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1. Introduction

Abstract

The issue of runtime debugging in embedded systems arises with more or less any product
simply because there is no such thing as bug-free code. For this reason there are two
principal demands on a embedded runtime system.

• The ability to detect error-nous behavior

• The ability to locate the error in a way that allows fixing it in a short time.

The first issue is ”solved” with watchdog, respawning processes when they exit, server
structures where client processes can be re launched, etc.

The issue of localizing the fault is not so often treated, in fact in the consulting and
support work I’ve been involved in to date, not a single embedded development environ-
ment was targeting this issue explicitly. Surprisingly enough most the necessary tools
are there - they just seem to be unused, and most of them unknown. So if you always
wondered what libSegFault.so is, what /proc/PID/statm contains, bgcc... or never
noticed any of these, then this article is for you.

1. Introduction

Embedded system development generally has a higher emphasis on testing and system
evaluation than a desk-top system. In an embedded system a failure or a error-nous
behavior can stay unnoticed for quite some time, simply because nobody is going to
notice it until a service his hurt or the device stops responding. But far before this
situation occurs, problems may be noticeable and systems can be corrected before they
fail. To achieve such behavior, or to at least improve the embedded systems behavior, a
system needs to take system monitoring and post-mortem analysis into account from the
very beginning. In this article we will scan some of the available resources for embedded
GNU/Linux systems, that allow to target some of these long term debugging problems.

• memory leaks

• ”random” segfaults

• resource access problems

• locating performance bottle-necks
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2. Memory leaks

2. Memory leaks

Memory leeks are a common reasons for embedded systems to slowly but shurly lock
up, locating such problems should actually happen during system testing. But as many
embedded systems utilize ‘out-of-the-box‘ distributions an assessment of the core OS
should be done.

A quick scan of /usr/sbin on my default system shows that there are a number of
potential problems in this instalation - none of these might ever cause any real problems
- but it clearly shows that checking for memory leeks is not being performed by some of
the developers...

root@rtl14:~ # for APP in ‘ls /usr/sbin/*‘ ; do echo -n "$APP :" ; \
mtrace $APP ; done 2>&1 | tee mtrace.sbin

root@rtl14:~ # cat mtrace.sbin

/usr/sbin/adsl-setup :- 0000000000 Realloc 300 was never alloc’d
/usr/sbin/lprng_certs :
Memory not freed:
-----------------

Address Size Caller
0000000000 0 at
0000000000 0 at
/usr/sbin/nmbd :- 0000000000 Realloc 4481 was never alloc’d
Memory not freed:
-----------------

Address Size Caller
0000000000 0 at
/usr/sbin/papd :- 0000000000 Realloc 58 was never alloc’d
/usr/sbin/sendmail :- 0000000000 Realloc 694 was never alloc’d
/usr/sbin/smbd :- 0000000000 Realloc 6762 was never alloc’d
...

These results would not be acceptable for a system that needs to give any reliability guarantee,
unfortunately similar results can be reproduced on many systems. If an embedded system
would be relying on any of these applications, a close investigation of the potential problems
would need to be performed.

Note that reallocating memory that was never allocated will generally work, but the memory
is not initialized which can cause hard to detect side effects. Not freeing memory, aside from
resulting in memory ”disapearing” can be a security problem.
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2. Memory leaks

Also it is quite typical for short lived applications to not bother with freeing up allocated
memory, but just exiting and leaving it to the OS to clean it all up. This is also true for
some system applications like /bin/ls .

2.1. top

To check if an application is actually causing a memory leek one can monitor the system via
top.

All that one need to do is lauch top and use the ”M” command to sort the list by memory
usage, any memory leekage would show up after a while when the process slowly crawls to
the top of the list.

rtl14:~ # top
...

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
26343 root 15 0 1104 1104 816 R 0.5 0.4 0:00 0 top
26291 root 14 0 1672 1672 1508 S 0.1 0.7 0:01 0 sshd

1 root 12 0 76 68 52 S 0.0 0.0 0:54 0 init
2 root 12 0 0 0 0 SW 0.0 0.0 0:00 0 keventd
3 root 19 19 0 0 0 SWN 0.0 0.0 0:00 0 ksoftirqd_CPU
4 root 12 0 0 0 0 SW 0.0 0.0 9:54 0 kswapd

Hit M to sort by memory usage:

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
26291 root 13 0 1672 1672 1508 S 0.4 0.7 0:01 0 sshd
26079 root 12 0 1420 1420 1312 S 0.0 0.6 0:01 0 sshd
26293 root 14 0 1344 1344 1052 S 0.0 0.6 0:00 0 bash
26367 root 16 0 1108 1108 820 R 1.2 0.4 0:00 0 top
25997 nobody 12 0 1056 1052 848 S 0.0 0.4 0:00 0 in.identd

Unfortunately top is quite inefficient as it performs a few hundred system call per output
screen scanning the /proc filesystem. Generally top will not be available on an embedded
system. So the solution is to use the same method as in top, but to scan the appropriate
file manually which then only requires a command like ”cat”:
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2. Memory leaks

root@rtl14:~# chroot /opt/ecdk-0.1-i386/i386/dev_fs/

BusyBox v0.60.5 (2003.12.05-18:55+0000) Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

# ps | grep sshd
1086 root 3080 S /usr/sbin/sshd
8281 root 5732 S sshd: root@pts/0

21332 root 5692 S sshd: root@pts/1
23747 root 5696 S sshd: root@pts/2
# cat /proc/1086/statm
355 355 328 36 0 319 55
#

doing this a few times manually or via a cron job can reveal memory leek problems. The
meaning of the individual values listed are shown in the folowing table

Field Description
size total program size
resident size of memory portions
shared shared pages
trs ’code’ pages
drs data/stack
lrs library
dt dirty pages

Table : Contents of the statm files (note: one page = 4096bytes )

This might not seem very elegant - but on the other hand its a very simple way to locate
long term memory leekage in the embedded environment. The ammount of data that is
produced is fairly small so storing it locally over a longer period of time should not be too
big a problem. Testing on the embedded system is crucial as this might simply never happen
on the development system, and a quick scan through the /proc filesystem in a running
system can locate such problem far befor the actually inflict any damage on the device.

2.2. bgcc

For applications being developed from scratch the search for memory leeks should start
a bit earlier, gcc provides extensions for bounds checking, which reveals memory leeks at
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2. Memory leaks

the compile stage. The bounds checking gcc is called bgcc and is available as a patch to
mainstream gcc. bgcc [?] can provide more than just locating of memory leaks, but this is
out side the scope of this article.

Once you have the patched gcc installed you can copile applications with the
-fbounds-checking compiler flag - which will compile bounds checking into the appli-
cation.

For the example here we used the following test application:

#include <stdio.h>

int something (void){
printf("doing something\n");
return 0;

}

int main(int argc, char **argv){
int array[10];
int i;

fprintf(stderr,"%s\n",argv[0]);
something();
printf("dev_kit check\n");
return 0;

}

2.2.1. The good news on bgcc

BGCC can be reconfigured at runtime to pinpoint the exact problems via
the GCC BOUNDS OPTS. To retrive a list of available options just export
GCC BOUNDS OPTS=--help and execute any program that was compile with bgcc.

rtl14:~ # export GCC_BOUNDS_OPTS=--help
rtl14:~ # ./hello
You may supply a list of the following arguments to a bounds-checked program
by listing them in the environment variable ’GCC_BOUNDS_OPTS’ before
running the program. Separate the arguments by spaces.
General:

-no-message Don’t print introductory message.
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2. Memory leaks

-no-statistics Don’t print statistics.
-?, -help Print this table of usage.

Control runtime behaviour:
-array-index-check *Check the index of all array references.
-no-array-index-check Only check the pointer is within the array.
-never-fatal Don’t abort after a bounds error.
-reuse-heap *Re-use the heap.
-reuse-age=<age> Set the age limit before freeing (default: 0).
-no-reuse-heap Never really free old heap blocks.
-warn-unchecked-statics Warn if unchecked static objects are referenced.
-no-warn-unchecked-statics *Switch off the above.
-warn-unchecked-stack Warn if unchecked stack objects are referenced.
-no-warn-unchecked-stack *Switch off the above.
-warn-free-null *Warn if free (0) is used.
-no-warn-free-null Switch off the above.
-warn-misc-strings *Warn for miscellaneous strings usage.
-no-warn-misc-strings Switch off the above.
-warn-illegal Warn when ILLEGAL pointers are created.
-no-warn-illegal *Switch off the above.
-warn-unaligned *Warn when pointers are used unaligned.
-no-warn-unaligned Switch off the above.
-warn-overlap *Warn if memcpy arguments overlap.
-no-warn-overlap Switch off the above.
-warn-compare-objects *Warn if comparing pointers to different objects.
-no-warn-compare-objects Switch off the above.
-warn-all Turn on all warnings.
-print-heap Print all heap data at exit.
-no-print-heap *Don’t print heap data at exit.

Debugging:
-print-calls Print calls to the bounds-checking library.
-no-print-calls *Don’t print calls.

Note: ‘*’ means this is the default behaviour.

If one need to monitor a particular problem then simply setting up the bgcc environment will
reduce the output to an aboslute minimum. For the 2.95.3 patch the following output was
generated by the above hello world

}
root@rtl14:/tmp # export GCC_BOUNDS_OPTS="-print-heap \
-no-message -no-statistics"
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2. Memory leaks

root@rtl14:/tmp # ./hello
doing something
dev_kit check
Filename = <noname>, Line = 0, Function = calloc, Count = 1 Size = 96452

As the output of bgcc informations on exit go to stderr one can redirect them to prevent
any irritations for users and still get all the informations nedded to locate potential prob-
lems. Many little glitches might go unnoticed for quite some time, unfortunately bgccs
output is limited in the sense that it does not report any commandline parameters that
could help associate detected errors with a specific invocation. But it is not too hard to
add this to the executables at startup. Simply dump anything of interest to stderr with
fprintf(stderr,"

}
root@rtl14:/tmp # export GCC_BOUNDS_OPTS="-print-heap -no-statistics"
root@rtl14:/tmp # ./hello
./hello
dev_kit check
Bounds Checking GCC v gcc-2.95.3-2.20 Copyright (C) 1995 Richard W.M. Jones
Bounds Checking comes with ABSOLUTELY NO WARRANTY. For details see file
‘COPYING’ that should have come with the source to this program.
Bounds Checking is free software, and you are welcome to redistribute it
under certain conditions. See the file ‘COPYING’ for details.
For more information, set GCC_BOUNDS_OPTS to ‘-help’
Bounds library call frequency statistics:

Calls to push, pop, param function: 1, 1, 2
Calls to add, delete stack: 2, 2
Calls to add, delete heap: 1, 0
Calls to check pointer +/- integer: 0
Calls to check array references: 0
Calls to check pointer differences: 0
Calls to check object references: 0
Calls to check component references: 0
Calls to check truth, falsity of pointers: 0, 0
Calls to check <, >, <=, >= of pointers: 0
Calls to check ==, != of pointers: 0
Calls to check p++, ++p, p--, --p: 0, 0, 0, 0
References to unchecked static, stack: 0, 0

Both the output and the configuration is sufficiently simple that this can be used by untrained
personell to deliver better error information when contacting service points. A dump showing
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2. Memory leaks

the executable invoked, the passed arguments and the bgcc output can help pinpoint problems
a lot.

In case of a bounds violation the application will abort and a dump to stderr will occure - this
dump can be configured to go directly to a file with the -output-file=filename in the
GCC BOUNDS OPTS, for convenience the filename can contain a %p which will be substituted
by the PID of the failing process.

By adding the line

printf("%d", array[10]);

to our c-program we can trigger bounds checking

root@rtl17:/tmp# gcc -fbounds-checking hello.c
root@rtl17:/tmp# export GCC_BOUNDS_OPTS="-warn-all"
root@rtl17:/tmp# ./hello
Bounds Checking GCC v gcc-3.4.2-3.2 Copyright (C) 1995 Richard W.M. Jones
Bounds Checking comes with ABSOLUTELY NO WARRANTY. For details see file
‘COPYING’ that should have come with the source to this program.
Bounds Checking is free software, and you are welcome to redistribute it
under certain conditions. See the file ‘COPYING’ for details.
For more information, set GCC_BOUNDS_OPTS to ‘-help’
hello.c:12:Bounds error: array reference (10) outside bounds of the array.
hello.c:12: Pointer value: 0xbffff7a8
hello.c:12: Object ‘array’:
hello.c:12: Address in memory: 0xbffff780 .. 0xbffff7a7
hello.c:12: Size: 40 bytes
hello.c:12: Element size: 4 bytes
hello.c:12: Number of elements: 10
hello.c:12: Created at: hello.c, line 9
hello.c:12: Storage class: stack
Aborted

This output should be enough to imediately fix this problem.

2.2.2. The bad news on bgcc

The bad news is simple - size.
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2. Memory leaks

}
root@rtl14:/tmp # ls -l hello
-rwxr-xr-x 1 root root 95964 Jan 31 16:10 hello*
root@rtl14:/tmp # file hello
hello: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), stripped

94k for a hello world is not bad. for fairness one might add that this overhead visible in the
hello world case does not scale to large applications linearly but the overhead is conciderable.

And with gcc-3.4.4 patched for bounds-checking (glibc-2.3.5) it did not improve...

}
root@rtl17:/tmp# ls -l hello
-rwxr-xr-x 1 root root 117604 2006-02-05 20:25 hello*
root@rtl17:/tmp#

2.3. SSP Stack Smashing Protection

This is not strickly memory leaks - so it’s a bit out of place here - but as its also a gcc patch
we will cover it here.

The basic concept of stack smashing protection is that stack vulnerabilities are due to unsafe
memory layout, so corecting this layout is the primary goal.

The main ideas are:

• reordering of local variables:
By placing buffers after pointers one can avoid the corruption of pointers when local
buffers are filled with arbitrary data by the attack/coruption. This eliminates the ability
to explint function pointers.

• relocation of function arguments By copying of pointers in function arguments to an
area located before local variable buffers one can prevent the corruption of pointers
that could be used to further corrupt arbitrary memory locations.

SSP tries to protect the following four areas:

• the location of the arguments
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2. Memory leaks

• the return address

• the previous frame pointer

• the local variables

To protect the first three areas a random value, the guard variable, is introduced (random so
that it can’t be guesst and thus passed by) - note that especially on some embedded boards
there is no suitable random source to satisfy this criteria, a good random generator is a
prerequeisite to using SSP. The issue of local variables is addressed by compile time moving
of local variables to safe positions and fixing up references. This is done in an intermediate
compilation stage in RTL code and is thus platform and archi independant (gcc patch [?]).

The method used by SSP is not a guaranteed method so it can’t catch everything, though if
your coding style take the inherent limitations of SSP into account then it should be posible
to cover most of the potentialy hazardous cases.

The limitations of SSP listed on it’s home-page are:

• If a structure includes both a pointer variable and a character array, the pointer can’t
be protected, because changing the order of structure elements is prohibited.

