
Kernel function instrumentation - tool
analysis

Nicholas Mc Guire

Distributed & Embedded Systems Lab
SISE,Lanzhou University, Lanzhou,P.R.China

mcguire@lzu.edu.cn, http://dslab.lzu.edu.cn

March 3, 2006

i

Contents

Contents

1. Kernel function instrumentation - tool analysis 1
1.1. Source . 1
1.2. Patch file . 1
1.3. Patch analysis . 2
1.4. Basic technology . 3
1.5. Installation . 7
1.6. Data acquisition . 9
1.7. Dynamic Data acquisition (post boot) . 9
1.8. Data interpretation . 13
1.9. Performance Impact . 13

2. Conclusion 2.4.X 14

3. KFI for 2.6.X 15
3.1. Patch file . 15
3.2. Building 2.6.11 with KFI . 16

3.2.1. kernel config . 17
3.2.2. Configuration bug . 17
3.2.3. Compiling and Installing . 18

3.3. Data acquisition . 20
3.3.1. What not to do in 2.6.X . 20
3.3.2. Configuring KFI at runtime . 21

3.4. Data interpretation . 22
3.4.1. addr2sym . 22
3.4.2. Data Acquisition 1st shot . 22
3.4.3. kfiresolve.pl problems . 23
3.4.4. kfiresolve.py problems . 24
3.4.5. Data Acquisition 2nd shot . 25
3.4.6. field description . 25
3.4.7. Runtime Configuration . 26
3.4.8. Performance Impact . 29

3.5. Status of KFI for 2.6.X . 32

4. Conclusion 2.6.X 32

5. List of Acronyms 33

ii

Contents

Version Author Date Comment
1.0 Nicholas Mc

Guire
Jan 2005 First shot

1.1 Georg Schiesser 18 Jan 2005 converted to TEX
document

1.2 Nicholas Mc
Guire

19 Feb 2005 cleanup

1.3 Nicholas Mc
Guire

Jan 2006 2.6 revision

iii

1. Kernel function instrumentation - tool analysis

1. Kernel function instrumentation - tool analysis

In the framework of Work Package 5 - Boot-Time Optimization, of ”A Comparative
Study on Real-time enhanced Linux Variants”, research on existing tools to analyze boot-
times was performed. As one of the most promising tools kernel function instrumentation
KFI, was investigated in detail. In its current state it has some serious problems and
shortcomings - never the less it is actually usable and with some preliminary extensions
usable for analysis on a system scope and not only at kernel level [?]. In this article we
describe the tools analysis, KFI usage, and data acquisition for the 2.4.20 and 2.6.11
kernel. It should be noted that we found no serious problem when applying KFI to
slightly different kernels (i.e. 2.4.26).

A brief introduction to the core technology concept and its application in user-space
process and libraries is given - though incomplete. For additional information on function
profiling in user-space see [?].

1.1. Source

The sources were obtained from the celinuxforum [4]. Sources carry no copyright, not
quite clear why - most likely because the concepts was derived from a number of posts
on the LKML, and then packaged at some point by Montavista. Discussion/clarification
of License issues is under way with Todd Poynor, tpoynor@mvista.com - but it looks
like its GPL as its statically linked into the kernel.

• kfi-0.8.tar.gz - analysis tools and a minimum documentation (README.kfi)

• patch for 2.4.20 (only ?) not to invasive - coded as stand-alone modules.

dependencies: bigphysarea (if you want to get usable dynamic traces out of this)

1.2. Patch file

• driver/char/kfi - isolated kernel function instrumentation ”driver”

• kernel/sys.c - a few kfi dump log inserted i

• init/main.c - this patch seems useless - all it does is add a call to a empty function
- not clear what this is supposed to achieve (TODO: clarify).

1

1. Kernel function instrumentation - tool analysis

patch applies clean against stock 2.4.20, fails uncritically against 2.4.26 (Makefile, and
config.in - .rej files sufficient to patch) kfi dri ver is sufficiently isolated to patch into
most likely any 2.4.X kernel.

Name test4 a bit irritating - there is no doc what test1-3 were about ...

1.3. Patch analysis

Generally not really invasive functionally - well isolated - should be trivial to port.

Patch does not seem to be really arch dependent - currently it seems configurable for
arm, mips and X86 - but from the structure of the patch it should be fairly simply to
move on to any other platform. Hard-coded CPU frequency (again) - bas idea - you need
to compile for a specific platform (that at least could be passed as a config option...)

Times are read with low level (hardware dependent but fast) calls to arch specific clocks
(i.e. rdtsc on x86) - rough math to stay in 32bit provided (no do gettimeofday or the
like) so this clock is available at a very early stage in the boot process. The records are
based on deltas not absolute values (simplifies things as there are no potential overflow
issues).

Initial entry is set to 0 so the first value is garbage. This could (should) be trivially
fixed by having a hard-coded read of the tsc in start kernel (would help a bit to get
boot-times).

