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Abstract

The primary means of communication be-
tween RTLinux threads and Linux processes
are RTLinux FIFOs. These have been lim-
ited by the fact that there was a static num-
ber of them and their names were restricted to
/dev/rtf0 through /dev/rtf... . Start-
ing with RTLinux/Pro 1.2 and soon Open
RTLinux, we have added a means for creating
RTLinux FIFOs and shared memory with arbi-
trary names and locations that can be operated
on with ordinary UNIX semantics.

1 Overview

In this paper we describe a new RTLinux
POSIX-compliant API for creating arbitrar-
ily named real-time FIFOs, performing asyn-
chronous and synchronous IO on them and

removing them. This new and completely
POSIX compliant method for creating and op-
erating on real-time FIFOs deprecates the old
/dev/rtf0 though/dev/rtf... method.
The new method is simpler and more flexible.
However, programs that rely on the older mech-
anism will continue to be supported and the
/dev/rtf* entries will remain. Additionally,
support for shared memory has been done in a
POSIX-compliant method that also allows for
arbitrary names and locations.

2 Creating a RTLinux FIFO

Creating and using a real-time FIFO is no dif-
ferent than doing the same under a UNIX sys-
tem. Fig.1 shows code that will create, open
and then close a real-time FIFO. The same code
compiles and runs properly under Linux as well
as RTLinux. It is now possible to write, test and
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int fifo(void)
{

int fd;

if ( (fd = mkfifo("/dir/myfifo" , 0)) )
return −1;

if ( (fd = open("/dir/myfifo" ,
O RDONLY|O NONBLOCK)) >= 0 )

return −1;

close(fd);
return 0;

}

Figure 1: Creating a FIFO in RTLinux

debug code under Linux and then compile and
run for RTLinux.

Fig. 1 shows code that will create a FIFO
(of the default size) that is visible only to other
RTLinux applications but not visible to Linux
applications. These calls follow the expected se-
mantics for the POSIX definition of them and
those listed in common UNIX programming
books[Stevens].

2.1 When is it safe?

In most casesmkfifo() is only safe to call
from a Linux context. This would be in
init module() or cleanup module() .
Calling mkfifo() within a RTLinux thread
is not safe unless buffer space has been pre-
allocated for the FIFO. Themkfifo() call
must allocate space for the FIFO and other
record-keeping structures which cannot be done
in a real-time context. So, Fig.2 is not allowed
and would be unsafe without pre-allocated

pthreadt thread;

void *threadcode(void *t)
{

/* create a FIFO unsafely */
fd = mkfifo("/home/filetest" , 0);

return NULL ;
}

int init module(void)
{

pthreadcreate( &thread, NULL , threadcode, 0 );

return 0;
}

Figure 2: Unsafe Creating a FIFO in RTLinux

space.
Fig. 2 could be made safe by preallocating

space for the FIFO. This can be turned on with
the “Preallocated fifo buffers” option when con-
figuring RTLinux. This will allow you to se-
lect the default size of the FIFOs and how many
should be pre-allocated. Turning this option on
does allocate space at run-time that may be un-
used so it is best to limit the number of allo-
cated FIFOs to what you know you will use or
avoid the need for pre-allocated FIFOs entirely.
Most RTLinux applications know at initializa-
tion time what FIFOs will be needed and should
create them then.

3 Deleting a FIFO

A well behaved program should remove any FI-
FOs that it has created. Since real-time FIFOs
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int fifo(void)
{

int ret;

if ( (ret = mkfifo("/dir/myfifo" , 0)) )
return −1;

if ( (ret = unlink("/dir/myfifo" )) )
return −1;

return 0;
}

Figure 3: Removing a New Style FIFO

are not persistent on the RTLinux side they will
not remain across reboots. However, they will
remain between successive loads of a module.
For example, if one loads and runs the program
in Fig. 1 it will succeed the first time but fail ev-
ery time after that. This is because the FIFO that
was created with themkfifo() call on the first
run still exist so followingmkfifo() calls will
fail.

