("/dir/myfifo" , 0)) [* create a FIFO unsafely */
return —1; fd = mkfifo("/homef/filetest” , 0);
if ((fd = oper("/dir/myfifo" , return NULL;
O_RDONLY|O_NONBLOCK)) >=0) }
return —1,
int init_modulgvoid)
clos€fd); {
return O; pthreadcreaté¢ &thread NULL, threadcode 0);
}

return O;

Figure 1. Creating a FIFO in RTLinux

_ _ Figure 2: Unsafe Creating a FIFO in RTLinux
debug code under Linux and then compile and

run for RTLinux.

Fig. 1 shows code that will create a FIFGPace.
(of the default size) that is visible only to other Fig. 2 could be made safe by preallocating
RTLinux applications but not visible to Linuxspace for the FIFO. This can be turned on with
applications. These calls follow the expected d&e “Preallocated fifo buffefsoption when con-
mantics for the POSIX definition of them andiguring RTLinux. This will allow you to se-

those listed in common UNIX programmindect the default size of the FIFOs and how many
booksf k should be pre-allocated. Turning this option on

does allocate space at run-time that may be un-
. used so it is best to limit the number of allo-
? .
2.1 Whenis it safe’ cated FIFOs to what you know you will use or
In most Casessnkfifoo is 0n|y safe to call avoid the need for pl’e-allocated FIFOs entirely.
from a Linux context. Th|s WOUId be inMOSt RTLinUX appllca'[lons knOW at |n|t|al|za'
init _module() or cleanup _module() . tiontime what FIFOs will be needed and should

Calling mkfifo() ~ within a RTLinux thread create them then.

is not safe unless buffer space has been pre-

allocated for the FIFO. Thenkfifo() call _

must allocate space for the FIFO and oth& Deletlng a FIFO

record-keeping structures which cannot be done

in a real-time context. So, Fi@.is not allowed A well behaved program should remove any FI-
and would be unsafe without pre-allocatefOs that it has created. Since real-time FIFOs

2

int fifo(void) /* will succeed */

{ oper("/dev/rtf0" , O_CREAT|O_NONBLOCK);
int ret
/* will fail */
if ((ret = mkfifo("/dir/myfifo" ,0)) oper("/dev/rtf0" , O_NONBLOCK);
return —1,
if ((ret = unlink("/dir/myfifo")) Figure 4: Creating an Old Style FIFO
return —1,
retum 0; 4 Differences in open() and
i close()

Figure 3: Removing a New Style FIFO Calls toopen() andclose() act differently
when used on files created withkfifo()
than they do when called on the old FIFOs

)) _ (/dev/rtf*). Fig. 4 shows both the correct
are not persistent on the RTLinux side they will, 4 incorrect way to open an old style FIFO.

not remain across reboots. However, they Withe second version of thepen() call will fail
remain between successive loads of a modylg..ase it lack© CREAT The O CREATflag
For example, if one loads and runs the prograf ihe call toopen() will causeopen() to

in Fig. 1 it will succeed the first time but fail ev-¢ a5te gllocate space for and open the FIFO.
ery time after that. This is because the FIFO thatgyih calls in Fig 5 will fail because no FIFO

was created with thenkfifo() call on the first
run still exist so followingmkfifo() calls will
fail.

has been created. Timpen() call does not
implicitly create a FIFO. This more closely
matches POSIX and UNIX semantics. Instead,
9. 6 will correctly create a FIFO and open it.
Ihe lack ofO.CREATIn theopen() callis im-
portant. IfO.CREATis used theopen() call
" will fail, since the FIFO exists due to the call to
mkfifo()

If a FIFO is removed with a call tan- Destroying a FIFO is similar. A call to
link() while there are still open file descripelose() on an old-style FIFO will cause the
tors on it (through calls topen()) the FIFO FIFO to be closed, destroyed and its resources
will not be removed until the lasiose() call released. Aclose() on a new-style FIFO
completes. It is important that file descriptonsill only close the FIFO but will not destroy it.
are closed explicitly when they are not bein@ther threads can still operate on the FIFO or
used anymore since unloading a module dabe same thread can re-open the FIFO and use it
not cause an explictlose() call. without anothemkfifo() call. The only way

It's possible to remove the entry by hand, b
there is a better way. Just as with any UNIX sy
tem removing the file is done wittinlink()
Fig. 3 gives an example.