Patch does not record any pre- start kernel events (bad) no info on decompression
times.

Patch does not personalize the kfi patched kernel - potential collision of modules with
unpatched 2.4.20 - EXTRAVERSION=-kfi set.

We strongly advice using this at runtime only if core functions are marked with
no instrument functions - brute force instrumentation of each and every function is
obviously a performance problem - and actually not that useful anyway. For boot-time
analysis it seems reasonable the way static setup is provided (from start kernel to just
before execve /sbin/init).

The profile func enter/exit seems quite heavy weight - might be worth stripping
this to the bare minimum possible (something like func,caller,timestamp ??- I admittedly
don’t know exactly what the current implementation does :).

The log entries are quite heavy weighted - the distinction between kernel, interrupt and
PID context is quite useful - its a bit irritating that kernel threads are not marked any dif-
ferent than processes (TODO: look into adding this in kfi.c and in the kfiresolve.py).

2

1. Kernel function instrumentation - tool analysis

1.4. Basic technology

Function instrumentation is a feature of gcc - by compiling applications with the
-finstrument-function flag each call is preceded and followed by a call to a profil-
ing function.

A simple example of a modified hello world should make this clear easily.

#include <stdio.h>

void __attribute__((__no_instrument_function__))
__cyg_profile_func_enter(void *this_fn, void *call_site)
{

printf("func_enter: function = %p, called by = %p\n",
this_fn,
call_site);

}

void __attribute__((__no_instrument_function__))
__cyg_profile_func_exit(void *this_fn, void *call_site)
{

printf("func_exit: function = %p, called by = %p\n",
this_fn,
call_site);

}

main(){
printf("hello world\n");
return 0;

}

Compiled with gcc -finstrument-functions hello.c -o hello and run as ./hello
we get the output:

func_enter: function = 0x8048420, called by = 0x40041936
hello world
func_exit: function = 0x8048420, called by = 0x40041936

The instrumentation is done at compile time the normal code:

3

1. Kernel function instrumentation - tool analysis

subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp

is surrounded by calls to the profiling enter and exit functions passing the pointer of the
calles ($main) and the function being called.

subl $8, %esp
pushl 4(%ebp)
pushl $main
call __cyg_profile_func_enter
addl $16, %esp

subl $12, %esp
pushl $.LC2
call printf
addl $16, %esp

movl $0, %ebx
subl $8, %esp
pushl 4(%ebp)
pushl $main
call __cyg_profile_func_exit
addl $16, %esp

Function instrumentation not only is available by coding it directly in the source files, which
would be kind of inconvenient, but also can be wrapped up in a library. An example of a
library that will produce the same output format for traces that the kernel space implemtation
is giving (and thus allows to correlate events in kernel and user-space by sorting time-stamps)
is given here as example:

/*
* Compile as shared library with:
* gcc -fPIC -Wall -g -O2 -shared -o libfunc_profile.so.0 libfunc_profile.c
*
* Log all function calls to to the logfile in /tmp/func.log (default)
* the format is chosen to allow usage of kfiresolver.py to reverse the log
* entriew
*/

4

1. Kernel function instrumentation - tool analysis

#include <stdio.h> /* fprintf */
#include <unistd.h> /* exit , getpid*/
#include <sys/types.h> /* getpid */
#include <stdlib.h> /* getenv */

#define _FCNTL_H
#include <bits/fcntl.h>

/* initialize and cleanup logfile(s) on load/unload of lib */
void __func_profile_init(void) __attribute((constructor));
void __func_profile_exit(void) __attribute((destructor));

long long int start,last,now;
FILE *logfile;
char default_fname[]="/tmp/func.log";
char *logfile_name;

__inline__ unsigned long long int hwtime(void)
{

unsigned long long int x;
__asm__ __volatile__("rdtsc\n\t"

:"=A" (x));
return x;

}

void __attribute__((__no_instrument_function__))
__func_profile_init(void)
{

if ((logfile_name = getenv("PROFILE_LOG")) != 0) {
printf("using %s\n",logfile_name);

} else {
logfile_name=default_fname;

printf("using %s (no PROFILE_LOG set in environment)\n",logfile_name);
}

if((logfile=fopen(logfile_name,"a+")) == NULL)
{

perror("Cannot open logfile\n");
exit(-1);

}

5

1. Kernel function instrumentation - tool analysis

/* logfile header */
fprintf(logfile,
" Entry Delta PID Function Caller\n");
fprintf(logfile,
"-------- -------- -------- -------- --------\n");

/* initialize time stamp */
start=hwtime();
last=start;