• There is another limitation on keeping pointer variables safe. It is when an argument
is declared as a variable argument, which is used by a function with a varying number
of arguments of varying types. The usage of pointer variables can’t be determined at
compilation time, but it can be determined only during execution.

• Dynamically allocated character array

• The function that calls a trampoline code

2.3.1. Usage

download gcc-3.3.2 from ftp://ftp.gnu.org/gnu/gcc/gcc-3.3.2.tar.gz
along with the ssp patch gcc-3.3.2-bgcc-3.3.2.pat.bz2 from [?].
The procedure for patching and building of gcc is well documented at
http://www.research.ibm.com/trl/projects/security/ssp/.

To compile code with stack protection use -fstack-protector or set STACK PROTECTOR
in your environment, then the patched gcc will use stack protection by default. Also check
the web-page for packages that are known not to build with stack protection (there atleast
were a few in RedHat 6.2)
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2. Memory leaks

To make the stack protection really take effect it is necessary to rebuild the core libraries of
the system - including glibc - check the ssp page for instructions how to patch rpms to use
ssp.

Note that with a few manual fixups of failed hunks bgcc and ssp patches can be applied
to gcc (tested only with gcc-3.4.4 though). With both enhancments together this compile
should be able to catch a large number of typical application errors.

2.4. ltrace

ltrace, discussed later, can also help in locating memory leaks simply by checking the
calls to malloc and frinds during execution. But memory-leak detection is not the prime
functionality of ltrace.

2.5. njamd

njamd is a malloc debugger - well it calls it selfe ”Not Just Another Malloc Debugger” but
that is its prime usage - for POSIX systems.

njamd is an example of using library prelaod techniques, discussed later on, is libnjamd,
which is a malloc debugger implemented as preloadable library which ”wraps” the normal
libc memory allocation library:

void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

The basic interface consists of a preloaded library and some environment variables to control
its behavior, in addition issuing signal SIGUSR1 will dump memory leak information when
running under control of gdb. These memory usage diagnostics dumped to standard error
are fairly human readable and allow quick pinpointing of problems.

njamd also commes with a nice utility called njamdpm that allows to do postmortem heap
analysis. For more on njamd read up at [?].
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2.5.1. using njamd

To use njamd you need to build and install it, which ran out of the box for me with the cvs
download version. We need an application with some memory leaks and a segfault - so here
is the modified hello.

#include <stdlib.h> /* getenv */
#include <stdio.h>
main(){
char *junk;
char *junk2;
junk = (char *)malloc(6);
junk2 = (char *)malloc(32);
sprintf(junk,"123456");
free(junk);
return 0;

}

As the string ”123456” is seven chars long the malloc’ed junk is too small, this will segfault.
Calling it with libnjamd.so preloaded not only catches the segfault, but displays memory
leak information

root@rtl14:~# LD_PRELOAD=libnjamd.so ./hello

Segmentation fault (caught by NJAMD)

NJAMD: Cause of fault: Access to protected region
Offending Pointer: 0x402c4000
called from ./hello(malloc+0x184)[0x8048478]
called from /lib/libc.so.6(__libc_start_main+0xc6)[0x40054d06]
called from ./hello(free+0x4d)[0x8048371]

0x402c3ffa-0x402c3fff: Alligned length 6
Allocation callstack:

called from ./hello(malloc+0x15e)[0x8048452]
called from /lib/libc.so.6(__libc_start_main+0xc6)[0x40054d06]
called from ./hello(free+0x4d)[0x8048371]

Not Freed
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NJAMD totals:

Allocation totals: 2 total, 2 leaked
Leaked User Memory: 38 bytes
Peak User Memory: 38 bytes
NJAMD Overhead at user peak: 7.963 kB
Peak NJAMD Overhead: 7.963 kB
Average NJAMD Overhead: 3.981 kB per alloc
Address space used: 16.000 kB
NJAMD Overhead at exit: 7.963 kB

0x402c3ffa-0x402c3fff: Alligned length 6
Allocation callstack:

called from ./hello(malloc+0x15e)[0x8048452]
called from /lib/libc.so.6(__libc_start_main+0xc6)[0x40054d06]
called from ./hello(free+0x4d)[0x8048371]

Not Freed

0x402c5fe0-0x402c5fff: Alligned length 32
Allocation callstack:

called from ./hello(malloc+0x16e)[0x8048462]
called from /lib/libc.so.6(__libc_start_main+0xc6)[0x40054d06]
called from ./hello(free+0x4d)[0x8048371]

Not Freed
Aborted

The output is dumped on exit in a fairly human readable form, atleast for the above case
diagnostics of the problem are trivial. Note that this works for stripped binaries and stripped
libnjamd.so in which case it is reduced to 85k. There is a cirtain runtime overhead though
as the above report shows.

3. Sporadic Segfaults

We start out with a deterministic segfault:

rtl14:~ # cat segfault.c

#include <stdio.h>
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main(){
char *junk=NULL;
sprintf(junk,"my segfault");
printf("%s\n",junk);
return 0;

}

rtl14:~ # cc segfault.c -o segfault
rtl14:~ # ./segfault
Segmentation fault

So this little program works just as expected - but if this were in the mitdde of your application
server and it only happens once ever few days on the target board and is not reproducible -
what do you do ?

3.1. catchsegv

catchsegv is a shell script - nothing realy fancy - what this does is use the libSegFault.so that
is available in glibc by default. libSegFault is used by preloading it - more on that below.

rtl14:~ # catchsegv ./segfault
*** Segmentation fault
Register dump:

EAX: 00000073 EBX: 4015ed24 ECX: 03ffffff EDX: 00000000
ESI: 00000000 EDI: bffff820 EBP: bffff168 ESP: bffff130

EIP: 4009f4a2 EFLAGS: 00010246

CS: 0023 DS: 002b ES: 002b FS: 0000 GS: 0000 SS: 002b

Trap: 0000000e Error: 00000006 OldMask: 00000000
ESP/signal: bffff130 CR2: 00000000

Backtrace:
/lib/libc.so.6(_IO_str_overflow+0x122)[0x4009f4a2]
/lib/libc.so.6(_IO_default_xsputn+0x98)[0x4009e3d8]
/lib/libc.so.6(_IO_vfprintf+0x1c6)[0x40076326]
/lib/libc.so.6(vsprintf+0x8c)[0x400936bc]
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/lib/libc.so.6(sprintf+0x2d)[0x4008076d]
??:0(main)[0x8048393]
/lib/libc.so.6(__libc_start_main+0xc6)[0x40041d06]
./segfault(__libc_start_main+0x59)[0x80482d1]

Memory map:

08048000-08049000 r-xp 00000000 03:02 3965059 /root/segfault
08049000-0804a000 rw-p 00000000 03:02 3965059 /root/segfault
0804a000-0804e000 rwxp 00000000 00:00 0
40000000-40015000 r-xp 00000000 03:02 655389 /lib/ld-2.3.2.so
40015000-40016000 rw-p 00014000 03:02 655389 /lib/ld-2.3.2.so
40016000-40019000 r-xp 00000000 03:02 655388 /lib/libSegFault.so
40019000-4001a000 rw-p 00002000 03:02 655388 /lib/libSegFault.so
4002b000-4002c000 rw-p 00000000 00:00 0
4002c000-4015b000 r-xp 00000000 03:02 655392 /lib/libc-2.3.2.so
4015b000-40160000 rw-p 0012f000 03:02 655392 /lib/libc-2.3.2.so
40160000-40162000 rw-p 00000000 00:00 0
bfffe000-c0000000 rwxp fffff000 00:00 0

Lets verify the results by using gdb on the same segfault.

rtl14:~ # gdb ./segfault
GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux"...
(gdb) run
Starting program: /root/segfault

Program received signal SIGSEGV, Segmentation fault.
0x4009a4a2 in _IO_str_overflow_internal () from /lib/libc.so.6
(gdb) bt
#0 0x4009a4a2 in _IO_str_overflow_internal () from /lib/libc.so.6
#1 0x400993d8 in _IO_default_xsputn_internal () from /lib/libc.so.6
#2 0x40071326 in vfprintf () from /lib/libc.so.6
#3 0x4008e6bc in vsprintf () from /lib/libc.so.6
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#4 0x4007b76d in sprintf () from /lib/libc.so.6
#5 0x08048425 in main () at segfault.c:4
#6 0x4003cd06 in __libc_start_main () from /lib/libc.so.6
(gdb) quit
The program is running. Exit anyway? (y or n)

So we can get the same infomation from the backtrace in gdb or from the dump that
catchsegfault produced - just that libSegFault.so is only a few kB.

-rwxr-xr-x 1 root root 14616 May 19 2003 /lib/libSegFault.so*

Building for the chroot environment:

The makefile is not very elegant as all the cross build related entries are hard coded - but
for segfaulting this should do:

ALL: segfault

CROSS:=i386-linux
CC:=$(CROSS)-gcc
STRIP:=$(CROSS)-strip
C_FLAGS:= -Wall -Os -march=i386
INCLUDE:=-I/opt/ecdk-0.1-i386/i386/include/
LD_FLAGS:=-Wl,-rpath,/lib
STRIP_FLAGS:=-s --remove-section=.note --remove-section=.comment hello hello.o

segfault: segfault.c
$(CC) $(C_FLAGS) $(INCLUDE) -c segfault.c -o segfault.o
$(CC) $(LD_FLAGS) -o segfault segfault.o
$(STRIP) $(STRIP_FLAGS) segfault

clean:
rm -f *.o segfault

Note that we are going to trace a stipped file - so this is what you typically want to be able
to do on an embedded system - trace some striped executable without the need to actually
modify it or provide any large tool-chain.

what catchsegv ./segfault actually is doing is loading libsegfault.so so you can achive the
same results on an embedded system by doing
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# export LD_PRELOAD=${LD_PRELOAD:+${LD_PRELOAD}:}/lib/libSegFault.so
# export SEGFAULT_USE_ALTSTACK=1
# export SEGFAULT_OUTPUT_NAME=/tmp/segfault.trace

in case you don’t have any other preloaded libs the folowing is sufficient

# export LD_PRELOAD=/lib/libSegFault.so

back to the embedded fs again (don’t have bash on it so we need to set the shell in our
current session befor change rooting again).

root@rtl14:~# export SHELL=/bin/ash
root@rtl14:~# chroot /opt/ecdk-0.1-i386/i386/dev_fs/

BusyBox v0.60.5 (2003.12.05-18:55+0000) Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

# export LD_PRELOAD=/lib/libSegFault.so
# export SEGFAULT_USE_ALTSTACK=1
# export SEGFAULT_OUTPUT_NAME=/tmp/segfault.trace
# cd /tmp
# ls
hello segfault
# ./segfault
Segmentation fault
# ls
hello segfault segfault.trace
# cat segfault.trace
*** Segmentation fault
Register dump:

EAX: 00000000 EBX: 4012eb90 ECX: 03ffffff EDX: 00000073
ESI: bffff80c EDI: 00000000 EBP: bffff17c ESP: bffff154

EIP: 40083d64 EFLAGS: 00010246

CS: 0023 DS: 002b ES: 002b FS: 0000 GS: 0000 SS: 002b

Trap: 0000000e Error: 00000006 OldMask: 00000000
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ESP/signal: bffff154 CR2: 00000000

Backtrace:
/lib/libc.so.6(_IO_str_overflow+0x13c)[0x40083d64]
/lib/libc.so.6(_IO_default_xsputn+0xab)[0x40082ec7]
/lib/libc.so.6(_IO_vfprintf+0x1f3)[0x40062d5f]
/lib/libc.so.6(vsprintf+0x63)[0x4007ab6b]
/lib/libc.so.6(sprintf+0x25)[0x4006b91d]
./segfault[0x8048429]
/lib/libc.so.6(__libc_start_main+0xbb)[0x4003216f]
./segfault(__libc_start_main+0x51)[0x8048365]
# exit

note that there is no memory map dump on the embedded fs which is due to a problem in
libSegFault when cross compiling if you find a solution to this littl glitch let me know. The
essential information though is that we can pinpoint sprintfas the cause for the segfault.

libSegFault.so can not only be preloaded for an individual application (actually the
LD PRELOAD is active for a given shell session) but can be put into the file /etc/ld.so.preload
to be active on a system scope - if this is done - don’t forget to define an appropriate output
file.

Non-exhaustive tests showed no performance penalty for using libSegFault - so this might
well be a generally recommendable way of ensuring that sporadic segfaults can be traced.

3.2. core dumps

For quite some time generating core-dumps was a common practice, but it seems to have
gotten out of ”style”... One of the problems for embedded applications is that the core files
generated can be quite large, clearly they give you the best picture of what happened if they
can be retrieved and passed on to the responsible programmer.

Some daemons will provide core files in a configurable manner - like squid offers a coredmp
tag in its config file. Generally this is a good idea to put any generated core files in a well
defined place or the usefullness of these will diminish simply because nobody knows where
to look and if they stumble across one what to do with it.

# TAG: coredump_dir
# By default Squid leaves core files in the first cache_dir
# directory. If you set ’coredump_dir’ to a directory
# that exists, Squid will chdir() to that directory at startup
# and coredump files will be left there.
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As the comment here shows, all your app needs to do is to chdir befor segfaulting, so our
segfault program from above would simply be:

#include <stdio.h>
#include <unistd.h>
main(){

char *junk=NULL;

chdir("/tmp/");
sprintf(junk,"some string to segfault it");
printf("%s\n",junk);
return 0;

}

And the core files are located in /tmp/ now. Note that you can use the file command to
check what application caused the core dump

root@rtl14:/tmp # file /tmp/core
/tmp/core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from ’segfault’

All you need to do to enable core-dumps is to set the appropriate user limit (default being 0
- no core files generatd). so

rtl14:~ # export SHELL=/bin/ash
rtl14:~ # chroot /opt/ecdk-0.1-i368/i386/dev_fs

BusyBox v0.60.5 (2003.12.05-18:55+0000) Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

# ulimit -c 200
# cd /tmp
# ./segfault
Segmentation fault - core dumped
# ls
core segfault segfault.trace
hello segfault.segv.5193
# ls -l
-rw------- 1 root root 69632 Dec 7 12:58 core
-rwxr-xr-x 1 root root 2488 Dec 5 19:31 hello
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-rwxr-xr-x 1 root root 2568 Dec 5 19:38 segfault
-rw-r--r-- 1 root root 723 Dec 6 09:34 segfault.trace
# exit

Note that the ulimit unit is 1k by default, so the core file was limited to 200k, as can be seen
the core file of the segfault event for this trivial case is about two orders larger than what
libSegFault produced. So for some systems core files may be inacceptable. Not also that the
limit set with ulimit is a hard limit so in case the core file exceeds this size you simply get
no usefull core file resulting most likely in no usefull diagnostics.

root@rtl14:~ # ulimit -c 20
root@rtl14:~ # ./segfault
Segmentation fault (core dumped)
root@rtl14:~ # ls -l core
-rw------- 1 root root 20480 Dec 7 14:20 core
root@rtl14:~ # gdb --core core
GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux".
Core was generated by ‘./segfault’.
Program terminated with signal 11, Segmentation fault.
#0 0x4009a4a2 in ?? ()
(gdb) bt
#0 0x4009a4a2 in ?? ()
Cannot access memory at address 0xbffff1a8
(gdb)

Here we could extract no more from the core file than the fact that the termination was due
to a segmentation fault.