It’s possible to remove the entry by hand, but
there is a better way. Just as with any UNIX sys-
tem removing the file is done withunlink() .
Fig. 3 gives an example.

If a FIFO is removed with a call toun-
link() while there are still open file descrip-
tors on it (through calls toopen() ) the FIFO
will not be removed until the lastclose() call
completes. It is important that file descriptors
are closed explicitly when they are not being
used anymore since unloading a module does
not cause an explicitclose() call.

/* will succeed */
open("/dev/rtf0" , O CREAT|O NONBLOCK);

/* will fail */
open("/dev/rtf0" , O NONBLOCK);

Figure 4: Creating an Old Style FIFO

4 Differences in open() and
close()

Calls toopen() andclose() act differently
when used on files created withmkfifo()
than they do when called on the old FIFOs
(/dev/rtf* ). Fig. 4 shows both the correct
and incorrect way to open an old style FIFO.
The second version of theopen() call will fail
because it lacksO CREAT. The O CREATflag
in the call toopen() will causeopen() to
create, allocate space for and open the FIFO.

Both calls in Fig.5 will fail because no FIFO
has been created. Theopen() call does not
implicitly create a FIFO. This more closely
matches POSIX and UNIX semantics. Instead,
Fig. 6 will correctly create a FIFO and open it.
The lack ofO CREATin theopen() call is im-
portant. If O CREATis used theopen() call
will fail, since the FIFO exists due to the call to
mkfifo() .

Destroying a FIFO is similar. A call to
close() on an old-style FIFO will cause the
FIFO to be closed, destroyed and its resources
released. Aclose() on a new-style FIFO
will only close the FIFO but will not destroy it.
Other threads can still operate on the FIFO or
the same thread can re-open the FIFO and use it
without anothermkfifo() call. The only way
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/* fails */
open("/file" , O CREAT|O NONBLOCK);

/* also fails */
open("/file" , O NONBLOCK);

Figure 5: Fails to Create a New Style FIFO

mkfifo("/file" , 0);

open("/file" , O NONBLOCK);

Figure 6: Create/Open a New Style FIFO

to destroy a new FIFO is throughunlink() .

4.1 Calling Context

Since anopen() of an old-style FIFO allocates
space for and creates the FIFO it is only safe
to call from a Linux context. Calls toopen()
on new-style FIFOs do not allocate any space
and are free of that restriction.open() can
be called from Linux and RTLinux contexts on
new-style FIFOs. The same is true of calls to
close() .

5 Making FIFOs visible to
Linux

The call tomkfifo() in Fig. 6 uses 0 as the
mode of the FIFO to be created. This indicates
that the FIFO should not be visible to Linux pro-
cesses. If the call is made with a non-zero argu-
ment as in Fig.7 then a corresponding FIFO is

/* create a FIFO that is visible to Linux */
mkfifo("/myfifo" , 0755);

Figure 7: Creates a FIFO that is visible to Linux

created on the Linux side with the given permis-
sion bits and the same name.

There is no error indication if a file exists with
the same name on the Linux side already. In-
stead, that file is destroyed and then recreated as
a real-time FIFO device.Be very careful when
choosing names of RTLinux FIFOs and then
advertising them to Linux since they can de-
stroy files on the Linux side!

When callingmkfifo() from a Linux con-
text the create on the Linux side file is syn-
chronous. That means when themkfifo()
call returns successfully you can be certain that
the Linux side file has been created and is now
visible to Linux user processes. Likewise, when
unlink() returns successfully in a Linux con-
text it is guaranteed that the file is no longer vis-
ible on the Linux side.

Calling mkfifo() from a RTLinux con-
text with non-zero permission is not supported.
Future versions of RTLinux may allowmk-
fifo() calls from RTLinux threads to create
Linux-side FIFOs, though.

6 Changing RTLinux Filesys-
tem Options

There are hard limits on the maximum number
of open files, the maximum number of filesys-
tem entries (existing files), maximum number
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of FIFOs and many other things. All of these
are configurable. Understanding these config-
uration choices allows developers to make sure
that no extra resources are consumed by the sys-
tem and that applications will not fail due to too
few resources being available at run-time.