}

void __attribute__((__no_instrument_function__))
__func_profile_exit(void)
{

fclose(logfile);
}

void __attribute__((__no_instrument_function__))
__cyg_profile_func_enter(void *this_fn, void *call_site)
{

unsigned long long delta;
pid_t pid=getpid();
delta=0LL;

now=hwtime();
delta=now-last;
last=now;

fprintf(logfile, "%8lu %8lu %7d %08x %08x\n",
(unsigned long)(now-start),
(unsigned long)delta,
pid,
(unsigned int)this_fn,
(unsigned int)call_site);

}

void __attribute__((__no_instrument_function__))
__cyg_profile_func_exit(void *this_fn, void *call_site)
{

unsigned long long delta;
pid_t pid=getpid();

6

1. Kernel function instrumentation - tool analysis

delta=0LL;

now=hwtime();
delta=now-last;
last=now;

fprintf(logfile, "%8lu %8lu %7d %08x %08x\n",
(unsigned long)(now-start),
(unsigned long)delta,
pid,
(unsigned int)this_fn,
(unsigned int)call_site);

}

With such a libary it suffices to recompile user space applications with -finstrumetn-function
-lfunc profile.so.

Basically the same scheme is implemented in driver/char/kfi.c writing it into a log buffer.
A kernel specific problem that needs to be resolved is that of inline functions. The passing
of the address of the caller and the called function is done even for inline functions, resulting
in taking the address of the inline functions which is not accessed via call. For functions
declared extern inline this results in undefined symbol errors. For static inline it
causes a static version to be compiled in each object file that uses the inline function. So to
allow function instrumentation all inline functions are treated as static inline functions - this
slows down things even more than would be done just by the overhead of logging data, but
this kernel modification is not intended for systems that require high performance.

1.5. Installation

Installation of the official patches is more or less broken - patches apply cleanly but compi-
lation fails without quite heavy modifications in the low level code (pre vmlinux stuff).

tar -xjf linux-2.4.20.tar.bz2 (kernel.org)
cd linux-2.4.20
patch -p1 < ../kfi-24-test4.patch
make menuconfig

Kernel hacking ---->
[} Kernel debugging
[*] Kernel Function Instrumentation (NEW)
[*] Static Instrumentation Config

7

1. Kernel function instrumentation - tool analysis

Note: there is no help available for both of the new options - so here is a minimum summary
of what this does.

Kernel Function Instrumentation

This basically enables kfi (builds the driver/char/kfi and inserts kfi dump log points.

Static Instrumentation Config

This sets up a linked list as automatic variable instead of dynamically allocating it further
more if this option is enable a empty to userspace() function is called before calling init
- this is used by the static instrumentation config to locate the point where instrumentation
should be turned off (so called trigger).

For static instrumentation there is a config file in drivers/char/kfistatic.conf that
allows setting of instrumentation parameters at compile time (would be nice to have this in
the kernel config menu !)

Make procedure of the unmodified patch 2.4.20-test4:

make dep
make (fails due to scripts/mkkfirun.pl being mode 644 not 755)
chmod 755 scripts/mkkfirun.pl
make (fails in drivers/ide/ide-cd.h line 440 type : __u8 short -> __u8)
make (compilation completed - further warnings ignored ;)
make modules
make modules_install
make bzImage

(fails with undefined references to cyg *... looks like instrumentation is not implemented
correctly - the scope of the entry/exit functions is limited to vmlinux (kernel proper) but
the low level stuff (/arch/i386/boot/misc.c lib/inflate.c referenced in misc.c) was
also compiled with -finstrument-functions

Reconfigured without static instrumentation (which would makes it quite unusable for boot-
time analysis though) same problem.

Unresolved symbols in misc.c - guess misc.c should NOT be compiled with
-finstrumentation... (TODO: need to clarify if this EVER worked with a vanilla 2.4.20
kernel) - workaround turn it off on a per function basis using noinstrument (pain in the
but - as you have to recompile the kernel from scratch - which then yields a new set of
unresolved symbols ;) .

Files cleaned: lib/inflate.c arch/i386/boot/compress/misc.c - basically all function
calls got instrumentation turned off - which is not tragic as misc.c is pre start kernel
any way and inflate.c functions are not called during the system initialization.

8

1. Kernel function instrumentation - tool analysis

1.6. Data acquisition

Once it compiles and installs the README in the kfi-0.8 tools (README.kfi) should be
sufficient. The only requirement is phyon -but as data resolution from addresses to names
can be done off-line (only need the System.map of the profiled system to do it) - python is
no issue.

tar -xuf kfi-0.8.tar.gz
cd kfi-0.8
mknod /dev/kfi c 10 51
make
./kfi read 0 > kfiboot.log
vi kfiboot.log
./kfiresolve.py ./kfiboot.log \

../linux-2.4.20-kfi/System.map > kfiboot.lst
vi kfiboot.lst

Note that in dynamic mode you can only use the read and reset command - all other
command will give you IOCTL errors - for dynamic instrumentation logs see the next section.
The strange limit of 8092 bytes for static logs seems to stem from the log being on the kernel
stack (ugh!)- TODO: fix that .