3.3. Core file names

The default in GNU/Linux is to name core file core, other UNIX flavors allow to configure
the name (i.e. via sysctl in BSD), in Linux the core file base name can be set via sysctl and
in addition the pid can be added
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root@rtl14:/proc/sys/kernel# cat core_uses_pid
0
root@rtl14:/proc/sys/kernel# cat core_pattern
core

The default being to not append the pid.

root@rtl14:~# echo 1 > /proc/sys/kernel/core_uses_pid
root@rtl14:~# ./segfault
Segmentation fault (core dumped)
root@rtl14:~# ls -l core.*
-rw------- 1 root root 53248 Dec 7 15:46 core.17193
root@rtl14:~#

This does not realy help much unless you record all PIDs when launching applications... A
more elaborate patch is available though and for distributed embedded systems and clusters
this is quite interesting.

The Patch by Michael Sinz provides the following format options :

Format Description
%P process ID, pid
%U user ID, uid
%N commandline name of the process
%H hostname
%% A ”%”

Table : Format options available in the coredump-file-control patch

sysctl -w ”kernel.core name format=/coredumps/

echo "/coredumps/%U/%N-%P.core" > /proc/sys/kernel/core_name_format

putting the core files in user specific directories like

/coredumps/root/segfault-8023.core
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In the mainstream 2.6.X kernel tree this functionality has been more or less included with
some slight changes (not sur if based on Michael Sinz patch or not - if you do know pleas
drop me a note). So for 2.6.X use the following format strings for core dumps file name
configuration:

• %p:
add the process id (pid) of the process - note that the old flag of core ises pid
is still suppored. So if core pattern does not include a %p (as is the default) and
core uses pid is set, then .pid will be appended.

• %u:
add the user id (uid) (note this is not the effective uid!)

• %g:
add the group id (gid)

• %s:
add the singal number that caused the core dump

• %t:
add a timestamp into the file name - this is tv.tv sec as returned from gettimeofday().

• %h:
add the hostname

• %e:
add the executable name

Note that there is a 64 byte limit on the extension name - if longer it is simply truncated.
It is also posible to specify a literal % in the core filename patern with a double % - no idea
what that might be good for...

3.4. debuging core files

After generating a core file in the embedded filesystem located at
/opt/ecdk-0.1-i386/i386/dev fs/ in my case, this core file is analyzed with gdb.

rtl14:~ # cd /opt/ecdk-0.1-i386/i386/dev_fs/
rtl14:~ # gdb
GNU gdb 5.3
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Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-slackware-linux".
(gdb) set solib-absolute-prefix /opt/ecdk-0.1-i386/i386/dev_fs/
(gdb) file /usr/src/dev_kit/test/segfault
Reading symbols from /usr/src/dev_kit/test/segfault...
(no debugging symbols found)...done.
(gdb) target core tmp/core
Core was generated by ‘./segfault’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /opt/ecdk-0.1-i386/i386/dev_fs/lib/libc.so.6...done.
Loaded symbols for /opt/ecdk-0.1-i386/i386/dev_fs/lib/libc.so.6
Reading symbols from /opt/ecdk-0.1-i386/i386/dev_fs/lib/ld-linux.so.2...done.
Loaded symbols for /opt/ecdk-0.1-i386/i386/dev_fs/lib/ld-linux.so.2
#0 0x4007fd64 in _IO_str_overflow (fp=0xbffff87c, c=115) at strops.c:178
178 *fp->_IO_write_ptr++ = (unsigned char) c;
(gdb) bt
#0 0x4007fd64 in _IO_str_overflow (fp=0xbffff87c, c=115) at strops.c:178
#1 0x4007eec7 in _IO_default_xsputn (f=0xbffff87c, data=0x8048490, n=26)

at genops.c:466
#2 0x4005ed5f in _IO_vfprintf (s=0xbffff87c,

format=0x8048490 "some string to segfault it", ap=0xbffff95c)
at vfprintf.c:1307

#3 0x40076b6b in _IO_vsprintf (string=0x0,
format=0x8048490 "some string to segfault it", args=0xbffff95c)
at iovsprintf.c:46

#4 0x4006791d in sprintf (s=0x0,
format=0x8048490 "some string to segfault it") at sprintf.c:38

#5 0x08048429 in sprintf () at sprintf.c:37
#6 0x4002e16f in __libc_start_main (main=0x8048414 <sprintf+224>, argc=1,

ubp_av=0xbffff9d4, init=0x80482bc, fini=0x804846c <sprintf+312>,
rtld_fini=0x40009cf0 <_dl_fini>, stack_end=0xbffff9cc)
at ../sysdeps/generic/libc-start.c:129

(gdb)

the procedure is no different if we would have a ”real” cross-debug session, in this case
its i368 on a i686. If you copy the core files from the target system to your local host
system then you must make sure you have a identical filesystem structure and the same
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library versions etc. or your results may be garbage. Unfortunately it is not so that you get
NO results just because you use wrong libs ! if you run the above session without the set
solib-absolute-prefix command gdb will silently use the host libs and may point you in
a totally wrong diretion.

4. Performance issues

Linux user-land is designed for desk-top setups, there are a number of problems for embedded
systems when transfering des-top apps to embedded environments. Some of the key issues
are:

• too many options

• too much processing spent for pritty output

• testing for many different setups and default config files

• rich feture set not needed on embedded systems

These issues arise basically because most embedded console interfaces are not designed
around the assumption that someone is going to sit there 8 hours a day, but they are for
system maintenance and inspection on errors only. UNIX itselfe has a large set of redundant
functionality, just thinkg of dropping a file to screen, you can use cat, more, tail, sort, grep
and even dd..., so the first step is to eliminate redundancy on the application layer. The
next step is to locate poisble perfromance bottle necks that can be induced by rarely run
applications. Just think of putting top on a system for monitoring, this well can produce a
system load that is problematic, even on a PI 200 MHz top can consume 5-10% of the CPU
!

Locating performance problems requires:

• resolve details of library dependancies

• check system call usage

• profile application internal calls

Once this has been done one has a set of potential hot-spots in the code and then can go
on to explicidly tracing these events.
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4.1. ltrace

ltrace can help you locate application bottlenecks - basically what you would want to do
is build your application using standard libraries - but after that you analyze it to see where
most of the time is spent.

root@rtl14:~/junk# ltrace -c -ttt ls -l
total 0
-rw-r--r-- 1 root root 0 Dec 9 16:55 a
-rw-r--r-- 1 root root 0 Dec 9 16:55 b
-rw-r--r-- 1 root root 0 Dec 9 16:55 c
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
22.16 0.000787 787 1 getpwuid
11.71 0.000416 9 43 strlen
6.14 0.000218 43 5 __overflow

...
0.34 0.000012 12 1 __cxa_atexit
0.31 0.000011 11 1 strncmp

------ ----------- ----------- --------- --------------------
100.00 0.003552 173 total
root@rtl14:~/junk#

This trace could suggest that we should pay attention to the optimization of strlen and
getpwuid, but one needs to be carfull with such analysis as it may be very dependant on the
specific data set an application is to process. Looking at a second trace output would lead
to posibly totally different results.

root@rtl14:/usr/src/dev_kit/src/ltrace-0.3.31# ./ltrace -c -ttt ls
BUGS configure elf.h options.o
COPYING configure.in elf.o output.c
...<snip>
config.status display_args.o options.c wait_for_something.c
config.sub elf.c options.h wait_for_something.o
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
35.85 0.011869 11869 1 qsort
16.03 0.005307 10 496 __errno_location
11.52 0.003814 9 384 __ctype_get_mb_cur_max
9.30 0.003079 10 300 strcoll
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...<snip>
0.04 0.000014 14 1 __fpending
0.04 0.000013 13 1 _setjmp

------ ----------- ----------- --------- --------------------
100.00 0.033106 2009 total
root@rtl14:/usr/src/dev_kit/src/ltrace-0.3.31#

This trace would show that the greatest optimisation could be achived with qsort improvment
(...which will not be easy to achive though). The real consequence for an embedded system
would be to review if sorting the output is realy necessary - in case of ls this might not be
the case so we could alias ls to ls -f, instructing ls to produce output in the order they
are stored on disk.

root@rtl14:/usr/src/dev_kit/src/ltrace-0.3.31# ./ltrace -c -ttt ls -f
. config.sub options.c options.o
.. debian options.h elf.o
etc defs.h process_event.c output.o
...<snip>
install-sh ltrace.h ltrace.o
wait_for_something.c proc.c Makefile
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
25.15 0.003836 9 396 __ctype_get_mb_cur_max
19.21 0.002930 11 256 __overflow
14.16 0.002160 10 202 __errno_location

...<snip>
0.13 0.000020 20 1 closedir
0.10 0.000015 15 1 __fpending
0.09 0.000013 13 1 __cxa_atexit

------ ----------- ----------- --------- --------------------
100.00 0.015255 1438 total
root@rtl14:/usr/src/dev_kit/src/ltrace-0.3.31#

This is a prinzipal problem of bottle-netck detection, it generally is not posible to optimize
for all cases of posible data sets. In embedded systems one often has a fairly well defined
set of processing tasks to do allowsing to optimize for a specific data set, so optimization
beond what is posible for the general case is posible and ltrace can guide you to the point
where to start optimizing. Furthermore, as this simple examples with ls shows, not all tools
designed for convenience on desk-top systems, are realy that suited for embedded systems,
so in many cases ltrace can lead to simple to implement improvments.
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It is important to note though that one may not simply read the numbers in ltrace and
belive that the ls -l realy takes that long. The output of ltrace must
be read as relative values, so we can see what library call took the
most time, but not realy how long it took. To put this relative values
into context, run the commands with time prepended.

root@rtl14: # time /usr/src/dev_kit/src/strace/strace -c -ttt ls -l
...<snip>
real 0m0.010s
user 0m0.004s
sys 0m0.005s
root@rtl14: # time ls -l
t
...<snip>
real 0m0.006s
user 0m0.003s
sys 0m0.001s

This shows the sitortion due to tracing with ltrace, naturally as this
is a very non-deterministic system you would have to run this a few
times to get any usable results and generally for very short execution
times results always will be very inaccurate. What one *can* extract
from ltrace precisely is in what library functions you want to posibly
optimize, or maby reimplement in your application code for a less
general case.

4.2. strace

Applications are spending there time in libraries, system calls, and
in applicatoin code, what we saw above was how to locate library bottle
necks. Next we want to see details of the time spent in kernel mode:

root@rtl14:~# strace -c -tt ./hello
12:03:37.368036 execve("./hello", ["./hello"], [/* 35 vars */]) = 0
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
94.27 0.009598 1600 6 2 open
3.72 0.000379 42 9 writev

...snip...
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0.01 0.000001 1 1 sigaltstack
0.00 0.000000 0 1 getpid

------ ----------- ----------- --------- --------- ----------------
100.00 0.010181 58 1 total
root@rtl14:~#

The output of strace not only shows the number of system calls but
also the timespent per system call, so bottle necks can be located and
especially system calls that are returning with error codes, which can
result in error processing overhead and, if these errors don’t alter the
intended behavior, indicate obviously useless code (in the above case
the two opens failed on /etc/ld.so.cache and /etc/ld.so.preload).

This can be combined with time to achive an overview

root@rtl14:~ # time strace -tt -c ./hello
root@rtl14:~# time strace -tt -c ./hello
12:28:59.320956 execve("./hello", ["./hello"], [/* 31 vars */]) = 0
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
32.69 0.000017 6 3 1 open
25.00 0.000013 3 5 old_mmap

...snip...
5.77 0.000003 2 2 fstat64
3.85 0.000002 1 2 close

------ ----------- ----------- --------- --------- ----------------
100.00 0.000052 16 1 total

real 0m0.037s
user 0m0.000s
sys 0m0.004s
root@rtl14:~#

Note though that for applications running only very short time, like
this hello world, the actuall numbers are not very precise - never the
less, one can put the system call related times into relation to the
user-space time and the real, wall-clock, time, which gives a sufficient
overview to locate potential performance bottle necks.

If a daemon is launched in this mode you need to specify the -f flags to
include all child processes.
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root@rtl14:~# time strace -c -tt -f crond
12:35:15.117242 execve("/usr/sbin/crond", ["crond"], [/* 31 vars */]) = 0
Process 23746 attached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
20.76 0.000115 115 1 send
17.69 0.000098 7 15 4 open

...snip
0.18 0.000001 1 1 getuid32
0.00 0.000000 0 3 2 nanosleep

------ ----------- ----------- --------- --------- ----------------
100.00 0.000554 123 8 total

real 0m41.721s
user 0m0.003s
sys 0m0.003s
root@rtl14:~#

In all traces shown here one can find errors on open - using strace
to locate such problems showed that the file /etc/ld.so.preload did
not exist on the system and was causing this error. Generally for
embedded systems with a high reliability requirements it is advisable
to ensure that the expected system resources are realy available
or the application does not request them even if in the case of
/etc/ld.so.preload this error is without consequences. Cleaning up the
applicatoins will simplify and speed up error analysis in case something
realy goes wrong.

A clear disadvantage of both ltrace and strace is that one has to run an
application in a special setup and there is a conciderable performance
overhaed when tracing. Both are thus limited to tracing specific
applications, one can not trace an entire system with these tools,
atleast not at a tolerable expense.

4.3. Profiling with gprof

In this section we will run through a quick profileing session with
gprof, we assume that the libraries are not built with profiling on the
embedded system (typically this is not posible for size and performance
reasons), but the application is built with profiling. Thus this is
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limited to profiling the application function calls but will not reveal
any weeknesses in the libraries used.

ALL: hello

CROSS:=i386-linux
CC:=$(CROSS)-gcc
C_FLAGS:= -Wall -g -O -march=i386
INCLUDE:=-I/opt/profile/i386/include/
LD_FLAGS:=-Wl,-rpath,/lib

hello: hello.c
$(CC) $(C_FLAGS) $(INCLUDE) -c hello.c -o hello.o -pg
$(CC) $(LD_FLAGS) -o hello hello.o -pg

clean:
rm -f *.o hello

The application it selfe has nothing special in it - just a call to ”something” in our case.

#include <stdio.h>

int something (void){
printf("doing something\n");
return 0;

}

int main(int argc, char **argv){
something();
printf("dev_kit check\n");
return 0;

}

4.3.1. usage of gprof

compile with -pg (limited to -static if libs were not compiled with -pg)

gcc -static -v -g -pg app.c -o app
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If one has application libraries one can compile these specific libs with profiling, but compil-
ing all system libraries with profiling for a embedded target is somewhat problematic. For
development this might be ok, but as we are interested in runtime debugging we assume
here that shared libs are not compiled with profiling. Note that in some cases it may be
tolerable to compile the application with static libs once one indentified the application that
is causing problems.