The configuration option “Number of
Entries Created with Legacy
rtl register rtldev call ” creates
the variable RTL MAXLEGACYDEV. This
is the number of devices that are created by
calls tortl register rtldev() . The old
FIFOs are created with a call to this function
so this variable changes the number of old
style FIFOs available as/dev/rtf0 through
/dev/rtf... . Other older drivers may also
use this variable so does not only affect the
number of old-style FIFOs available. Change it
with care.

The maximum number of FIFOs available on
the system is listed in the RTLinux configura-
tion as “Max number of fifos” and represented
by the value ofCONFIGRTL NFIFOS. This is
the maximum number of available FIFOs on the
system. This value must be at least as great as
RTL MAXLEGACYDEV. The number of new-
style FIFOs available is:

CONFIG RTL NFIFOS− RTL MAX LEGACY DEV

Changing the “Max Number of Open Files”
configuration option will change how many files
can be open at one time in RTLinux. This is the
maximum number of file descriptors available to
RTLinux threads. “Max Number of Filesystem
Entries” is the maximum number of files that
can be created. This value includes FIFOs cre-
ated by calls tortl register rtldev() ,

FIFOs created with calls tomkfifo() and any
other special files created by drivers in RTLinux.

7 Asynchronous IO on FIFOs

The old non-POSIX method for in-
stalling FIFO read/write handlers is
rtf create handler() . This method
is supported for both old and new-style FIFOs
but there is a better way that fits in with POSIX.

A common method for waiting for a FIFO to
have data ready for read or write under UNIX
is using select() . Calls to select()
are blocking, so applications have to create a
new threads for each FIFO handler. In ad-
dition to the extra resources being consumed
by more threads performance is compromised
since eachselect() event requires a resched-
ule. rtf create handler() installs han-
dlers that are called directly rather than through
scheduler redirection and this high-performance
behavior is maintained for POSIX applications
throughrtl sigaction() .

Applications can register handlers for
FIFO read and write events through
rtl sigaction() . Fig. 8 lists code
that creates a FIFO, opens it and then installs a
handler to be called when reads and writes occur
on it. The fieldsa fd of thertl sigaction
structure specifies which file descriptor the han-
dler should be installed for. Even though an
application may register many handlers for
the SIGPOLL signal they can all be different
if the sa fd field is different. SIGPOLL
signal handlers are defined by both the signal
number SIGPOLL and the value ofsa fd
when making callsrtl sigaction() .
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void fifo handler(int sig, siginfo t *sig, void *v)
{

char msg[64];

/* if there was a write at the other end. . . */
if ( sig−>si code == POLL OUT )

write( sig−>si fd, &msg, 64 );
/* if there was a read at the other end. . . */
else if ( sig−>si code == POLL IN )

read( sig−>si fd, &msg, 64 );
}

void fifo(void)
{

int fd;
struct rtl sigaction act;

/* create a FIFO */
mkfifo("/myfifo" , 0755);

/* open the FIFO for read/write */
fd = open("/myfifo" ,

O RDWR | O NONBLOCK);

/* register a SIGPOLL handler */
rtl sigaction.sa sigaction = fifo handler;
/* the file that we want the signal for */
rtl sigaction.sa fd = fd;
/* we want read and write notification */
rtl sigaction.sa flags = RTL SA RDWR |

RTL SA SIGINFO;

/* install the handler */
rtl sigaction( SIGPOLL, &act, NULL );

}

Figure 8: Registering a FIFO read/write handler

In order for a rtl sigaction()
call to succeed with sa flags set to
RTL SA RDWR the file descriptor that
sa fd is set to must be open for read and
write (open() call with flags O RDWR). The
same is true for read-only (RTL SA RDONLY)
and write-only (RTL SA WRONLY). A thread
cannot register aSIGPOLL handler for an
operation that would not be permitted on that
file descriptor by normal IO operations such as
read() or write() .