1.7. Dynamic Data acquisition (post boot)

When compiled without static setup it does not work (at least no out of the box) the
command new to kfi will aboard with an EINVAL in IOCTL (NEW RUN). Dynamic acquisition
looks like its not quite completed yet - the problem with the distributed version is that there
are two header files that both define MAX RUN LOG ENTRIES - in kernel space its defined to
be 8092 (not 8192) and in user-space kfi.h its set to 20000 - in the IOCTL command switch
for NEW RUN the passed entry value is checked against kernel side MAX RUN LOG ENTRIES and
not to surprising exits with -EINVAL. If set larger than about 6000 (that is clearly below the
default 8092 !) it fails due to kmalloc failing (TODO: check and if necessary move to
vmalloc)

Once that is fixed it actually kind of works (a bit;)

Hard-code what you want to see in kfi.h (user-space) - the MAX RUN LOG EVENTS must be
smaller than the value set in include/linux/kfi.h !

9

1. Kernel function instrumentation - tool analysis

make
./kfi reset
./kfi new
new run created, id = 0
./kfi start
runid 0 started
./kfi stop (looks like this is broken !)
STOP ioctl error: Invalid argument
./kfi read > log
-rw-r--r-- 1 root root 217441 2005-01-01 16:56 log
./kfi status

Kernel Instrumentation Run ID 0

Logging started at 963768895 usec by system call Logging stopped at 963769264 usec by
log full

Filters:

Filter Counters: Total entries filtered = 0 Entries not found = 1

Number of entries after filters = 4096

./kfi reset

./kfiresolve.py log /usr/src/linux-2.4.20-kfi/System.map > lst

lst contains the ”call graph” of the booting kernel with timestamps now. The header of
the list file is the same as you would get with the ./kfi status command.

Kernel Instrumentation Run ID 0

Logging started at 111102362 usec by system call Logging stopped at 114108365 usec by
log full

Filters:

Filter Counters: Total entries filtered = 0 Entries not found = 16

Number of entries after filters = 32768

Entry Delta PID Function Called At
-------- -------- ----- ------------------------- --------------------

0 no exit 251 fput sys_ioctl+0x87
1 no exit 251 do_page_fault error_code+0x34

10

1. Kernel function instrumentation - tool analysis

1 no exit 251 find_vma do_page_fault+0x99
1 no exit 251 handle_mm_fault do_page_fault+0x198
1 no exit 251 pte_alloc handle_mm_fault+0x54
1 no exit 251 do_no_page handle_mm_fault+0x7f
1 no exit 251 filemap_nopage do_no_page+0xa8
1 no exit 251 __find_get_page filemap_nopage+0xe4

The no exit in the Delta field is due to the delta recorded being 0 - this is the case when
the resolution of the kfi readclock() is higher than the runtime of the function being
traced (TODO: check up on this - looks strange considering they are using the TSC).

driver/char/kfi.c:
static inline unsigned long __noinstrument
update_usecs_since_boot(void)
{

unsigned long machine_cycles, delta;

machine_cycles = kfi_readclock();
delta = machine_cycles - last_machine_cycles;
delta = kfi_clock_to_usecs(delta);

usecs_since_boot += delta;

last_machine_cycles = machine_cycles;
return usecs_since_boot;

}

To help interpret data there is a tool in the kfi-0.8.tar.gz archive that allows filtering
the lst data:

./kd -h
usage: kd [<options>] <filename>

This program parses the output from a set of kfi message lines

Options:
-h Show this usage help.
-c <count> Only show the <count> most time-consuming functions
-t <time> Only show functions with time greater than <time>

11

1. Kernel function instrumentation - tool analysis

-f <format> Show columns indicated by <format> string. Column IDs
are single characters, with the following meaning:
F = Function name
c = Count (number of times function was called)
t = Time (total time spent in this function)
a = Average (average time per function call)
r = Range (minimum and maximum times for a single call)
s = Sub-time (time spent in sub-routines)
l = Local time (time not spent in sub-routines)
m = Max sub-routine (name of sub-routine with max time)
n = Max sub-routine count (# of times max sub-routine

was called)
u = Sub-routine list (this feature is experimental)

The default column format string is "Fctal"
-l Show long listing (default format string is "Fctalsmn")

I.e. ./kd -c 10 lst will show the 10 most heavy weight functions being called in the trace.