As an example of how bad this is - the above hello.c compiled with -static...

-rwxr-xr-x 1 root root 1560675 Jan 14 09:14 hello*

were as profiling of only the application code leads to a moderately increased filesize which
is generally tolerable.

-rwxr-xr-x 1 root root 36145 Jan 14 09:16 hello*

running hello, described in the previous section, will log the output in gmon.out (default
file name, which *can’t* be changed, and an exiting file will be overwritten if it is in the
working directory of the process).

reading with gprof which is part of the binutils package will generate the flat profile and a
call graph (default settings).

Flat profile:
Each sample counts as 0.000999001 seconds.
no time accumulated

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
0.00 0.00 0.00 1 0.00 0.00 something

The call graph reveals cal depth and also allows better location of circumstances under which
excessive execution time had been reached.

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) no time propagated

index % time self children called name
0.00 0.00 1/1 main [14]

[1] 0.0 0.00 0.00 1 something [1]
-----------------------------------------------
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4.3.2. drawback

• Mention the function call overhead introduced by -pg

• libs must be compiled with -pg or -static.

• libs and code are substantially larger

• better suited for developement that for runtime testing

4.4. Code coverage with gcov

Using the above example hello.c file again, we compile it with:

gcc -fprofile-arcs -ftest-coverage hello.c -o hello

The fairly small data files compared to gprof and also the low impact on the executable size
make this very usefull for locating hot-spots in embedded applications.

-rwxr-xr-x 1 root root 15405 Jan 14 09:12 hello*
-rw-r--r-- 1 root root 108 Jan 14 09:12 hello.bb
-rw-r--r-- 1 root root 156 Jan 14 09:12 hello.bbg
-rw-r--r-- 1 root root 174 Jan 14 07:44 hello.c
-rw-r--r-- 1 root root 48 Jan 14 09:12 hello.da
-rw-r--r-- 1 root root 11192 Jan 14 09:02 hello.o

4.4.1. generating reports

reports can be generated from data and source - no access to binary necessary.

root@rtl14:/usr/src/dev_kit/test# gcov -b hello.c
100.00% of 7 source lines executed in file hello.c
No branches in file hello.c
100.00% of 3 calls executed in file hello.c
Creating hello.c.gcov.

These reports allow very quick localization of dead code and of code that is executed very
frequently, thus a good place to concider for optimization and profiling.
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1 int something (void){
1 printf("doing something\n");

call 0 returns = 100%
1 return 0;

}

1 int main(int argc, char **argv){
1 something();

call 0 returns = 100%
1 printf("dev_kit check\n");

call 0 returns = 100%
1 return 0;

}

The main issues that gcov can provide are

• code coverage

• execution path check

• execution hot spots localization

naturally gcov can only work properly if the applications are tested under circumstances
that will allow gcov to reveal problems. So codecoverage requires well designed test-suits -
untested branches will not be evaluated.

4.5. applogger

On embedded systems one often has the problem that one does not have the sources for
a given application available or that one can’t easaly modify them, so methods that allow
tracing the installed binaries are convenient. One such method is to use the preload capability
of GNU glibc and plug in a littl logger library that can dump information - in our case via
the heavy weight syslog call.

The folowing example is based on a post by Jeffrey Streifling on the web - I unfortunately
did not save the URL so I can’t give full reference here. What this is doing here is quite
cruel and can’t be recommended for any realy system, but to keep the example short...

This file is compiled into a library and then preloaded via the export LD PRELOAD= shell
command. From then on all applications launched from this shell will cause a syslog entry
when they make a libc call to open.G
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/*
* Written by Der Herr Hofrat, <der.herr@hofr.at>
* Copyright (C) 2003 OpenTech EDV Research GmbH
* License: GPL Version 2
*/

/*
* Compile as shared library with:
* gcc -fPIC -Wall -g -O2 -shared -o applogger.so.0 applogger.c -lc
*
* Log all calls to glibc’s open function with all its parameters passed
* open logfile on load of applogger lib and close on removal.
*
* The libraries init function is used to extract the logfile name in the
* environment and open the file, the exit method closes the file.
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>

#define _FCNTL_H
#include <bits/fcntl.h>

extern int __open(const char *pathname, int flags, mode_t mode);

/* initialize and cleanup logfile(s) on load/unload of lib */
void __applogger_init(void) __attribute((constructor));
void __applogger_exit(void) __attribute((destructor));

FILE *logfile;
char default_fname[]="/tmp/applogger";
char *logfile_name;

void __applogger_init(void)
{

if ((logfile_name = getenv("APPLOG_FILE")) != 0) {
printf("using %s\n",logfile_name);

} else {
logfile_name=default_fname;

printf("using %s (not APPLOG_FILE set in environment)\n",logfile_name);
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}

if((logfile=fopen(logfile_name,"a+")) == NULL )
{
perror("Cannot open logfile\n");
exit(-1);
}
}

void __applogger_exit(void)
{
fclose(logfile);
}

/* any open called will cause a log entry */
int open(const char *pathname, int flags, mode_t mode) {

fprintf(logfile,"%d: opened %s (%d,%d)\n", getpid(), pathname, flags, mode);

/* now do the real libc open */
return __open(pathname, flags, mode);
}

Compile this with the above noted gcc command. And either preload the libs as shown below
to make them take effect for all applications or just load them for one particular application, as
shown later with njamd usage, by preceeding the command with the LD PRELOAD=/PATH/lib

hofrat@rtl14:~/C/libs > export LD_PRELOAD=/home/hofrat/C/libs/applogger.so.0
hofrat@rtl14:~/C/libs > export APPLOG_FILE=/tmp/log
hofrat@rtl14:~/C/libs > vi junk
<just close the file again>
hofrat@kanga:~/C/libs > cat /tmp/log
17551: opened /usr/share/terminfo/x/xterm (0,-1073751172)
17551: opened junk (0,0)
17551: opened .junk.swp (0,0)
17551: opened .junk.swp (194,384)
17551: opened .junk.swpx (0,0)
17551: opened .junk.swpx (194,384)
17551: opened .junk.swp (578,384)
17551: opened junk (0,0)
hofrat@kanga:~/C/libs > unset LD_PRELOAD
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This shows that open is a bad trace point unless you are a bit more selective, and it
shows that this version of vi might be an overkill version fro an embedded system (8 files
opened/reopened for a single editor session). Also using this brute force approach together
with a call to syslog(...) can easaly result in a syslog party on your embedded system...
The clear advantage of this method is though that no modification to the existing application
is required one can trace stripped application binaries basically at any library call.

4.6. tracing a specific library function

As noted above gprof is somewhat limited as it requires shared libs to be compiled with
-pg, making the quite large, or one needst to compile apps as static executables. Aside from
the size problems on some embedded systems, both with the gprof output files and with
the profiling overhaed of the libs, this method requires source access to the libs or atleast a
vendor willling to deliver profiling versions of there libs.

A limited work around is to ”profile” a library call by a preloaded lib that does nothing else
but timestamp the call and return and log the elapsed time along with some parameters
to a specified log file. This method can be applied quite selectively and will produce fairly
small log files aswell as introducing a minimum overhead, both size wise and time wise, but
it requires that one has allready pinpointed the potential trouble makers first. So this is an
addition to grprof/gcov, by no means a replacement.

/*
* Written by Der Herr Hofrat, <der.herr@hofr.at>
* Copyright (C) 2004 OpenTech EDV Research GmbH
* License: GPL Version 2
*/

/*
* Compile as shared library with:
* gcc -fPIC -Wall -g -O2 -shared -o timestamp.so.0 timestamp.c -lc
*
* timestamp all calls and returns to open, log elapsed time.
*/

#include <stdio.h>
#include <unistd.h> /* exit, gettimeofday */
#include <sys/types.h>
#include <stdlib.h> /* getenv */
#include <sys/time.h> /* gettimeofday */
#include <time.h>
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#define _FCNTL_H
#include <bits/fcntl.h>

extern int __open(const char *pathname, int flags, mode_t mode);

/* initialize and cleanup logfile(s) on load/unload of lib */
void __timestamp_init(void) __attribute((constructor));
void __timestamp_exit(void) __attribute((destructor));

FILE *logfile;
char default_fname[]="/tmp/timelog";
char *logfile_name;

void __timestamp_init(void)
{

int verbos=0;
if (getenv("TIMELOG_VERB") != 0) {

verbos=1;
}

if ((logfile_name = getenv("TIMELOG_FILE")) != 0) {
if(verbos)

sprintf("using %s\n",logfile_name);
} else {
logfile_name=default_fname;

if(verbos)
printf("using %s (no TIMELOG_FILE set in env)\n",logfile_name);

}

if((logfile=fopen(logfile_name,"a+")) == NULL )
{
perror("Cannot open logfile\n");
exit(-1);
}
}

void __timestamp_exit(void)
{
fclose(logfile);
}
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int open(const char *pathname, int flags, mode_t mode) {

int fd;
struct timeval fun_call;
struct timeval fun_ret;
struct timeval fun_runtime;

/* timestamp call and return */
gettimeofday(&fun_call,NULL);
fd = __open(pathname, flags, mode);
gettimeofday(&fun_ret,NULL);

/* fix timeval usec overruns */
fun_runtime.tv_sec = fun_ret.tv_sec - fun_call.tv_sec;
fun_runtime.tv_usec = fun_ret.tv_usec - fun_call.tv_usec;
if (fun_runtime.tv_usec < 0) {
--fun_runtime.tv_sec;
fun_runtime.tv_usec += 1000000;
}

/* log it */
fprintf(logfile,"%d: open %s (0x%x,%o,%d) in %ld us\n",
getpid(),
pathname,
flags,
mode,
fd,
fun_runtime.tv_usec + ( fun_runtime.tv_sec * 1000 ));

/* don’t forget to return the original functions value ;) */
return fd;

}

The read write application called below is simply a open of a input file with O RDONLY
and open of the output file with O WRONLY—O TRUNC—O CREATE, and then copy the
data from input to output.

hofrat@kanga:~ > unset LD_PRELOAD
hofrat@kanga:~ > export TIMELOG_VERB=1
hofrat@kanga:~ > export LD_PRELOAD=/home/hofrat/C/libs/timestamp.so.0
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hofrat@kanga:~ > ./read_write
<just quite the editor again>

using /tmp/timelog (no TIMELOG_FILE set in env)
hofrat@kanga:~ > unset TIMELOG_VERB
hofrat@kanga:~ > ./read_write
hofrat@kanga:~ > tail /tmp/timelog
19588: open /tmp/input (0x0,1001101560,4) in 10 us
19588: open /tmp/output (0x241,644,5) in 107 us
19602: open /tmp/input (0x0,1001101560,4) in 8 us
19602: open /tmp/output (0x241,644,5) in 4160 us

Looking at this output - one might be supprised that the last call to open took 4 milli seconds
(and this is on a PIII/800) - looking at the flags one can see open ran with O TRUNC and
the output file was quite large before so that explains the large time. This is exactly the
type of problem that is hard to locate during testing because one typically does not have
the accumulated files and long time environment like embedded applications that are runing
for months or maby years and then under some specific circumstances open the file with
O TRUNC (for instance if there is too little space left on the system).

The nice thing about this solution though is that this type of preload ”profiling” can be
added to a running system without the need to modify applications or libraries that are on
the system.

4.7. ltp

When writing up this summary I was unsure where to put this section, its not strictly related to
runtime debuging, but it is more of a prerequisti to start with any serious runtime debuging
and system profiling. The Linux Test Plan [?] provides a ”regression test” for the kernel
proper. The core test components are:

• filesystem stress tests

• disk I/O tests

• memory management stress tests

• ipc stress

• scheduler tests

• commands functional varification tests
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• system call functional varification tests

Especially the stress tests are of interest not only for ”normal” embedded linux but also for
the different real-time variants.

Some of the featurs of interest here related to hot-spot detection are:

• Kernel Code Coverage:
The Linux kernel code coverage is a kernel patch that allows to identify the areas in
the kernel that are influenced most by the LTP test-suite.

• Gcov Extension(lcov):
This is basically a gcov variant that will allow corelating data collected with the test-
suits run, thus simplifying the interpretation of colected data.

• Gcov-kernel Extension:
To allow judgment of the test-suite effects in the kernel proper, this code coverage
extension to the linux kernel (reporting via /proc interface), allows indentifying kernel
areas that were most impacted by a give LTP test.

It’s kind of out of the scope of this article to go into details - so give
http://ltp.sourceforge.net/ a close look !

4.8. oprofile

For runtime profiling at a system scope the above tools will not due, locating bottle necks
that might not be application specific but are due to the overall system configuration requires
a tool that monitors the entirety of a system. For Linux based embedded systems oprofile
[?] allows exactly that.

For 2.4.X kernels, you must have the kernel source available for the kernel you want to run
oprofile under (passed at build time with ./configure –with-linux=/path/to/kernel/source,
make, make install). In 2.6.X oprofile is allready available in the kernel, it just needs to be
enabled (builtin or as module), and then on ecan build oprofile (./configure –with-kernel-
support). Support is somwhat X86 centric (again) - but other architectures are imerging in
2.6.X. The overhead of oprofile has been reported as low as 1-8%, mainly dependant on the
interrupt load of the system. This is why it is mentioned here as this low overhead makes it
well suited for runtime debuging on deployed systems.

Oprofile allows some kernel level profiling with 2.4.X kernels, as of Linux-2.6.X it is integrated
in the kernel and one should expect this to become one of the main runtime monitoring tools
in the future Linux kernel development.
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One quote from the oprofile web-page that maby summs it all up very well:
Bottlenecks occur in surprising places, so don’t try to second guess and put in a speed hack
until you’ve proven that’s where the bottleneck is. - Rob Pike

The oprofile package comes with the necessary utilities to configure and start/stop profiling
at runtime:

• opcontrol - used for starting and stopping

• opreport - generate symbol-based profile summarie

• opannotate - to output annotated, mixed source or assembly output

• opgprof - generate a gprof-format profile

When using oprofile it is advisable to read the entire man-page, to avoide large loads due to
profiling one must carfully select set-up parameters !

5. Kernel-space runtime debugging

5.1. kernel debugging

In the late 2.4.X and in the 2.6.X series of kernels a number of builtin kernel level debug
featurs have been added, these should be used for kernel based application development
befor trying to build new facilities !

Many of the bugs that can be detected by kernel debugging are typical bugs that can stay
undetected for a long time. Thus one should run kernel space apps with debuging turned on
befor releasing them.