3

/* fails */ /* create a FIFO that is visible to Linux */
oper("ffile" , O_CREAT|O_NONBLOCK); mkfifo("/myfifo" , 0755);

/* also fails */
oper(*/file” , O_NONBLOCK); Figure 7: Creates a FIFO that is visible to Linux

created on the Linux side with the given permis-
Figure 5: Fails to Create a New Style FIFO sion bits and the same name.
There is no error indication if a file exists with
mkfifo("/file" , 0); the same name on the Linux side already. In-
stead, that file is destroyed and then recreated as
a real-time FIFO deviceBe very careful when
choosing names of RTLinux FIFOs and then
Figure 6: Create/Open a New Style FIFO advertising them to Linux since they can de-
stroy files on the Linux side!
When callingmkfifo() ~ from a Linux con-
text the create on the Linux side file is syn-
_ chronous. That means when thekfifo()
4.1 Calling Context call returns successfully you can be certain that
Since aropen() of an old-style FIFO aIIocatesthe. Linux Sf'de file has been creat_ed a_nd 'S how
o ¥|S|ble to Linux user processes. Likewise, when
space for and creates the FIFO it is only sare . . .
. unlink() returns successfully in a Linux con-
to call from a Linux context. Calls topen() - L7 :
text it is guaranteed that the file is no longer vis-
on new-style FIFOs do not allocate any spaqtﬁ : .
. Ible on the Linux side.
and are free of that restrictionopen() can Call Kfif ; RTLi
be called from Linux and RTLinux contexts on ~2"N9g MKl o0 rom a inux -con-

new-style FIFOs. The same is true of calls tsxt with non-zero permission is not supported.
close() uture versions of RTLinux may allownk-

fifo() calls from RTLinux threads to create
Linux-side FIFOs, though.

5 Making FIFOs visible to

Linux 6 Changing RTLinux Filesys-

The call tomkfifo() in Fig. 6 uses 0 as the tem Options

mode of the FIFO to be created. This indicates

that the FIFO should not be visible to Linux profhere are hard limits on the maximum number
cesses. If the call is made with a non-zero argof open files, the maximum number of filesys-
ment as in Fig7 then a corresponding FIFO idem entries (existing files), maximum number

oper(‘fiile” , O_NONBLOCK);

to destroy a new FIFO is throughlink()

4

of FIFOs and many other things. All of thes€IFOs created with calls tmkfifo() and any
are configurable. Understanding these configther special files created by drivers in RTLinux.
uration choices allows developers to make sure

that no extra resources are consumed by the sys-

tem and that applications will not fail due to tod Asynchronous |O on FIFOs
few resources being available at run-time.

The configuration option Number of The old non-POSIX method for in-
Entries Created with Legacy staling FIFO read/write handlers is
rtl _register _rtldev call ” creates rtf _create _handler() . This method
the variable RTLMAXLEGACYDEV. This Iis supported for both old and new-style FIFOs
is the number of devices that are created byt there is a better way that fits in with POSIX.
calls tortl _register _rtldev() . Theold A common method for waiting for a FIFO to
FIFOs are created with a call to this functiohave data ready for read or write under UNIX
so this variable changes the number of oigl using select() . Calls to select()
style FIFOs available a&lev/rtfO through are blocking, so applications have to create a
/dev/rtf... . Other older drivers may alsonew threads for each FIFO handler. In ad-
use this variable so does not only affect thition to the extra resources being consumed
number of old-style FIFOs available. Changelily more threads performance is compromised
with care. since eaclselect() eventrequires aresched-