Function Count Time Average Local
------------------------- ----- -------- -------- --------
schedule 278 6010296 21619 6010296
schedule_timeout 139 6008929 43229 45
sys_select 169 3005012 17781 26
do_select 169 3004985 17780 36
sys_read 140 3004086 21457 21
tty_read 129 3004050 23287 21
read_chan 129 3004029 23287 30
default_idle 421 3003589 7134 3003589
do_IRQ 429 2657 6 0
handle_IRQ_event 429 1654 3 0

kmalloc switch to bigphysarea:

To improve dynamic tracing kfi was modified to use bigphysarea instead of kmalloc (which is
limited to the infamous 128k) - unfortunately this does not allow tracing from start kernel
on bug the startup must be done later:

0 no exit 0 start_kernel L6+0x0
1 9420 0 setup_arch start_kernel+0x30

208 9110 0 paging_init setup_arch+0x1cc

12

1. Kernel function instrumentation - tool analysis

222 9096 0 zone_sizes_init paging_init+0x42
222 9096 0 free_area_init zone_sizes_init+0x43
222 9096 0 free_area_init_core free_area_init+0x4f
222 4474 0 __alloc_bootmem_node free_area_init_core+0x3b7
222 4474 0 __alloc_bootmem_core __alloc_bootmem_node+0x49
9421 14609 0 parse_options start_kernel+0x51
9424 14606 0 checksetup parse_options+0x18f
9424 14606 0 bigphysarea_setup checksetup+0xaa
9424 14605 0 __alloc_bootmem bigphysarea_setup+0x79
9424 14605 0 __alloc_bootmem_core __alloc_bootmem+0x4e
24067 377850 0 time_init start_kernel+0x6a

Until after alloc bootmem core bigphysarea malloc will cause a system
lockup/reboot - if bigphysarea should be used to get post-init traces the trigger
point would need to be set to timer init() instead of boot kernel.

For dynamic traces the limit of the log length is limited by physical ram that can be allocated
to bigphysarea via kernel parameter bigphysarea=NUMBER OF PAGES, note that the trace
structure entries are 256bytes so 1024 pages would result in a limit of 131072 (128k entries).

1.8. Data interpretation

see kfiboot.log and kfiboot.lst - basically simply run down the list and search for
functions that take a long time - there also are structural issues one can find - like heavy
invocation of delays. TODO: cleanup.

1.9. Performance Impact

The performance impact of kfi is substantial - it is a diagnostic tool and no runtime debug tool
- insofar it is inferior to tools like ltt- but for boot-time issues it is superior to instrumented
printk or ltt (the later launches much to late to be of much use for boot-time issues).

Performance impact is run by comparing lmbench on an unpatched 2.4.20 kernel with kfi
being used at runtime (not boot-time - basically because we can’t run lmbench at boot
time).

13

2. Conclusion 2.4.X

2. Conclusion 2.4.X

KFI is a tool usable for test-runs - its absolute values are not that usable but the relative
values are very usable. The granularity of the results is sufficient to pinpoint potential
optimizations very quickly.

A drawback is that it does not trace the low level initialization code before start kernel
(this does not seem to be a config issue - but due to the low level stuff requiring to be compiled
without instrumentation (at least we did not manage to do it without noinstrument in
the low level stuff)).

The state of the project is not yet stable - documentation is still incomplete and the patches
don’t seem to be clean (yet) - the project is of interest but only can be recommended for
use if a local technician sufficiently understands the technology to actually maintain it.

All though only arm,mips and x86 are supported porting to further arch should be quite
simply as the core of kfi is well encapsulated in drivers/char/kfi.c .

A clear disadvantage at this point is that the trace configuration for boot-time traces is
statically configured and requires recompiling when changed.

KFIs advantage over i.e. ltt is that it is non-invasive - the driver is well encapsulated and
the function tracing is done via gcc’s build in instrumentation capabilities - thus adding and
expanding to new kernel routines or custom drivers is trivial - furthermore the trace is flat
with respect to covered functions (if one excludes the issues of inline ed funcs) as compared
to ltt where the trace points are designed by the developers (although ltt does allow adding
custom trace points - its just not automatic). The clear drawback is its impact on the system
- kfi is an analysis tool but no runtime-debug tool like ltt.

kfi is a non-standard tool, although standardization is not a mandatory feature it would help
with comparing results from other tools.

It also should be noted that the development is still in an early stage and that currently the
risk of relying on kfi may be fairly high - if a project wishes to utilize kfi it is recommended that
at least one team member actually work into it to a level where a self-sustained maintenance
and continuation is possible.

Dynamic tracing is close to being called broken - but it should not be too hard to fix it (see
above).

KFI is a very interesting technology and hopefully will be continued - its current state is
usable with a bit of tuning but it is currently at best beta.

14

3. KFI for 2.6.X

3. KFI for 2.6.X

KFI has undergone major changes and restructuring for the 2.6.X series of kernels, the
concepts and the core technology is the same though, so we don’t repeat that in this 2.6.X
section, refer to the above 2.4.X sections for an introduction to the technological concepts
of KFI.

dependencies: bigphysarea (if you want to get usable dynamic traces out of this)

3.1. Patch file

kfi moved from a pseudo-driver in driver/char/kfi.c to a pure kernel function set implemented
kernel/kfi.c. The implementation is not arch dependent and does not modify any kernel
code conceptually, though off course it is very invasive at runtime as every function is
preceded/followed by the cyg profile func enter/exit calls.