RTL SA RDONLY, RTL SA WRONLYand
RTL SA RDWRare actually bitmasks and not
distinct values as is UNIX tradition for flags to
open() [Stevens] (O RDWR, O RDONLYand
O WRONLY). So, users should be careful of
this when setting these values. Fig.9 shows
how to safely clear and set these values in the
sa flags member.

Note that in Fig. 8 writes to a FIFO
that cause fifo handler() to be in-
voked set thesi fd field to RTL POLL OUT.
Conversely, reads from a FIFO that cause
fifo handler() to be called setsi fd to
RTL POLL IN . The handler is called directly
in response to the correspondingread() or
write() operation and is called in the same
context of those operations (including the active
stack).rtf put() andrtf get() calls will
cause any registered signal handlers for the cor-
responding FIFO to be called as well.

Fig. 10 shows a typical use of
rtl sigaction() to install handler for
Linux-side writes to a FIFO. This example is an
example of a RTLinux-side consumer of data
that writes nothing back to Linux.
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struct rtl sigaction sig;

/* unsafe since saflags value is unknown */
sig.sa flags |= RTL SA RDONLY;

/* set for read AND write */
sig.sa flags |= RTL SA WRONLY;

/* safe way to set write-only */

/* turn off the RTLSA RDONLY and RTLSA WRONLY flags */
sig.sa flags &= ˜(RTL SA RDONLY|RTL SA WRONLY);

/* or. . . */
sig.sa flags &= ˜(RTL SA RDWR);

/* set write-only */
sig.sa flags |= RTL SA WRONLY;

Figure 9: Operating onsa flags

void fifo handler(int sig, rtl siginfo t *sig, void *v)
{

char msg[64];

read( sig−>si fd, &msg, 64 );
}

void fifo(void)
{

int fd;
struct rtl sigaction act;

/* create a FIFO */
mkfifo("/myfifo" , 0755);

/* open the FIFO for read */
fd = open("/myfifo" , O RDONLY|O NONBLOCK);

/* register a SIGPOLL handler for the FIFO */
sigaction.sa sigaction = fifo handler;
/* the file that we want the signal for */
sigaction.sa fd = fd;
/* we want write event notification */
sigaction.sa flags = RTL SA RDONLY | RTL SA SIGINFO;

/* install the handler */
rtl sigaction( SIGPOLL, &act, NULL );

}

Figure 10: Registering a FIFO read handler
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fd = shm open("/shared_area" , O CREAT, 0);

Figure 11: Creating a shared area

7.1 Restrictions

There may be only oneSIGPOLL handler in-
stalled for a given real-time FIFO at one time.
There may be several file descriptors that refer
to a single FIFO but they all share a singleSIG-
POLL handler. Installing aSIGPOLL handler
for a given file descriptor may over-write one
installed on the same FIFO through a different
file descriptor.

8 Shared Memory

Support for shared memory has been han-
dled in the GPL version of RTLinux using
Tomasz Motylewski’s mbuff driver for some
time. RTLinux/Pro, however, uses common
POSIX shared memory calls for manipulat-
ing these regions. Part of the POSIX real-
time extensions call forshm open() and
shm unlink() . We will demonstrate how
these calls are used in RTLinux.

8.1 Creating a Shared Area

First, let’s look at the process of creating a
shared area withshm open() . Fig.11demon-
strates this call. Note thatshm open() creates
an area and returns a file descriptor in one step,
as opposed to the two involved inmkfifo()
andopen() .

The parameters forshm open() are fairly

ftruncate(fd, DESIRED SIZE);

Figure 12: Allocating space for a shared area

straightforward: A name to be used for the de-
vice, open flags and mode bits. The open flags
operate as expected - ifO CREATis specified, it
will attempt to create the area, otherwise it will
return a descriptor to an already created area.
SpecifyingO EXCL with O CREATwill cause
a failure if the device has already been created.

The mode parameter operates exactly as with
mkfifo() described earlier. Specifying 0 for
the mode will create the device within the scope
of RTLinux threads but will not make this object
available to Linux. Specifying a non-zero value
will cause RTLinux to create the device in the
Linux filesystem and allow Linux file operations
to use the device.