The maximum number of FIFOs available oule. rtf _create _handler() installs han-
the system is listed in the RTLinux configuradlers that are called directly rather than through
tion as ‘Max number of fifdsand representedscheduler redirection and this high-performance
by the value of ONFIGRTL.NFIFOS. This is behavior is maintained for POSIX applications
the maximum number of available FIFOs on tieroughrtl _sigaction()
system. This value must be at least as great ag\pplications can register handlers for
RTLMAXLEGACYDEV. The number of new-FIFO read and write events through
style FIFOs available is: rtl _sigaction() . Fig. 8 lists code

that creates a FIFO, opens it and then installs a
CONFIG_RTL _NFIFOS — RTL_MAX_LEGACY DEV handler to be called when reads and writes occur
onit. The fieldsa _fd of thertl _sigaction

Changing the Max Number of Open Fil&s structure specifies which file descriptor the han-
configuration option will change how many filedler should be installed for. Even though an
can be open at one time in RTLinux. This is thepplication may register many handlers for
maximum number of file descriptors available tive SIGPOLL signal they can all be different
RTLinux threads. Max Number of Filesystemf the sa fd field is different. SIGPOLL
Entries is the maximum number of files thasignal handlers are defined by both the signal
can be created. This value includes FIFOs craimber SIGPOLL and the value ofsa _fd
ated by calls tatl _register _rtldev() , when making callstl _sigaction()

5

void fifo_handlefint sig, siginfo_t *sig, void *v)

{

}

char msd64];

[* if there was a write at the other end..

if (sig—>si_code == POLL_OUT)
write(sig—>si_fd, &msg 64);

[* if there was a read at the other end...

else if (sig—>si_code == POLL_IN)
read sig—>si_fd, &msg 64);

void fifo(void)

{

int fd;
struct rtl_sigaction act

[* create a FIFO */
mkfifo("/myfifo" , 0755);

/* open the FIFO for read/write */
fd = oper("/myfifo"
O_RDWR | O_NONBLOCK);

[* register a SIGPOLL handler */

rtl_sigactionsa sigaction = fifo_handler

/* the file that we want the signal for */

rtl_sigactionsa fd = fd;

I* we want read and write notification */

rtl_sigactionsa.flags = RTL_SA_RDWR |
RTL_SA_SIGINFG,

/* install the handler */
rtl_sigactiorf SIGPOLL, &act NULL);

Figure 8: Registering a FIFO read/write handley

In order for a rtl _sigaction()
call to succeed withsa flags set to
RTL_.SARDWR the file descriptor that
sa fd is set to must be open for read and
write (open() call with flags O.RDWR The
same is true for read-onhyRTL SA RDONLY
g}nd write-only RTL. SAWRONL)Y A thread
cannot register aSIGPOLL handler for an
operation that would not be permitted on that
4ile descriptor by normal 10 operations such as
read() orwrite()

RTL.SARDONLY RTL.SAWRONLYand
RTL.SA RDWRare actually bitmasks and not
distinct values as is UNIX tradition for flags to
open() [} (OORDWR O.RDONLYand
OWRONL)Y So, users should be careful of
this when setting these values. Fig.shows
how to safely clear and set these values in the
sa _flags member.

Note that in Fig. 8 writes to a FIFO
that cause fifo _handler() to be in-
voked set thesi fd field to RTL.POLLOUT
Conversely, reads from a FIFO that cause
fifo _handler() to be called sesi fd to
RTL_.POLLIN. The handler is called directly
in response to the correspondingad() or
write() operation and is called in the same
context of those operations (including the active
stack).rtf _put() andrtf _get() callswill
cause any registered signal handlers for the cor-
responding FIFO to be called as well.

Fig. 10 shows a typical use of
_sigaction() to install handler for
Linux-side writes to a FIFO. This example is an
example of a RTLinux-side consumer of data

that writes nothing back to Linux.