• kernel/kfi.c;

– Time management functions:
All low level time management functions, for reading of time and converting
to microseconds, the time stamp precision is unfortunately not platform/arch
independant and kfi.c comes with an ugly platform sepcific define:

#define CLOCK_FREQ 1602319000ULL

- this really should be a config option or calculated from existing values, not hard
coded this way, if set incorectly the reported times are obviously garbage.

– run list management:
Functions to manage run lists entries, conditional logging etc.

– the actual instrumentation function:
in kfi for 2.6 cyg profile func enter/exit both map to the same function
func entry exit which is the actual instrumentation function.

– proc related functions:
All the functions to setup and remove the proc entries and to read from them are
in here aswell. This include functions to parse setting, provided by echoing into
/proc/kfi and formating/dumping functions to output the data aquired by cat
/proc/kfi trace

15

3. KFI for 2.6.X

• fs/proc/proc misc.c:
Not quite clear why but the kfi trace creation is not done in kfi.cbut rather in
fs/proc/proc misc.c though all operations are from kfi.c - this might need moving
?

• include/linux/kfi.h:
The main structures for kfi are in here:

– struct kfi run:
This represents a runtime probe

– struct kfi filter:
The filter conditions, basically time and context

– struct kfi trigger:
the trigger conditions description

Slight inconsistencies in the naming, kfi-26-test1.patch is kfi-2.6.7.patch, kfi-2.patch is cur-
rently kfi-2.6.11.patch it is not quite clear to us if kfi-2.patch is the ”current” patch file or
not. You probably only can unpack the patch and open it with an editor to know for exactly
what version this is.

Note that KFI in the 2.6.X patches is only available for X86, limiting is usability as a general
tool seriously - though it is usable to support analysis of the arch independent kernel parts
(which is about 95

3.2. Building 2.6.11 with KFI

root@rtl17:/usr/src# tar -xjf linux-2.6.11.tar.bz2
root@rtl17:/usr/src# mv linux-2.6.14 linux-2.6.11-kfi
root@rtl17:/usr/src# mv kfi-2.patch kfi-2.6.11.patch
root@rtl17:/usr/src# cd linux-2.6.11-kfi
root@rtl17:/usr/src/linux-2.6.11-kfi#
root@rtl17:/usr/src/linux-2.6.11-kfi# patch -p1 --dry-run < ../kfi-2.6.11.patch

The patch seems to not be against vanilla 2.6.11 - thus quite a lot of fuzz and offset with
this patch - none of this seems to be functionally critical though.

Hunk #1 succeeded at 115 (offset 10 lines).
Hunk #1 succeeded at 75 (offset -4 lines).
Hunk #1 succeeded at 69 (offset 23 lines).
Hunk #1 succeeded at 25 with fuzz 2 (offset -1 lines).
Hunk #1 succeeded at 2626 (offset -1 lines).

16

3. KFI for 2.6.X

3.2.1. kernel config

root@rtl17:/usr/src/linux-2.6.11-kfi# make menuconfig

Kernel hacking --->
[] Kernel debugging
[*] Debug preemptible kernel (NEW)
[] Compile the kernel with frame pointers
[*] Use 4Kb for kernel stacks instead of 8Kb
[] Static Instrumentation Configs (NEW)
(0) Scaling factor for early initialization of kfi clock (NEW)
[*] Kernel Function Instrumentation

note that Debug preemptible kernel and Use 4Kb for kernel stacks instead of
8Kb are on by default and are not related to the usage of KFI.

After creating a new configuration we recommend copying your .config to a meaningful
name i.e. cp .config config 2.6.11 kfi, and add it to your source management system.

3.2.2. Configuration bug

The configuration has a hard-coded clock value, which is used by kfi clock to usecs in
kernel/kfi.c - this needs to be adjusted to what ever you find in /proc/cpuinfo - this can
be considered a bug in KFI, either this has to use available kernel parameters (i.e. cpu khz)
or must be a mandatory config option - no idea why this is hard-coded here...

#define CLOCK_FREQ 400000000ULL

On the test-system, a 1.6GHz AMD Duron this value was set to

#define CLOCK_FREQ 1602319000ULL

according to what was found in /proc/cpuinfo

cpu MHz : 1602.319

Note that if this is NOT fixed then your results are complete garbage.