8.1.1 When is it safe?

shm open() can be used from any context ex-
cept when specifying that a Linux-side device
is to be created. In this case, it must be done
from within theinit module() context (ex-
actly the same as withmkfifo() calls). How-
ever, we still need to allocate space for the re-
gion, as we will see in the next section. So gen-
erally speaking, the initialshm open() occurs
along with the allocating call during intializa-
tion, while further calls may happen at any time.

8.2 Sizing the shared region

As you have probably noticed, we have a file de-
scriptor to a device that has been registered but
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unsigned char *addr;

addr = mmap(0,DESIRED SIZE,
PROT READ|PROT WRITE,
MAP SHARED,fd,0);

Figure 13: Accessing a shared area

we haven’t specified how much memory is to be
used. As of this point, no memory has been al-
located. Sizing of the region must be done with
a call to ftruncate() as shown in Fig.12.
This operates on the file descriptor and takes
a size parameter as normal with anyftrun-
cate() call.

As this call causes memory allocation, it must
be done ininit module() context. This is
for initial creation of an area and also for resiz-
ing, as each case causes memory to be allocated
or released.

8.2.1 Accessing the area

Now we’ve covered how to create an area and
size it appropriately but how do we access
it? This is done with the standardmmap()
call on the file descriptor we received from
shm open() . Additionally, another thread can
do a normalopen() on the device created with
shm open() , and usemmap() on that file de-
scriptor. Fig.13demonstrates common usage.

As you can see, this behaves the same
way as a normalmmap() call. The pro-
tection flags are not used at this time be-
tween real-time threads, although specifying
PROTREAD|PROTWRITE is recommended.
The address returned from this call can be used

shm unlink("/shared_area" );

Figure 14: Destroying a shared area

to reference the area as needed.

Once the user is done with this area
close() should be called on the file descrip-
tor. This will leave the shared area valid, though
- there is one more call to make it disappear from
the filesystem.

8.3 Destroying a Shared Area

Closing all of the open file descriptors on a
shared area will still leave the area present in
memory. This means that a new thread can open
the same area and access what was placed there
previously. If this isn’t necessary, destroying the
area is preferred. Destroying shared memory
is handled throughshm unlink() , as demon-
strated in Fig.14. There are no surprises here,
as this simply frees the area. This can be done
in any context.

8.4 Userspace Access to Shared
Area

If a non-zero mode was passed toshm open()
the device will be visible to Linux. Accessing
the shared area from Linux is very simple, as
we can see in Fig.15. Essentially, the operation
is symmetric, as the user can justopen() and
mmap() as in RTLinux context.
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int fd;
unsigned char *addr;

fd = open("/shared_area" , O RDWR);
addr = mmap(0, DESIRED SIZE,

PROT READ|PROT WRITE,
MAP SHARED, fd, 0);

/* work with the area */
close(fd);

Figure 15: Userspace access to shared memory

9 Reference Counting

As well as the POSIX additions detailed, all
RTLinux devices are now reference counted.
This simplifies operations so users don’t have
to worry about the state of the RTLinux thread
when accessing a segment of shared memory
from userspace. If all of the RTLinux threads
have closed and exited, and a userspace process
is the last holder of a device, the device remains
usable until that last user releases it. This fits
more closely with POSIX file operations.

As an example, consider the case where 2
RTLinux threads have initialized and are using
a device for shared memory. If the userspace
management system starts and attaches to that
device, there are now three users. If the user de-
cides that it is time to shut down, the RTLinux
threads are directed to exit which causes them to
close() and callshm unlink() when the
module is unloaded.

Now the device has been explicitly unlinked
with shm unlink() , but there is still a user.
In our example, it is a userspace user, but it
could just as easily be a RTLinux thread. Our
application may still be analyzing the data held

in that shared area. Once it has completed and
exits, the usage count finally drops to 0, and the
area is then destroyed.

This reference counting is used for all
RTLinux devices, so this approach works the
same for users of shared memory as it does for
real-time FIFOs and for any other device driver
written on top of RTLinux/Pro.
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