Kernel hacking --->
[*] Kernel debugging
[ ] Check for stack overflows (NEW)
[ ] Debug high memory support (NEW)
[ ] Debug memory allocations (NEW)
[ ] Memory mapped I/O debugging (NEW)
[ ] Magic SysRq key (NEW)
[ ] Spinlock debugging (NEW)
[ ] Compile the kernel with frame pointers (NEW)
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• Check for stack overflows:
Sets: CONFIG DEBUG STACKOVERFLOW
This will make do IRQ() check for enough stack space beeing left, which typically is
not the case if interrupts start stacking up endlessly (for instance if a level triggert irq
is never reset). The error will be reported if the stack has less than 1kB of free space
left on it, if this is the case a stack dump is written via show stack

• Debug high memory support:
Sets: CONFIG DEBUG HIGHMEM
Add error checking for high memory access - this will slow down high memory con-
ciderably so it is only suiteable during development, for production sysems this needs
to be turned off. This will trigger an out of line bug() (2.4.x only) if kmap atomic
(the IRQ safe variants) find that there is no page table entry for the requested area.
kunmap atomic will force the page table entry of the this page to be cleared so that
unclean reuse, that is without remaping it, will oops.

• Debug memory allocations:
Sets: CONFIG DEBUG SLAB
The two things does is

– red zuning which allows detection of

∗ write before start

∗ write past end

∗ double free

note that these things need not imediatly lead to a system crash, and thus they
can stay undetected for a long time.

– cache poisoning, which means that the memory area is filled up with a know
pattern and terminated with a defined sequence, thus the history of an object
can be checked.

For more detail see the section on debugging memory allocation below.

• Memory mapped I/O debugging:
Sets: CONFIG DEBUG IOVIRT
I/O address ranges can’t be checked for validity in general, but in some cases the
kernel can detect obviously invalid addresses, like thiose that were ioremap’ed. This
debug check will be droped as it is primarily there to catch drivers ported from Linux-
2.0.X/2.2.X which used unmapped ISA addresses.

• Magic SysRq key:
Sets: CONFIG DEBUG SYSRQ
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Allows a system that is stuck in kernel mode to be inspected by directly intercept-
ing the keyboard input and triggering debug functions on pressing of <CNTRL>-
<PrintScrn>-<CHAR> - with the folowing being predefined by the kernel:

– 0-9 raise/lower the log level of the system

– b reboot the system

– e send a SIG TERM to all processes via send sig all(SIGTERM)

– i send a SIG KILL to all processes via send sig all(SIGKILL)

– k secure attention key - kills all programs currently using this tty and allow kernel
messages to be displayed.

– m display memory information

– p register dump

– s sync

– t status

– u remount the system read-only

For more details and examples see the section sysrq below. i

• Spinlock debugging:
Sets: CONFIG DEBUG SPINLOCK
Catches missing spinlock initialization by adding a spinlock magic number
SPINLOCK MAGIC 0xdead4ead , which ensures that one can’t simply use some ran-
dom memory location as spinlock when locking/unlocking. It also ensures that attmpts
to unlock spin locks that are not locked will be reported via BUG().

• Compile the kernel with frame pointers:
Sets: CONFIG FRAME POINTER
The kernel will be compiled without -fomit-frame-pointer, which set by default,
prevents keeping the frame pointer in a register for functions that don’t need one and
avoids saving and restoring it. This makes debuging of function call chain posible in
gdb. Generally this should be disabled for production releases as it slows down the
system noticably.

Additionally to the above debugging capabilities the 2.6.X series of kernels (well actually
2.6.0 for now) offer:

• Page alloc debugging:
Sets: CONFIG FRAME PAGEALLOC
This performs extra checks when freeing pages with kmem cache free or kfree via
cache free:
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__cache_free
-> cache_free_debugcheck:

-> kfree_debugcheck: verify that pointers are valid
-> store_stackinfo: store

note that the comment in mm/slab.c for kfree debugcheck states:

* - detect bad pointers.
* - POISON/RED_ZONE checking
* - destructor calls, for caches with POISON+dtor

but the code seems to only check pointers, atleast I was not able to see how POI-
SONING/RED ZONE checks are done here... This should not be active on production
systems as it slows down the kernel in the very sensitiv memory subsystem.

• Compile the kernel with debug info:
Sets: CONFIG DEBUG INFO
If one needs to debug the kernel using GDB one should turn this option on, it will
result in a very large kernel but will deliver usefull information in the debugger. If this
option is enabled one also should turn on the above noted CONFIG FRAME POINTER.

• :
Sets: CONFIG DEBUG SPINLOCK SLEEP
As sleeping with held spinlocks is generally not a good idea, this option causes many
kernel functions to becomme noisy if called within held spinlocks.

5.1.1. Debug memory allocations

TODO

• mark each slab in the cache with RED MAGIC1 on call of kmem cache init objs, a
BUG() will be issued if the objects red zone is not found after poisoning the cache
object.

• slab memory object initialization check, this printk’s any functions that requests status
of none initialized slab cache objects.

• issue a BUG() in kmem cache shrink locked (called via kmem cache schrink) if
a cache is schrunk while the slab is marked inuse.

• issue a BUG() if adding of a red zoned object can’t find the previous objects red zone
in kmem cache alloc one tail
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• check slab on freeing objects, an overrun of a cacke object must not necessarily lead
to a crash of the system, and can stay undetected for some time. These extra checks
verify that the object being freed is in the bounds of the slab, that the freed object is
at the end of the slab and that it is not on the free list yet.

• memory poisoning, which fills the released cache memory area up with 0x5a terminated
by POISON END which is 0xa5, this poison and posson end is then checked for in
kmem check poison obj. Checks for cache memory poisoning are done in the folowing
fuctions with the error respones indicated by ->:

– kmem slab destroy -¿ BUG()

– kmem cache create -¿ printk warning if poisoning is requested with objects that
use a ctor method

– is chained kmem cache -¿ return 1 if cache is in chain, 0 otherwise. This allows
sanity checkinf of caches in code by a call to is chained kmem cache

– kmem cache alloc one tail -¿ BUG()

5.1.2. using sysrq

To use Sys-Req one need to configure it at kernel compile time by enabling ’Magic SysRq
key (CONFIG MAGIC SYSRQ)’ when configuring the kernel. At runtime it can be switched
off and on, on a kernel with SysRq compiled in, by the following command:

rtl14:~ # echo "0" > /proc/sys/kernel/sysrq
rtl14:~ # echo "1" > /proc/sys/kernel/sysrq

respectively.

Note that older versions disabled sysrq by default, requireing explicid enbabling at run-time,
recent version have changed this and make sysrq default on. Sysrq is also adjustable via
sysctl calls (CTL KERN,KERN SYSRQ=38), thus it is easy to integrate this feature in some
centralized managment level like SNMP.

The sysrq operations include the handler to execute, a help field that is displayed if an invalid
sysrq is keyed in, which then shows a list of available system requests. The convention being
to capitalize the letter used to trigger the respective system reques. As there is no sysrq
registered for ”y” by default on 2.6.0 systems, you should get the folowing output

<CNTRL>-<PrintScr>-<y>
SysRq: HELP: loglevel0-8 reBoot tErm kIll saK showMem showPc
unRaw Sync showTasks Unmount
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This allows you to monitor the system at a very low level, and is an essential tool for post
mortem analysis during development, especially of kernel components like drivers.

5.1.3. adding your sysrq handler

Sysreqests are handled in drivers/char/sysrq.c, they are not dependant on any user-
space application layer but directly ”intercept” the keyboard driver, thus a sysrq key-sequence
never reaches any normal terminal or application but is cought by the kernel proper. This
ensures that they will be honored even if the kernel has been put in a state where user-space
is no longer serviced or parts of the kernel are messed up, naturally if the sysrq code it selfe
was damaged, i.e. by writing to the code area via some stray pointers, then sysrq will not
help you in any way. Thus this is an improvment over user-space application control but it
can’t guarantee that a system will be responsive.

That said - on to setting up a sysrq handler for a kernel space application. Define your
handler and the sysrq operations by adding them to drivers/char/sysrq.c:

unsigned long my_app_status = 0;
static void sysrq_app_status(int key, struct pt_regs *pt_regs,

struct tty_struct *tty)
{

console_loglevel = 8;
Gprintk("application status = %ld\n",my_app_status);

}

A more usefull thing to do is to declare a funcition pointer and conditionally call the appli-
cation status function if non-NULL. But this is up to the programmer, basically there is no
real limit here, except that this is statically compiled into the kernel and thus generally the
application module is not yet loaded at boot time.

As noted above the convetinn is to mark the respective key in the .help msg string by
capitalization, if you can’t fit it in a meaningfull word and you get stuck with a free letter
like ”z”, then just add it in braces, trying to forfully stick to this convention with strings like
statuZ will cause confusion....

The .action msg is printed previous to invoking the handler, so in our case
<CNTRL>-<PrintScr>-<z> would output the folowing on the consoleon the console:

<CNTRL>-<PrintScr>-<z>
SysRq: Schow applicatoin status
application status = 0

46



5. Kernel-space runtime debugging

The core structure for the sysrq system is the sysrq key op, consiting of three elemens, the
actual handler, a short textual help message and a message to explain what the handler is
doing.

struct sysrq_key_op {
void (*handler)(int, struct pt_regs *,

struct kbd_struct *, struct tty_struct *);
char *help_msg;
char *action_msg;

};

In oure example we would use the folowing,

static struct sysrq_key_op sysrq_app_status_op = {
.handler = sysrq_app_status,
.help_msg = "status(z)",
.action_msg = "Schow applicatoin status",

};

which is mapping this handler in the sysrq table to a specific key - z in our case. The above
sysrq app status is not doing anything usefull, it is just being executed in kernel space
and printing to the console, but as it is executed in kernel context one can display any data
item from kernel space. In this example it will display a unsigned long my app status which
is made globally available in kernel context by adding the line

EXPORT_SYMBOL(my_app_status);

at the end of sysrq.c and thus can be set by the kernel space application.

#define SYSRQ_KEY_TABLE_LENGTH 36
static struct sysrq_key_op *sysrq_key_table[SYSRQ_KEY_TABLE_LENGTH] = {
/* 0 */ &sysrq_loglevel_op,
/* 1 */ &sysrq_loglevel_op,
/* 2 */ &sysrq_loglevel_op,
...
/* w */ NULL,
/* x */ NULL,
/* y */ NULL,
/* z */ &sysrq_app_status_op,
};
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Now recompile the kernel, and after booting hold down <ALT>-<Print>-<Z> (on X86 sysrq
mapps to <ALT>-<PrintScr> for other architectures see Documentation/sysrq.txt)

SysRq key strokes are alos loged via the kernels log facility so dmesg will also display the log
messages:

SysRq : Schow applicatoin status
application status = 0

Note that the loglevel must be set to 8 if a message should go to the console, so

console_loglevel = 8;
printk("application status = %ld\n",my_app_status);

will print to the console and also to the kernel ring buffer which then is typcially logged
via syslogd to the appropriate log files in /var/log, the invocation of the SysRq handler is
done via the handle sysrq nolock function in drivers/char/sysrq.c which ensures
that the log level changes in any of the handler functions is temporary, so no need to save
and restore log levels in handlers.

5.1.4. dynamic sysrq

The System request interface in Linux is not built for dynamic allocation of system request
handlers. But never the less one can allocate them dynamically, it must be noted though
that this is very linux kernel version specific and the code shown here will work for linux-2.6.0
and posibly for no other version. The concept though is quite generic.

Basically all that needs to be done is grab the sysrq table and run through the list of sysrqs
until one finds one that is a NULL pointer. then map your handler with the appropriate
format to that key - thats it.

The kernel exports some sysrq related managment functions that can be used to dynamically
register sysrq handlers. Obviously this does not require pathing the kernel, and thus is the
prefered way for testing.

The registration is done by adding a key operations in the key op lookup table, which is
again in drivers/char/sysrq.c. The key table is limited to SYSRQ KEY TABLE LENGTH,
which coresponds to 0-9,a-z. A set of predefined sysrq keys are compiled in as shown above,
so the free sysrq table entries can be used for our application specific sysrq.

The sysrq system export six functions as a minimum registration interface
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__sysrq_lock_table
__sysrq_unlock_table
__sysrq_get_key_op
__sysrq_put_key_op
__sysrq_swap_key_ops
__sysrq_swap_key_ops_nolock

When manipulating the sysrq always table one must always lock the table before reading or
writing, naturally folowed by an unlock operation. To deregister a handler it simply must be
set ta a NULL pointer, the sysrq functions handle sysrq which does the locking and then
calls handle sysrq nolock, checks for NULL pointers, but if an invalid pointer is left in
place strange things will happen.

To set up a sysrq handler dynamically one should use the function sysrq swap key op,
which does the necessary locking befor calling its nolock counterpart to actually add the
new handler.

5.2. msgdump

The kernel is using printk to produce debug and status output, which normally goes to syslogd
via klogd, and then into log files. But in case of a system crash this user-space daemons
will hardly work properly and valuable debug information may be lost, making post-mortem
analysis quite painfull if one is forced to copy down messages of the console.

The kmsgdump kernel patch tries to fix this problem by using a sysrq handler to dump this
log information to a floppy or the parallel port. Unfortunately this is very X86 specific and
not available for other platforms

6. Kernel debug ”API”

As a general note on kernel debugging API, one can notice that the ”API” is not that consis-
tent when it comes to low level stuff. So one needs to relax the expressions when searching
in other than x86 architectures for these functions. As an example, on ppc architectures the
register dump is called show regs and not show registers, but the path of events is quite
similar on all archs.

The worst case, the oops, is generated via an invalid instruction that then goes via the
appropriate trap handler and finally will call die which will produce the, hopefully not that
well known, oops screen.
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6.1. printk()

printk is a printf variation for the kernel, with the addition of a prepended log level and the
limit of not printing any of the floating point formats (but floats in kernel space are generally
a no-no any way). printf is a very robust function, it can be called in more or less any
context, including interrupt context and while holding locks. There are also variants for the
hard-realtime extensions to Linux.

• rtl printf is the RTLinux variant that can be called safely from rt-context.

• printk in ADEOS is patched to be safe from any domain context

• rt printk is the RTAI variant that also is rt-context safe.

6.1.1. log level and log buffer

printk has a log level prepended to the format - these log levels are used by the kernel to
decide where the message needs to go based on the current log level setting in the kernel,
and are used by klogd/syslogd when sorting out log messages in /var/log/*. Especially
when putting printk messages into a error branch of code that could cause serious problems
one should lower the log level so that the message is dumped to the console, as the syslogd
path might not work in case of a kernel bug.

To ensure that a message reaches the console do:

...
console_loglevel = DEFAULT_CONSOLE_LOGLEVEL;
printk("This always will go to the console\n");
...

Note that you can also set this via the magic system request (for details on sysrq see above)
by using <CNTRL>-<PrintScrn>-<0> - <CNTRL>-<PrintScrn>-<9> (not sure what 9
would do, the kernel seems to only define 0-7, but it can be set via sysrq...).

When using printk in your error path don’t forget that if the error is non-transient that you
can cause log floods to the system. To protect against such cases one can limit the logging
message either by intervals or by absolute counts. For details see the chapter on debugging
in Rober Loves ”Linux Kernel Development” [?].
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6.1.2. before printk is available

Before printk is actually available, that is before the kernel has a console device, debug
messages are a problem. On some architectures a early printk() is provided which is available
after setup early printk called very early in the boot process on x86 64 ppc64 and alpha
(don’t think its available on other archs - corrections appreciated).