17

3. KFI for 2.6.X

3.2.3. Compiling and Installing

Compiling and installing is the default procedure for Linux kernels.

root@rtl17:/usr/src/linux-2.6.11-kfi# make bzImage
...
kernel/kfi.c: In function ‘kfi_new_run’:
kernel/kfi.c:1015: warning: comparison of distinct pointer types lacks a cast

LD kernel/built-in.o
CC mm/bootmem.o

...
Root device is (3, 2)
Boot sector 512 bytes.
Setup is 2794 bytes.
System is 1889 kB
Kernel: arch/i386/boot/bzImage is ready

Note that there are still a few glitches in the current 2.6.X KFI sources - though none of
these seem problematic as of 2.6.11.

root@rtl17:/usr/src/linux-2.6.11-kfi# make modules
...
root@rtl17:/usr/src/linux-2.6.11-kfi# make modules_install
...

INSTALL net/ipv4/netfilter/ipt_NOTRACK.ko
INSTALL net/ipv4/netfilter/iptable_raw.ko

if [-r System.map]; then /sbin/depmod -ae -F System.map 2.6.11; fi

Basically all except the last stage can be run as non-root user - only the last step will require
root privileges - so if you did all this as non-root user you need to become root now.

root@rtl17:/usr/src/linux-2.6.11-kfi# cp arch/i386/boot/bzImage \
/boot/2611kfi

Lilo Config

After copying the image to /boot we add the new kernel to the lilo.conf. Note that the
paths shown here are not mandatory and they may be different on your distribution. For
details see man 5 lilo.conf.

18

3. KFI for 2.6.X

root@rtl17:/usr/src/linux-2.6.11-kfi# cd /etc
root@rtl17:/etc# vi lilo.conf

Add the following lines to your lilo.conf - note that you off course must adjust your root=
setting to fit your system.

image = /boot/2611kfi
root = /dev/hda2
label = 2611kfi
read-only

Don’t forget to run lilo - you should get something like:

Added Linux *
Added 2611kfi

To reboot into the new kernel you can select it at the Lilo prompt or use lilo’s one-time
selection like so:

root@rtl17:/etc# lilo -R 2611kfi
root@rtl17:/etc# reboot

GRUB Config

To boot the new kernel with grub add the following line to your menu.lst. On many
distributions you can find it in /boot/grub, though this is not mandatory, thus don’t be
surprised if you don’t find it there.

title 2611kfi
kernel (hd0,1)/boot/2611kfi root=/dev/hda2 read-only

Note that grub starts counting partitions at 0 thus /dev/hda2 maps to hd0,1. As grub
knows how to read filesystems you don’t need to reinstall grub, but simply reboot after
adding the above entry and select it at the boot-prompt - grub does not have a lilo -R
target alike command, once you find your new kernel is ok you can set the default boot to
the target to boot, for details we refer you to the man pages of grub.

19

3. KFI for 2.6.X

3.3. Data acquisition

As the documentation is badly out of sync we have written up our procedure here - this is
not in any way official though - so it might be incomplete or partially incorrect - We did not
want to spend more time with source code review to get this working...

3.3.1. What not to do in 2.6.X

Following the instructions on the web-page and the README.kfi from kfi-0.8.tar.gz
you would find the following procedure:

root@rtl17:~# mkdir kfi
root@rtl17:~# cd kfi/
root@rtl17:~/kfi# tar -xzf kfi-0.8.tar.gz
root@rtl17:~/kfi# cd kfi-0.8
root@rtl17:~/kfi/kfi-0.8# make

Runs smoothly and creates the kfi user space application which is responsible for controlling
KFIs kernel internal actions by a set of commands issued via ioctl’s on /dev/kfi.

root@rtl17:~/kfi/kfi-0.8# mknod /dev/kfi c 10 51

The README tells you to dump the data with

root@rtl17:~/kfi/kfi-0.8# ./kfi read 0 > log

Which only will give you:

Error opening KFI device: No such device

The sequence we found to work, after reading through kernel/kfi.c, as documentation is
totally out of sync... was to setup and configure the traces via the proc interface only.

• /proc/kfi:
This is the control interface - which replaces what was done via ioctls in the 2.4.X KFI
implementation (and provided by the kfi-0.8.tar.gz package).

• /proc/kfi trace:
Access point to the trace buffer. After configuring a trace and stopping it you can
dump the buffer via /proc/kfi trace.

20

3. KFI for 2.6.X

3.3.2. Configuring KFI at runtime

KFIs runtime configuration is done by runtime parsing of commands written to /proc/kfi
- the control ”port” of KFI. The commands are a series of token value pairs terminated by
the end token that stands alone, and all of it cat’ed into /proc/kfi. As a simple example
you could do:

root@rtl17:~/kfi# echo "new logsize 4000 end" > /proc/kfi
root@rtl17:~/kfi# echo start > /proc/kfi
root@rtl17:~/kfi# echo stop > /proc/kfi
root@rtl17:~/kfi# cat /proc/kfi_trace > trace.data

This is the raw trace data that will look something like:

Kernel Instrumentation Run ID 0

Logging started at 1216155378 usec by user action
Logging stopped at 1216234815 usec by log full

Filter Counters:
Total entries filtered = 0
Entries not found = 57

Number of entries after filters = 4000

Entry Delta PID Function Caller
-------- -------- -------- ---------------- ------------
1216155377 1 1362 0xc010ff40 0xc014352a

3 1 1362 0xc01a3900 0xc016ae85
4 0 1362 0xc0116b10 0xc01a39c0
10 31 1362 0xc0180f30 0xc0103927
10 1 1362 0xc018d2e0 0xc0180fce

...