6

void fifo_handle(int sig, rtl_siginfo_t *sig, void *v)

{
char msd64];
struct rtl_sigaction sig read sig—>si_fd, &msg 64);
}
/* unsafe since sdlags value is unknown */
sig.saflags |= RTL_.SA_RDONLY; void fifo(void)
{
/* set for read AND write */ int fd;
sig.saflags [= RTL_SA_WRONLY; struct rtl_sigaction act
/* safe way to set write-only */ [* create a FIFO */
mkfifo("/myfifo" , 0755);
/* turn off the RTLSARDONLY and RTISAWRONLY flags */
sig.sa flags &= “(RTL_SA_RDONLY|RTL_SA_WRONLY); /* open the FIFO for read */
fd = oper("/myfifo" , O_RDONLY|O_NONBLOCK);
[* or..*
sig.saflags &= "(RTL_SA_RDWR); /* register a SIGPOLL handler for the FIFO */
sigactionsa sigaction= fifo_handler
[* set write-only */ /* the file that we want the signal for */
sig.saflags [= RTL_SA_WRONLY; sigactionsa.fd = fd;
[* we want write event notification */
sigactionsa flags = RTL_.SA_RDONLY | RTL_SA_SIGINFG,
/* install the handler */
Figure 9: Operating osa _flags rtl_sigactiorf SIGPOLL, &act NULL);
}

Figure 10: Registering a FIFO read handler

fd = shm.oper("/shared_area" , O_CREAT, 0); ftruncatéfd, DESIRED SIZE);

Figure 11: Creating a shared area Figure 12: Allocating space for a shared area

7.1 Restrictions straightforward: A name to be used for the de-
. vice, open flags and mode bits. The open flags
There may be only on8IGPOLL handler in- oyeate as expected @ CREATIs specified, it
stalled for a given real-time FIFO at one timgyi attempt to create the area, otherwise it will
There may be several file descriptors that refef ,in 5 descriptor to an already created area.
to a single FIFO but thgy all share a sin§ls>- Specifying O EXCL with O CREATwill cause
POLL handler. Installing éSIGPOLL handler g tijyre if the device has already been created.
for a given file descriptor may over-write 0N The mode parameter operates exactly as with
|_nstalled on the same FIFO through a d'ﬁeremkfifo() described earlier. Specifying O for
file descriptor. the mode will create the device within the scope
of RTLinux threads but will not make this object
available to Linux. Specifying a non-zero value
will cause RTLinux to create the device in the

Support for shared memory has been ha[lﬁpuusxefltlﬁ?gs;\e/irgeand allow Linux file operations

dled in the GPL version of RTLinux using
Tomasz Motylewski’'s mbuff driver for some o ”
time. RTLinux/Pro, however, uses commofrl-1 Whenisitsafe’

POSIX shared memaory calls for manipUIaghmiopen() can be used from any context ex-

ing these regions. Part of the POSIX reatept when specifying that a Linux-side device
time extensions call forshm.open() and s to be created. In this case, it must be done

8 Shared Memory

shmunlink() . We will demonstrate howfrom within theinit _module() context (ex-

these calls are used in RTLinux. actly the same as witmkfifo() calls). How-
ever, we still need to allocate space for the re-

8.1 Creating a Shared Area gion, as we will see in the next section. So gen-

erally speaking, the initidhm_open() occurs

First, let's look at the process of creating along with the allocating call during intializa-
shared area witehm_open() . Fig.11demon- tion, while further calls may happen at any time.
strates this call. Note thahm_open() creates
an area and returns a file descriptor in one st
as opposed to the two involved mkfifo()
andopen() . As you have probably noticed, we have a file de-

The parameters foshm_open() are fairly scriptor to a device that has been registered but

¥2 Sizing the shared region

8

unsigned char *addr, shm.unlink("/shared_area");

addr = mmap0,DESIRED SIZE,
PROT READ|PROT WRITE, Figure 14: Destroying a shared area
MAP_SHARED/d,0);

to reference the area as needed.