For the first few lines of output that one sees on the screen ”Uncompressing Linux...” the
kernel can’t access any real kernel functions yet, for debugging in this setup part of vmlinuz,
one must use the architecture specific functions.

• puts:
put a string on the boot console

• puthex:
put a variable as hexadecimal number on the boot console

puts is supported on some m68k, ppc, mips and i386. puthex is a bit more selective and
appears in architecture specific naming (i.e. udbg puthex on ppc64).

6.1.3. preventing log floods

TODO:

6.2. BUG() and variants:

BUG is intentionally for in-lined functions, as it prints the file and line that caused the
problem, so if used in functions that are called and not in-lined the information available via
BUG is more or less useless. The mechanism used by BUG is to trigger an invalid instruction
by a call to one of the undefined instructions ud0,ud1,ud2 which are explicitly for this
purpose. As the use of ud0 (or was it ud1 ?) is AMD specific, ud2 is used for x86 platforms.

The invalid instruction ud* will cause a trap execution via do trap which then subsequently
will cause die (from arch/i386/kernel/traps.c which then causes ensures that the con-
sole log level is set to dump directly to the console (via console verbose() and then
dumps the debug information to the screen by calling show registers. Further more,
within show registers the stack is dumped to produce the oops message.
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from include/asm/bug.h:
/*
* Tell the user there is some problem.
* The offending file and line are encoded after the "officially
* undefined" opcode for parsing in the trap handler.
*/

#define BUG() \
__asm__ __volatile__( "ud2\n" \

"\t.word %c0\n" \
"\t.long %c1\n" \
: : "i" (__LINE__), "i" (__FILE__))

BUG ON is just a wrapper to BUG and generally will be better readable in the code.

#define BUG_ON(condition) do { if (unlikely((condition)!=0)) BUG(); } while(0)

The memory subsystem defines its own BUG variant to catch NULL pages. The dowhile(0)
construction is to allow gcc to optimize it away in case that BUG is undefed.

#define PAGE_BUG(page) do { \
BUG(); \

} while (0)

A more verbatim variant is the WARN ON, the above BUG reports will only tell you a bug
occurred but don’t tell much about the conditions and the state in which this happened -
so unless this is sufficiently clear (i.e for a driver specific function that will be called only in
known code paths) BUG is fine - for code that could be called from any where in the kernel
WARN ON is mor useful as it allows tracking back the cause for the problem.

#define WARN_ON(condition) do { \
if (unlikely((condition)!=0)) { \

printk("Badness in %s at %s:%d\n", __FUNCTION__, \
__FILE__, __LINE__); \

dump_stack(); \
} \

} while (0)

when using BUG and friends one needs to ensure that a error does not lead to a printk flood
resulting in a syslog party and consequent overload of the system, especially on low resource
systems this can easily happen, see not in the above printk section.

52



6. Kernel debug ”API”

6.2.1. preempt count()

For debugging relaxed lock protected objects (basically all per cpu variables), checking the
kernels preemption status is necessary. Also when holding locks, preemption should be off.
For these (and other) cases the kernel provides some functions to inspect the content of the
preempt

In the 2.6 series of kernels these functions are based on the global preempt count variable
which is comprised of three counters. One for preemption one for soft interrupts (bottom
halves) and one for hard interrupts.

include/asm/hardirq.h:
bits 0-7 are the preemption count (max preemption depth: 256)
bits 8-15 are the softirq count (max # of softirqs: 256)
bits 16-23 are the hardirq count (max # of hardirqs: 256)
bit 26 is the PREEMPT_ACTIVE flag.

• preempt count()
preempt count, if 0 the kernel can be preempted, if greater 0 preemption has been
disabled and if it drops below 0 -> BUG.

• in interrupt()
returns non 0 if in interrupt context (hardware interrupt or bottom halves).

• in irq()
returns non 0 if in interrupt context due to a hardware interrupt

• hardirq trylock() which is the negation of in interrupt()

• in softirq()
returns non 0 if in interrupt context due to a active bottom half

Note that the 2.4 series of kernels provides in interrupt and in irq() as well, but these
are based on separate counters and not on the preempt count (which is not available in the
default 2.4 kernel series - patches are available though).

6.2.2. GCCs builtin return address(x)

As noted above BUG only is use full for in lined functions as FILE etc. filed in by
the preprocessor - so for functions that are called one needs a means to identify the caller.
Unless the function is only called by a very small set of known locations, which allows manual
inspection, GCCs builtin return address is the way to go.
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unsigned long caller = (unsigned long) __builtin_return_address(0);

builtin return address returns the return address of the current function, which is the caller.
the argument is the number of frames to go up the call stack, but this does not always return
reasonable results (at least not on x86). A frame number of 0, returning the direct caller,
does work reliably though (provided the stack was not corrupted). Unfortunately the return
value does not allow too much interpretation - info gcc says:

On some machines it may be impossible to determine the return
address of any function other than the current one; in such cases,
or when the top of the stack has been reached, this function will
return ‘0’ or a random value. In addition,
‘__builtin_frame_address’ may be used to determine if the top of
the stack has been reached.

The problem is related to the availability of a frame pointer register on some architectures,
for those the stack does not contain the necessary structure to use builtin return address
or builtin frame address, as the frame pointer is omitted for optimization. This can be
changed at compile time in the top level Makefile of the kernel though - recommended
only for debugging and not for production systems, so its not recommended for runtime
debugging.

example usage:

kernel/time.c:
signed long schedule_timeout(signed long timeout)
{

...
switch (timeout)
{
case MAX_SCHEDULE_TIMEOUT:

schedule();
goto out;

default:
/*
* Another bit of PARANOID. Note that the retval
* will be 0 since no piece of kernel is supposed
* to do a check for a negative retval of
* schedule_timeout() (since it * should never
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* happens anyway). You just have the printk()
* that will tell you if something is gone wrong
* and where. */
if (timeout < 0)
{

printk(KERN_ERR "schedule_timeout: wrong timeout "
"value %lx from %p\n", timeout,
__builtin_return_address(0));

current->state = TASK_RUNNING;
goto out;

}

For functions that can be called from any where in the kernel this is a very convenient way to
find the actual source of the problem. The address can then be resolved via the kernel symbol
table (/proc/kallsyms for 2.6 and /proc/ksyms for 2.4 as well as in the System.map file
generated during kernel compilation).

6.3. show registers()/show regs()

This simply dumps the content of the registers and also for the stack if not in a system call.
In the 2.6 series of kernels the symbol names are available in the kernel so one can produce
directly usable messages, prior to 2.6 one has to ”decode” the output with ksymoops.

print_symbol("EIP is at %s\n", regs->eip);

The rest is not too exciting - just a dump of the architecture specific registers.

printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
regs->eax, regs->ebx, regs->ecx, regs->edx);

printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
regs->esi, regs->edi, regs->ebp, esp);

printk("ds: %04x es: %04x ss: %04x\n",
regs->xds & 0xffff, regs->xes & 0xffff, ss);

printk("Process %s (pid: %d, threadinfo=%p task=%p)",
current->comm, current->pid, current_thread_info(), current);
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6.4. dump stack()/show trace/show stack

dump stack is just a wrapper to show trace in 2.4, in 2.6 kernels dump stack will call
show trace passing it the current tasks thread info structure. show trace will walk up the
stack until it reaches the thread info structure that is stored in the stack. The 2.4 kernel
simply dumps the hexadecimal values it finds on the stack, in 2.6 print symbol() is called on
all values to produce directly usable output.

The show stack also invokes show trace() but it dumps the raw stack content before doing
so.

6.5. print symbol()

To print a human readable message of where things are going wrong one can use the in-
struction pointer available via regs->eip and pass it to print symbol. This will the print
the symbol name that belongs to this address, this is the kernel function name or garbage
in case the stack is corrupted.

7. Kernel oops decoding

This section is more or less a cleanup version of development notes from porting XtratuM-0.3
to the 2.6.10 kernel which obviously resulted in a few nice oopses. It is not trying to be
complete or a rigorous introduction to kernel debugging, but we hope that by providing a
more or less complete loop through a ”disaster-in-progress” we can provide some guidance on
low level messes. Here is the oops from XtratuM-0.3 on 2.6.10xm from loading XtratuM.ko:

root@rtl26:/usr/src/XtratuM-0.3_2.6# sync
root@rtl26:/usr/src/XtratuM-0.3_2.6# insmod XtratuM.ko
Unable to handle kernel NULL pointer dereference at virtual address 00000000
printing eip:

*pde = 00000000
Oops: 0000 [#1]
Modules linked in: XtratuM
CPU: 0
EIP: 0060:[<00000000>] Not tainted VLI
EFLAGS: 00010202 (2.6.10-XtratuM)
EIP is at 0x0
eax: c031b7a0 ebx: 00000600 ecx: c7a6a000 edx: ce880000
esi: 00000030 edi: c0364000 ebp: c03c5019 esp: c7a6bea0
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ds: 007b es: 007b ss: 0068
Process bash (pid: 227, threadinfo=c7a6a000 task=cd810a00)
Stack: c0122d64 00000030 ce880000 00000000 c7a6bf80 c7a6bf00 00000000 c01037da

ce88f44f 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000068 00000000 00000004 ce88d4a0 00000060 00000200 00000000 00000000

Call Trace:
[<c0122d64>] __do_IRQ+0x34/0xd0
[<c01037da>] do_IRQ+0x1a/0x30
[<ce88f44f>] linux_irq_handler+0x1f/0x30 [XtratuM]
[<ce88d4a0>] dummy_f+0x0/0x20 [XtratuM]
[<ce88d5d9>] xm_sync_events+0x119/0x140 [XtratuM]
[<c010b3ae>] __wake_up+0x1e/0x30
[<c0198d76>] tty_ldisc_deref+0x26/0x70
[<c0199b42>] tty_write+0x1e2/0x240
[<ce88d4a0>] dummy_f+0x0/0x20 [XtratuM]
[<c0106933>] mask_and_ack_8259A+0x53/0xd0
[<ce890f24>] xm_sched+0x144/0x1b0 [XtratuM]
[<ce88d434>] xm_irq_handler+0x34/0x80 [XtratuM]
[<ce88c148>] common_xm_irq_body+0x18/0x30 [XtratuM]

Code: Bad EIP value.
<0>Kernel panic - not syncing: Fatal exception in interrupt

This is close to the worst case - we have a bad EIP here so we get no code from where the
fault actually seems to have happened. The last safe place we were here is in do IRQ.

7.1. Decoding it

Once you get an oops the first task is to decode it and to map it back to the source lines
that are causing the problem.

7.1.1. locating the fault position

The first step is to start at the faulting position which is 0x0 in our case, normally it will
show up as some reasonable address like:

EIP is at __do_IRQ+0x79/0xf0
| | |
| | ‘----- size of the faulting function
| ‘---------- offset within the function
‘----------------- name of the function
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7.1.2. Locating the faulting code

As the EIP was unusable we go one step back on the stack and start at the last call position
which was:

[<c0122d64>] __do_IRQ+0x34/0xd0

So go into the kernel tree and find do IRQ, the best method is to use cscope like so:

root@rtl26:/usr/src/linux-2.6.10xm# cscope -R

It will take a while to build up the symbol cache - once it is ready enter do IRQ in the
filed:

Cscope version 15.5 Press the ? key for help

Find this C symbol: __do_IRQ
Find this global definition:
Find functions called by this function:
...

the results in my case, were:

C symbol: __do_IRQ

File Function Line
0 sbc82xx.c sbc82xx_i8259_demux 145 __do_IRQ(NR_SIU_INTS + irq,

regs);
1 irq.c do_IRQ 91 __do_IRQ(irq, (struct pt_regs *)

regs);
2 irq.c do_IRQ 103 __do_IRQ(irq, regs);
3 irq.h do_IRQ 44 __do_IRQ((irq), (regs)); \
4 handle.c __do_IRQ 118 fastcall unsigned int

__do_IRQ(unsigned int irq, struct
* Press the space bar to display the first lines again *
Find this C symbol:
Find this global definition:
...
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The last entry is the one we are looking for as all others are just calls into do IRQ - so we
open that file by placing the cursor on the line 4 handle.c and inspect the faulting function
- in some cases, especially with very short functions the problem might be sufficiently obvious
to fix it and you are done. In the case of do IRQ its not that simple, we need to locate the
exact point in the code where the problem occurred.

To terminate cscope use <CNTRL>-D .

7.2. Disassembling

There are a number of ways we can disassemble the related code from an oops, we will cover
all three methods here, as in the particular oops under consideration, no code was dumped
due to a bad EIP, we will use a different oops output to show the ksymoops related method.
The four methods are:

• Generating assembler code from the related source

• Disassembling the object code with binutils

• using gdb to disassemble the problematic code

• using ksymoops to decode the code section of the oops

7.2.1. Generating Assembler code

As we know that the problem is in do IRQ we can use the kernel make rules to generate
the assembler file. Requirement to do this though is that you have the correct .config file
from the kernel build.

root@rtl26:/usr/src/linux-2.6.10xm# cp config .config
root@rtl26:/usr/src/linux-2.6.10xm# make oldconfig
...
root@rtl26:/usr/src/linux-2.6.10xm# make
...
root@rtl26:/usr/src/linux-2.6.10xm# make kernel/irq/handle.s

The offending function do IRQ looks like:

59



7. Kernel oops decoding

...

.globl __do_IRQ
.type __do_IRQ, @function

__do_IRQ:
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx
movl %eax, %esi
pushl %ecx
movl %eax, %ebx
sall $5, %ebx
movl per_cpu__kstat+56(,%eax,4), %ebp
incl %ebp
movl %edx, (%esp)
leal irq_desc(%ebx), %edi
movl %ebp, per_cpu__kstat+56(,%eax,4)
testb $1, irq_desc+1(%ebx)
je .L27
movl 4(%edi), %eax
pushl %esi
call *20(%eax)

...

If you are not to used to reading assembler code it is easy to get confused and misread the
code - which can result in hunting down ghosts - a quite time consuming sport. To improve
the output readability a bit you can add the -fverbouse-asm to the CFLAGS KERNEL in
the top level Makefile and rerun the make. Note that if you pass CFLAGS directly on the
command line they must be exactly the same as the kernel would use or the output will be
wrong and miss lead you.

root@rtl26:/usr/src/linux-2.6.10xm# make kernel/irq/handle.s
CC scripts/mod/empty.o
MKELF scripts/mod/elfconfig.h
HOSTCC scripts/mod/file2alias.o
HOSTCC scripts/mod/modpost.o
HOSTCC scripts/mod/sumversion.o
HOSTLD scripts/mod/modpost
CC kernel/irq/handle.s
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The output this generates is contains the C source level function and variable names that
are being assigned to registers, so now we can actually see in what registers what parameter
is stored and use this information to read the details of the register dump in the oops.