Once the user is done with this area
close() should be called on the file descrip-
we haven't specified how much memory is to ker. This will leave the shared area valid, though
used. As of this point, no memory has been althere is one more call to make it disappear from
located. Sizing of the region must be done withe filesystem.

a call toftruncate() as shown in Figl2.

This operates on the file descriptor and takes

a size parameter as normal with aftgun-
cate() call.

As this call causes memory allocation, it mu
be done ininit _module() context. This is
for initial creation of an area and also for resi
ing, as each case causes memory to be alloc
or released.

Figure 13: Accessing a shared area

8.3 Destroying a Shared Area

%Iosing all of the open file descriptors on a
;,_hared area will still leave the area present in
gmory. This means that a new thread can open
the same area and access what was placed there
previously. If this isn’t necessary, destroying the
area is preferred. Destroying shared memory
8.2.1 Accessing the area is handled througbhm_unlink() , as demon-

strated in Fig1l4. There are no surprises here,

Now we've covered how to create an area and thjs simply frees the area. This can be done
size it appropriately but how do we accesg any context.

it? This is done with the standamhmap()

call on the file descriptor we received from

shm_open() . Additionally, another thread can

do anormabpen() on the device created witl8.4 Userspace Access to Shared
shm_open() , and usenmap() on that file de- Area

scriptor. Fig.13 demonstrates common usage.

As you can see, this behaves the sarti@ non-zero mode was passedton_open()
way as a normalmmap() call. The pro- the device will be visible to Linux. Accessing
tection flags are not used at this time b#he shared area from Linux is very simple, as
tween real-time threads, although specifyinge can see in Fidl5. Essentially, the operation
PROTREAD|PROTWRITE is recommended.is symmetric, as the user can jugien() and
The address returned from this call can be useanap() as in RTLinux context.

9

int fd: in that shared area. Once it has completed and

unsigned char *addr, exits, the usage count finally drops to 0, and the
area is then destroyed.
fd = oper("/shared_area” , O_-RDWR); This reference counting is used for all

addr = mmap0, DESIRED SIZE,

PROT READ|PROT WRITE, RTLinux devices, so this approach vyorks the

MAP_SHARED, fd, 0): same for users of shared memory as it does for
* work with the area */ real-time FIFOs and for any other device driver
closefd); written on top of RTLinux/Pro.

Figure 15: Userspace access to shared mem@xfarences

9 Reference Counting [Stevens]W. Richard Stevens, Advanced
Programming in the UNIX Environment
As well as the POSIX additions detailed, all ~Addison-Wesley Publishing Company,
RTLinux devices are now reference counted. 1992.
This simplifies operations so users don’t have
to worry about the state of the RTLinux thread
when accessing a segment of shared memory
from userspace. If all of the RTLinux threads
have closed and exited, and a userspace process
is the last holder of a device, the device remains
usable until that last user releases it. This fits
more closely with POSIX file operations.
As an example, consider the case where 2
RTLinux threads have initialized and are using
a device for shared memory. If the userspace
management system starts and attaches to that
device, there are now three users. If the user de-
cides that it is time to shut down, the RTLinux
threads are directed to exit which causes them to
close() and callshm_unlink() when the
module is unloaded.
Now the device has been explicitly unlinked
with shm_unlink() , but there is still a user.
In our example, it is a userspace user, but it
could just as easily be a RTLinux thread. Our
application may still be analyzing the data held

10

	Overview
	Creating a RTLinux FIFO
	When is it safe?

	Deleting a FIFO
	Differences in open() and close()
	Calling Context

	Making FIFOs visible to Linux
	Changing RTLinux Filesystem Options
	Asynchronous IO on FIFOs
	Restrictions

	Shared Memory
	Creating a Shared Area
	When is it safe?

	Sizing the shared region
	Accessing the area

	Destroying a Shared Area
	Userspace Access to Shared Area

	Reference Counting