...

.globl __do_IRQ
.type __do_IRQ, @function

__do_IRQ:
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx
movl %eax, %esi # irq
pushl %ecx
movl %eax, %ebx # irq
sall $5, %ebx
movl per_cpu__kstat+56(,%eax,4), %ebp # per_cpu__kstat.irqs
incl %ebp
movl %edx, (%esp) # regs
leal irq_desc(%ebx), %edi # desc
movl %ebp, per_cpu__kstat+56(,%eax,4) # per_cpu__kstat.irqs
testb $1, irq_desc+1(%ebx) # <variable>.status
je .L27
movl 4(%edi), %eax # <variable>.handler
pushl %esi # irq
call *20(%eax) # <variable>.ack
movl %esi, %eax # irq
movl 8(%edi), %ecx # <variable>.action, action

...

This shows us now that the the variable irq is originally loaded into %ebx and the the
variable desc is assigned to the value of irq desc + irq. This desc variable is the used to
construct the pointer desc->handler->ack and store it in %eax. finally the value for irq
which was also stored in %esi is pushed on the stack and the call *20(%eax) will invoke
the function pointed to by desc->handler->ack.

Looking back at the oops output we can see now that

desc->handler->ack(irq);

was trying to call the vector for irq 0x30
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esi: 00000030

which was the content of %esi when we crashed. Thats as close as the oops will bring us -
now its code inspection finding why the desc->handler->ack is a null pointer. We can
speculate that desc->handler is all ready a null pointer and find out by instrumenting the
code at that place. we could add:

if(!desc->handler)
BUG();

more on that in the section kernel debug API.

7.2.2. Disassembling with objdump

In most oops report we have two hints at where it happened. The one is the line we used
above the noting the EIP of the faulting function, the other is the line at the end of the oops
listing the code that was at the position where it happened in machine code.

...
EIP is at __do_IRQ+0x79/0xf0
...
Code: 74 13 8b 47 04 56 ff 50 18 b8 01 00 00 00 5e 5f 5b 5e 5f 5d c3 50 57 56 e8 75 04 00 00 83 c4 0c eb e0 56 ff d0 5d eb c3 8b 47 04 <8b> 40 14 85 c0 75 60 89 d0 31 ed 83 e0 d7 83 c8 04 a8 03 75 09

The machine code at <8b> is where we crashed, and this is at offset 0x79 from the start of
do IRQ. The last field 0xf0 in our case is the length of the do IRQ function.

To disassemble the code we need the object file that contains do IRQ, as we know for
cscope output that do IRQ is from kernel/irq/handle.c (your editor would show you
the exact location once you hit enter in cscop at the listed file name), so we check into what
object file handler.c was put. In the case of the Linux kernel this is conveniently one .o file
per .c file so handler.c was compiled into handler.o also located in kernel/irq/. So we
apply objdump on the .o file to get hold of the disassembled kernel code.

To use the right objdump flags we must first check what kind of file we are trying to decode:

root@rtl26:/usr/src/linux-2.6.10xm/kernel/irq# file handle.o
handle.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not stripped
root@rtl26:/usr/src/linux-2.6.10xm/kernel/irq#
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As this is a relocatable file, we need to call objdump with the --reloc flag along with
--disassemble, so:

root@rtl26:/usr/src/linux-2.6.10xm/kernel/irq# objdump --reloc --disassemble \
handle.o > handle.d
root@rtl26:/usr/src/linux-2.6.10xm/kernel/irq#

Note that the file extension is up to you - but as the kernel tree does not use the .d extension
for anything its a safe choice, just take anything that will not conflict with existing file name
rules.

reading the assembler file

We have the disassembled code from handle.c now in handle.d, opening the file we search
for do IRQ and inspect that code section:

...
00000120 <__do_IRQ>:
120: 55 push %ebp
121: 57 push %edi
122: 56 push %esi
123: 53 push %ebx
124: 89 c6 mov %eax,%esi
126: 51 push %ecx
127: 89 c3 mov %eax,%ebx
129: c1 e3 05 shl $0x5,%ebx
12c: 8b 2c 85 38 00 00 00 mov 0x38(,%eax,4),%ebp

12f: R_386_32 per_cpu__kstat
133: 45 inc %ebp
134: 89 14 24 mov %edx,(%esp)
137: 8d bb 00 00 00 00 lea 0x0(%ebx),%edi

139: R_386_32 irq_desc
13d: 89 2c 85 38 00 00 00 mov %ebp,0x38(,%eax,4)

140: R_386_32 per_cpu__kstat
144: f6 83 01 00 00 00 01 testb $0x1,0x1(%ebx)

146: R_386_32 irq_desc
14b: 74 29 je 176 <__do_IRQ+0x56>
14d: 8b 47 04 mov 0x4(%edi),%eax
150: 56 push %esi
151: ff 50 14 call *0x14(%eax)
154: 89 f0 mov %esi,%eax
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The last sure place we have reported is do IRQ+0x34, at that line we fine:

154: 89 f0 mov %esi,%eax

This line is the return address that was put on the stack, so the interesting part is what
happened just before that line, thats were we left off from do IRQ ... and crashed. That
line is

151: ff 50 14 call *0x14(%eax)

in this line a call was made to the address stored in %eax + offset 0x14, so thats decimal
20. Looking at the code of do IRQ :

fastcall unsigned int __do_IRQ(unsigned int irq, struct pt_regs *regs)
{

irq_desc_t *desc = irq_desc + irq;
struct irqaction * action;
unsigned int status;

kstat_this_cpu.irqs[irq]++;
if (desc->status & IRQ_PER_CPU) {

irqreturn_t action_ret;

/*
* No locking required for CPU-local interrupts:
*/

desc->handler->ack(irq);
action_ret = handle_IRQ_event(irq, regs, desc->action);
desc->handler->end(irq);
return 1;

}
...

we can see that the first function call is desc-¿handler-¿ack(irq). Checking up on the interrupt
structure we find:
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include/linux/irq.c
typedef struct irq_desc {

unsigned int status; /* IRQ status */
hw_irq_controller *handler;
struct irqaction *action; /* IRQ action list */
unsigned int depth; /* nested irq disables */
unsigned int irq_count; /* For detecting broken interrupts */
unsigned int irqs_unhandled;
spinlock_t lock;

} ____cacheline_aligned irq_desc_t;

so the handler is of type hw irq controler, back to cscope we get:

struct hw_interrupt_type {
const char * typename;
unsigned int (*startup)(unsigned int irq);
void (*shutdown)(unsigned int irq);
void (*enable)(unsigned int irq);
void (*disable)(unsigned int irq);
void (*ack)(unsigned int irq);
void (*end)(unsigned int irq);
void (*set_affinity)(unsigned int irq, cpumask_t dest);

};

Which explains the offset 0x14 now - ack is the entry at offset 0x14 of the
hw interrupt type structure, looking at the c-code from do IRQ, we see that this
fits the call. So the faulting source line is:

desc->handler->ack(irq);

This call obviously was a NULL-pointer, which is why we got the EIP of 0x0 and the message
at the top of the oops:

Unable to handle kernel NULL pointer dereference at virtual address 00000000
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7.2.3. Decoding with gdb

not much to say to this option - here is the same story from gdb’s perspective, the only
added information is the absolute kernel addresses.

root@rtl26:/usr/src/linux-2.6.10xm# gdb vmlinux
GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i486-slackware-linux"...
(no debugging symbols found)
Using host libthread_db library "/lib/libthread_db.so.1".

(gdb) disassemble __do_IRQ
Dump of assembler code for function __do_IRQ:
0xc0125b60 <__do_IRQ+0>: push %ebp
0xc0125b61 <__do_IRQ+1>: push %edi
0xc0125b62 <__do_IRQ+2>: push %esi
0xc0125b63 <__do_IRQ+3>: push %ebx
0xc0125b64 <__do_IRQ+4>: mov %eax,%esi
0xc0125b66 <__do_IRQ+6>: push %ecx
0xc0125b67 <__do_IRQ+7>: mov %eax,%ebx
0xc0125b69 <__do_IRQ+9>: shl $0x5,%ebx
0xc0125b6c <__do_IRQ+12>: mov 0xc03d6398(,%eax,4),%ebp
0xc0125b73 <__do_IRQ+19>: inc %ebp
0xc0125b74 <__do_IRQ+20>: mov %edx,(%esp)
0xc0125b77 <__do_IRQ+23>: lea 0xc036aa00(%ebx),%edi
0xc0125b7d <__do_IRQ+29>: mov %ebp,0xc03d6398(,%eax,4)
0xc0125b84 <__do_IRQ+36>: testb $0x1,0xc036aa01(%ebx)
0xc0125b8b <__do_IRQ+43>: je 0xc0125bb6 <__do_IRQ+86>
0xc0125b8d <__do_IRQ+45>: mov 0x4(%edi),%eax
0xc0125b90 <__do_IRQ+48>: push %esi
0xc0125b91 <__do_IRQ+49>: call *0x14(%eax)
0xc0125b94 <__do_IRQ+52>: mov %esi,%eax

Note the seemingly inconsistent code reported, in the gcc generated assembler code above
we got
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sall $5, %ebx

now we get an equivalent mnemonic

shl $0x5,%ebx

in this case it is not tragic - in some cases, especially when you are new to this, it might
be irritating - so when you find inconsistencies then check with an assembly manual for the
processor to see if they are not the same thing, and if someone has an explanation why there
are different assembler representations for the same code I would be interested :)

7.2.4. Decoding the code section

The code section - if one is dumped - is the code surrounding the offending code, the actual
point at which the crash was detected is marked with pointy braces:

Code: 44 24 28 39 43 10 75 9f 85 f6 74 17 8b 04 b5 9c 4b 43 c0 89
04 b5 a0 4b 43 c0 4e 75 ef 89 1d a0 4b 43 c0 ff 43 0c 89 1c 24 eb
82 <0f> 0b 44 05 26 ee 32 c0 e9 59 ff ff ff 8d b4 26 00 00 00 00 55

in this case <0f> was the problem. To decode this in to a human readable sequence of
assembler instructions we use ksymoops. Be warned that if you use ksymoops with the
wrong kernel source tree, the wrong module list or the wrong System.map your output will
look reasonable any way - but will be complete garbage. So before digging into the output
from ksymoops check the header and make sure it really is using the right files. Note that
the oops file does not need to be a clean oops, in general if its the serial console output with
preceding console messages it will not irritate ksymoops. We assume you have the minicom
log or your copied oops in the file oops file:

root@rtl26:~ # ksymoops < oops_file
ksymoops 2.4.11 on i686 2.6.10-XtratuM. Options used

-V (default)
-k /proc/kallsyms (specified)
-l /proc/modules (default)
-o /lib/modules/2.6.10-XtratuM/ (default)
-m /usr/src/linux-2.6.10xm/System.map (specified)

kernel BUG at fs/buffer.c:1348!
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invalid operand: 0000 [#1]
CPU: 0
EIP: 0060:[<c01427fc>] Not tainted VLI
Using defaults from ksymoops -t elf32-i386 -a i386
EFLAGS: 00010002 (2.6.10-XtratuM)
eax: 00000001 ebx: 00020018 ecx: c11ffc40 edx: 00000000
esi: 00000000 edi: 00020018 ebp: 00000000 esp: cdb05cdc
ds: 007b es: 007b ss: 0068
Stack: 00000000 00000046 00020018 00000000 00001000 c11ffc40 c014282d c11ffc40

00020018 00000000 00001000 00001000 cdd47400 000202db 00020018 c0175050
c11ffc40 00020018 00000000 00001000 00000000 c68ecbc0 cd967640 00000000

Call Trace:
[<c014282d>] __getblk+0x1d/0x40
[<c0175050>] ext3_get_inode_loc+0x50/0x220
[<c0175bdf>] ext3_reserve_inode_write+0x1f/0x90
<snip>
[<c0140ccd>] sys_writev+0x3d/0x70
[<c0102227>] syscall_call+0x7/0xb

Code: 44 24 28 39 43 10 75 9f 85 f6 74 17 8b 04 b5 9c 4b 43 c0 89 04 b5 a0 4b
43 c0 4e 75 ef 89 1d a0 4b 43 c0 ff 43 0c 89 1c 24 eb 82 <0f> 0b 44 05 26 ee
32 c0 e9 59 ff ff ff 8d b4 26 00 00 00 00 55
<snip>

>>EIP; c01427fc <__find_get_block+cc/e0> <=====

>>ecx; c11ffc40 <pg0+db7c40/3fbb6400>
>>esp; cdb05cdc <pg0+d6bdcdc/3fbb6400>

Trace; c014282d <__getblk+1d/40>
Trace; c0175050 <ext3_get_inode_loc+50/220>
<snip>

Code; c01427fc <__find_get_block+cc/e0>
00000000 <_EIP>:
Code; c01427fc <__find_get_block+cc/e0> <=====

0: 0f 0b ud2a <=====
Code; c01427fe <__find_get_block+ce/e0>

2: 44 inc %esp
Code; c01427ff <__find_get_block+cf/e0>

3: 05 26 ee 32 c0 add $0xc032ee26,%eax
Code; c0142804 <__find_get_block+d4/e0>

8: e9 59 ff ff ff jmp ffffff66 <_EIP+0xffffff66>
<snip>
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The offending line is marked with <===== and the instruction that caused the oops was 0f
0b which translates to ud2a which in turn is a deliberate illegal instruction in the BUG()
kernel function to trigger a stack/register dump known as oops. Note that we cut away a lot
of the oops output - so this can be very long. To help you start at the right place look for
the <===== maker, this will tell you what function and at what line in the function. Then
use the disassembled object file to map this to the c-source line, and then fix it.

8. Simple tools

In this section we will briefly summaries the available tools as an overview with some notes
on the underlaying mechanisms. These tools are often a good place to start as they are
redily available on most (well configured) systems and yield usable results - or atleast hints
- within seconds.

8.1. /usr/bin/time

Note that we list this tool as /usr/bin/time no as time, which is the correct executable
name, due to a conflict with the bash builtin time command. As bash honors builtin
commands before any commands found in the $PATH, this has caused missunderstandings
in the past, so if time does not deliver the output we show here then try /usr/bin/time.

The time command summarizes the resoures used by an application in the following form:

root@rtl14:~# ls -lR /
Command being timed: "ls"
User time (seconds): 0.00
System time (seconds): 0.00
Percent of CPU this job got: 0%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.01
Major (requiring I/O) page faults: 172
Minor (reclaiming a frame) page faults: 35
Page size (bytes): 4096
Exit status: 0

Fields that are 0 on Linux are not shown above - so your output will be somewhat longer.
Unfortunately POSIX only requires two fields of rusage to be filled, ru utime and ru stime,
so the usability of time is somewhat limited on Linux.
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Time is based on the wait3 system call with some limitations regarding the accuracy of time
collection. Time is not recorded in an atomic way, thus especially for short execution times
the accuracy of reported time values is low.

The numbers are dependant on those returned by ‘wait3’ in the rusage structure, and as
not all systems measure all of the resources that could be reported , one generally will see
quite a few zero values reported. Especially the memory related information depends on how
good/complient the information of the memory management subsystem are.

The wait3 system call returns two structures that contain the information then reported, this
off course also can be used directly in application code to monitor child processes.

• struct rusage *rusage:
This uses getrusage() see man 2 getrusage() to retrief the resource usage informa-
tion as defined in sys/resource.h.

• int *status:
Which contains a bit mask reporting exit conditions and singaling conditions.

8.2. BSD Process Accounting

BSD Process accounting is not in wide use - it is somewhat limited, but it is a quite usefull
tool to get an overview of what is eating up resources on an embedded system. The overhead
that it causes is not dramatic.

8.2.1. Configuration

Process accounting is off in the Linux kernel config by default, and quite a few distributions
don’t have the necessary user-space tools available by default (atleast sa is missing on a few
distros). To enable it you must configure the kernel - make menuconfig:

...
General setup --->
...
[*] BSD Process Accounting

for the 2.4.X kernels, and for the 2.6 kernels:
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...
General setup --->
...
[*] BSD Process Accounting
[*] BSD Process Accounting version 3 file format

Note that you need a different set of tools for the 2.6.X ker-
nels if version 3 support is enabled - these tools can be found at
http://www.physik3.uni-rostock.de/tim/kernel/utils/acct/

For those interested in details - the accounting information structure is in
nclude/linux/acct.h, which allows building of kernel space monitoring tools.

8.2.2. Usage

To turn on/off accounting from user-space applications the acct library call is available.
Passing it a file naem turns on accounting, passing it NULL turns it off again.

#include <unistd.h>
int acct(const char *filename);

If the system accounting tools are installed, then accounting is enabled with a call to accton
filename and the content can be listed with sa. Although /sbin/accton is only a 5k
executable, it makes sense to use the above acct library call in some system application.
Interpretation of the accounting files can be done off-line, generally there is no need to install
sa on embedded target systems.

Typical output from sa will give you a good impression of what commands are running very
frequently and thus are candidates for optimization and where resources are being hogged -
aside from it often being supprising to find some commands being used at all...

357 375.40re 0.06u 0.02s 0avio 499k
44 95.83re 0.03u 0.00s 0avio 614k sh
12 70.94re 0.01u 0.01s 0avio 624k cc1
8 12.48re 0.00u 0.00s 0avio 488k make

...

Process accounting will not help much when it comes to debuging individual applicaitons
but it can help in locating system level problems, and most it helps getting a big picture of
whats actually going on in a system.
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8.2.3. Limitations

Accounting files can become very very large, especially by embedded standards, tehy are
huge. Thus if accounting is to be used on resource constraint systems then the accounting
limits should be carfully set. BSD accounting files have a kernel side high/low watermark
(in % disk space on the partition holding the accounting file) that is checked at regular
intervals. In case of reaching the low watermark of free disk space accounting is susspended,
it is resumed if the high watermark is reached. Checks are done at the frequency speified as
the last parameter in /proc/sys/kernel/acct - frequency in seconds.

root@rtl17:/var/log# cat /proc/sys/kernel/acct
4 2 30
\begin{verbatim}}

Default values are to suspend below 2\% and resume at 4\% free disk space - checking at intervals of 30 minutes - note that these values are generally not suitable for embedded systems as 2\% free disk-space is critical on many embedded systems (especially those using syslog as primary debug source).

\subsection{strace}

In the simplest case strace runs the specified command until it exits. It intercepts and records the system calls which are called by a process and the signals which are received by a process. The name of each system call, its arguments and its return value are printed on standard error or to a specified file. Within the linux kernel a process is marked as traced by the flag:

\sf{
\begin{verbatim}
#define PF_PTRACED 0x00000010 /* 2.2.X kernels */
#define PT_PTRACED 0x00000001 /* 2.4.x/2.6.x kernels */

wherby the ptrace flag gives a parent process access to the actual code pages of a process,
allowing to modify it (i.e. insert breakpoints) and is used by debuggers. strace also makes
heavy use of the ptrace function to control the executable running as a child process of
the srace command. The core functions for attaching/detaching and accessing the child
process memory space is coded in /kernel/ptrace.c.

strace is a diagnostic, instructional, and debugging tool to not only locate failures but also
to locate application bottle-necks and performance problems. Especially when it commes to
diagnosting problems for applications where source code is not available tools like strace
are a means to look deap into the internal structure of an aplication.

A perl script for post-processing of strace data, written by Richard Braakman, is also in
the current strace release which allows to display a graph of invoked subprocesses including
execution times (via -t/-tt/-ttt flags to strace)

For details and options to connect to running processes see the man (1) strace, the latest
versions of strace are available via cvs . Strace is supported on a number of platforms and
is easaly cross-compiled (builds with autoconf).
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8.3. ltrace

ltrace is a debugging program which runs a specified command until it exits, intercepting
and records all dynamic library calls. It also records any signals received by the traced process.
ltrace can intercept and trace system calls executed by the program, but is less elaborate
in its feature set for this pupose than strace. Again, as in strace the program to be traced
need not be recompiled, it is thus usable for binarie only code debugging aswell.

The operation of ltrace is quite similar to that of strace, especially the output with the
-t/tt/ttt options allow quick location of hot-spots in the library calls. Unfortunately ltrace
does impact quite heavaly on the applications performance so its use in actually deployed
systems needs to be concidered carfully. Also a clear disadvantage of ltrace as of version
0.31 is that it does not cleanly cross-compile (./configure –target=... will not work), but
versions for different architectures are available as debian packages .

TODO: the rest of them :)

9. Checkpoint Restart

A critical issue for embedded systems is post-mortem analysis and the ability to continue at
the place where an application left of, i.e. at power failure, when the system comes up again.
Checkpoint restart technologies provide this capability, and it is better under all circumstances
to use available implementations than to reinvent the wheel, which is commonly done when
it comes to checkpoint/restart capabilities. The BLCR, Berkeley Lab Checkpoint Restart
library is used in clusters, and works not only for single nodes but also with distributed
computations based on message passing (i.e. LAM, Local Area Multicomputer).

9.1. BLCR installation and configuration

BLCR is a checkpoint/restart system that can be used standalone or in conjunction with
LAM/MPI in order to checkpoint parallel jobs. Check-pointing is very useful to troubleshoot
applications because it makes errors reproducible and it save a lot of time because you can
start debugging from the last checkpoint and not from the beginning of the application. So
let’s download the BPROC tarball and unpack it to the /usr/src directory:

rtl29: # cd /usr/src
rtl29: # wget http://ftg.lbl.gov/twiki/pub/Whiteboard/CheckpointDownloads/blcr-0.3.1.tar.gz
rtl29: # tar -xzf blcr-0.3.1.tar.gz
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rtl29: # cd blcr-0.3.1
rtl29: # ./configure --with-linux=/usr/src/linux
rtl29: # make
rtl29: # make install (as root)

After downloading the next step is to configure and compile the BLCR modules and utilities.
(Compilation does not work with a Slackware 9.1 default installation). Make sure that the
/usr/src/linux link is set to the correct linux kernel and that Loadable module support
-> Set version information on all module symbols is not activated, also the ker-
nel tree must contain the compiled kernel (actually the System.map file). This is due to
the fact that the BLCR modules are compiled without modversion and the busybox insmod
executable is not able to cut off versions during the insert of the module.

Note that you may get a number of warnings regarding redefinitions - but we found no fatal
problem involved with these warnings - it seems that the include files distributed with blcr
are not yet quite clean (afterall its version 0.3).

9.2. A simple example

A somewhat artificial example but perfectly fine to show the concepts. This simple application
will count an integer and checkpoint the application every ten iterations. If you kill the job
with a fatal signal or power off the system, the application can restart at the last checkpoint.
Also if it does not die but behaves strange, you can restart it at an earlier point in its history
and rerun it. This is especially useful to distinguish transient failures from real bugs, which
is otherwise very hard to do!

/* counting.c
*
* GPL V2,
* (C) 2004, Florian Bruckner <florian.bruckner@aon.at>
* (C) 2004, Der Herr Hofrat <der.herr@hofr.at>
* (C) 2004, Michael Poeltl <michael.poeltl@univie.ac.at>
* OpenTech EDV Research GmbH <http://www.opentech.at>
*
* BLCR example program
* increments an integer in a loop and creates a checkpoint every
* 10 iterations
*
* compile:
* gcc -lcr -o counting counting.c
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*/

#include <stdio.h>
#include <unistd.h>
#include <libcr.h>

#define ITERATIONS 10

int main(void)
{

char filename[100];
int i;
cr_client_id_t id;

printf("Counting demo: PID %d\n", (int)getpid());
printf("Checkpoints every %d iterations\n", (int)(ITERATIONS));

sprintf(filename, "context.%d", (int)getpid());
printf("checkpoint-file: %s\n", filename);

/* initialize checkpoint system */
id = cr_init();

for (i=1; i<100; ++i) {
if (!(i%(ITERATIONS))) {
cr_request_file(filename);
printf("checkpoint!\n");
}
printf("Count = %d\n", i);
fflush(stdout);
sleep(1);

}

return 0;
}
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9.3. Usage

9.3.1. Preparing Linux for BLCR

After the make install step you must off course run ldconfig so the new library is found. The
modules are installed but not loadable yet as you must update the module dependencies -
this is done by calling depmode with the -a flag to rebuild the dependencies. But first we
test it before copying the modules to the system wide module directory.

rtl29: # ldconfig
rtl29: # cd /tmp/blcr-0.3.0/vmadump/
rtl29: # insmod vmadump.o
rtl29: # cd ../cr_module/
rtl29: # insmod blcr.o

If this works out OK then copy them to /lib/modules/misc and update the dependencies.

rtl29: # cp cr_module/blcr.o /lib/modules/misc
rtl29: # cp vmadump/vmadump.o /lib/modules/misc
rtl29: # depmode -a

9.3.2. Compiling apps with BLCR

Then its simply compiling your application with a call to cr init, which will set up the
necessary data structures for check-pointing and calls to cr request file in the code at points
where you want to preserve execution status.

rtl29: # gcc -lcr -o counting counting.c
rtl29: # ./counting
Counting demo: PID 280
Checkpoints every 10 iterations
checkpoint-file: context.280
Count = 1
Count = 2
Count = 3
....
checkpoint!
Count = 10
Count = 11
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Count = 12
...
checkpoint!
Count = 20
Count = 21
<CNTRL>-C

In this case we would have successfully completed execution, but to see check-pointing we
kill it with a fatal <CNTRL>-C then to restart at the last checkpoint, you simply restart it
with:

rtl29: # cr_restart context.280
checkpoint!
Count = 20
Count = 21
Count = 22
...

We can’t diagnose the <CNTRL>-C, but we can say that this application failure was a
transient error as it continues now. Furthermore if it were a non transient error we could
monitor events that lead up to the fatal event. You would restart the application and connect
a debugger to it and could watch it fail. Especially if this failure happens only after running
for weeks or maybe months this is very powerful .

9.3.3. Common problems

rtl29: # insmod vmadump/vmadump.o
vmadump.o: init_module: Invalid argument
vmadump.o: Hint: insmod errors can be caused by incorrect module parameters, including invalid IO or IRQ parameters.

You may find more information in syslog or the output from dmesg

If you see this you most likely are not running exactly the same kernel that you compile blcr
against, blcr is accessing low level data structures in the kernel and only can operate properly
if it fits the kerne exactly, that is not only the version but also the config options must be
the same ! Checking with dmesg after the unsuccessful insmod would give you something
like:

vmadump: from bproc-3.1.10 Erik Hendriks <erik@hendriks.cx>
vmadump: Modified for blcr 0.3.0 <http://ftg.lbl.gov/checkpoint>
Running kernel does not match the System.map used to build vmadump.o
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10. Conclusion

If you forget to load the blcr and/or vmadump module then you will get the error when
running the checkpointed application - so always make sure that it is loaded otherwise you
will crash the application due to check-pointing - which is not quite the intended use !

cr_core.c:388 cr_request_file: called w/o first calling cr_init()

Other than that there is very little one can do wrong while installing blcr.

10. Conclusion

An embedded OS becomes valuable for industrial applications when it is reliable and this
reliability can be verified. This verification process requires some tools, and as the above
sections hopefully showd, embedded Linux has many tools in this area. The tools described
in the article are not going to cover every situation, but they should help with many of the
common debug problems in embedded systems.

As the embedded Linux community is very active, new tools are evolving all the time, in
the recent 2.6.X kernel releases provisions for system wide profiling and built in ksymoops
are integrated, simplifying runtime debugging of Linux based embedded systems. It is to be
expected that more work in this area will happen in the near future, increasing the value of
embedded Linux, and its reliability.

11. Acronyms

12. List of Acronyms

CVS - Concurrent Version System
GPL - General Public License
FDL - Free Documentation License
GNU - GNU Not UNIX (recursive acronym)
KFI - Kernel Function Instrumentation
GDB - GNU Debugger
GCC - GNU Compiler Collection
OS - Operating System
BGCC - Bounds Checking GCC
SSP - Stack Smash Protection
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As usual this is ”work-in-progress”, feedback on what you think is missing is always welcome
- mail suggestions to mcguire@lzu.edu.cn.

• add readelf dependency checking

79



References

• add compile time malloc (DEBUG) settings and runtime config.

• add print symbol to kernel debug api

• add print symbol -> kallsyms lookup CONFIG KALLSYMS dependency note

• cleanup acronyms and references

80


	Introduction
	Memory leaks
	top
	bgcc
	The good news on bgcc
	The bad news on bgcc

	SSP Stack Smashing Protection
	Usage

	ltrace
	njamd
	using njamd


	Sporadic Segfaults
	catchsegv
	core dumps
	Core file names
	debuging core files

	Performance issues
	ltrace
	strace
	Profiling with gprof
	usage of gprof
	drawback

	Code coverage with gcov
	generating reports

	applogger
	tracing a specific library function
	ltp
	oprofile

	Kernel-space runtime debugging
	kernel debugging
	Debug memory allocations
	using sysrq
	adding your sysrq handler
	dynamic sysrq

	msgdump

	Kernel debug "API"
	printk()
	log level and log buffer
	before printk is available
	preventing log floods

	BUG() and variants:
	preempt_count()
	GCCs __builtin_return_address(x)

	show_registers()/show_regs()
	dump_stack()/show_trace/show_stack
	print_symbol()

	Kernel oops decoding
	Decoding it
	locating the fault position
	Locating the faulting code

	Disassembling
	Generating Assembler code
	Disassembling with objdump
	Decoding with gdb
	Decoding the code section


	Simple tools
	/usr/bin/time
	BSD Process Accounting
	Configuration
	Usage
	Limitations

	ltrace

	Checkpoint Restart
	BLCR installation and configuration
	A simple example
	Usage
	Preparing Linux for BLCR
	Compiling apps with BLCR
	Common problems


	Conclusion
	Acronyms
	List of Acronyms