The mess-up of the columns settings is due to the TSC on this box running a bit too fast I
guess - KFI might need some format cleanups...

The run is 4000 entries long - which is what we configured - note that there is a
hard coded limit of MAX RUN LOG ENTRIES which is at 10000 by default (configured in
include/linux/kfi.h).

21

3. KFI for 2.6.X

The following KFI commands are available (as of 2.6.11):

• prime: start as soon as the trigger start condition is hit

• start: start unconditionally

• stop: stop unconditionally

• new: setup new run

3.4. Data interpretation

The tools from the kfi-0.8.tar.gz that we compiled, are not needed for the 2.6.X ver-
sion of KFI - what is needed is the decoder to reverse-map the addresses to the corre-
sponding function names, which is though provided within the kernel patch and ends up as
scripts/addr2sym in the linux source tree.

3.4.1. addr2sym

This phyton script basically builds a table of symbols from the System.map and uses the hex
addresses found there to assign the recorded entry/exit addressses to the respective function.

addr2sym will first try to do an exact match of each symbol, basically the call entry and
exit points should be well known addrsses in the System.map, for those that can’t be found
a neerest match is done - we assume this means function names listed may be a bit off in
some cases, but have not verified this. If addresses show up in the output as unconverted
values then they were out of range, obviously addr2sym can’t produce any better results in
such a case.

As a gereral note, the addr2sym tool is trying to prvoide functionality that basically exists
in the 2.6.X series of kernel, it might be better to rely on thos tools (i.e. print symbol() and
frinds).

3.4.2. Data Acquisition 1st shot

root@rtl17:/usr/src/linux-2.6.11-kfi # chmod 755 scripts/addr2sym
root@rtl17:/usr/src/linux-2.6.11-kfi # scripts/addr2sym /tmp/kfi.data \
-m System.map > /tmp/kfi.lst

For kernels that use modules it can result in incomple results, in that case you want to use
/proc/kallsysm instead of System.map

22

3. KFI for 2.6.X

root@rtl17:/usr/src/linux-2.6.11-kfi # scripts/addr2sym /tmp/kfi.data \
-m System.map > /tmp/kfi.lst

This will produce the kfi.lst file with the same format as the old tool, just that the
no exit is now listed by putting a 0 in the delta field.

Kernel Instrumentation Run ID 0

Logging started at 1216155378 usec by user action
Logging stopped at 1216234815 usec by log full

Filter Counters:
Total entries filtered = 0
Entries not found = 57

Number of entries after filters = 4000

Entry Delta PID Function Caller
-------- -------- -------- ---------------- ------------
16155377 1 1362 sched_clock kfi_start+0x5a

3 1 1362 dnotify_parent vfs_write+0xe5
4 0 1362 sub_preempt_count dnotify_parent+0xc0
10 31 1362 sys_dup2 syscall_call+0x7
10 1 1362 expand_files sys_dup2+0x9e

...

A note on the ”Entries not found = ” line, the problem with staring a trace in the middle of a
running system is obviously that you can get an exit from a funciton without ever having seen
an entry, KFI will flag this by marking the delta as 0 and incrementing run>notfound to
indicate this. So one must be carfull with interpreting data, generally we would recommend
not trying to interprete a single run at all, but to make atleast three runs starting at a specific
trigger point and then try to interprete data once one has reproducible snapshots, this will
generally imply very short ”shutter times”, that is trigger entry and trigger stop will need to
be relatively close.

3.4.3. kfiresolve.pl problems

It should be noted that kfiresolve.py/pl are not the intendet tools for the 2.6.X patches,
although it would be preferable to reuse these tools and not to add new - functionally

23

3. KFI for 2.6.X

equivalent tools in our opinion. For those that have them in use a few notes on the kfi tools
from kfi-0.8.tar.gz.

root@rtl17:~/kfi# kfi-0.8/kfiresolve.pl trace.data \
/usr/src/linux-2.6.11-kfi/System.map > trace.log

this runs without any errors but, to our surprise, without any usable results either - the
trace.log file still displays hex addresses not function names - looks like this is broken - but
we did not bother to follow up as we preferred the python based tool (see below).

3.4.4. kfiresolve.py problems

root@rtl17:~/kfi# kfi-0.8/kfiresolve.py trace.data /usr/src/linux-2.6.11-kfi/System.map > trace.log
Traceback (most recent call last):

File "kfi-0.8/kfiresolve.py", line 141, in ?
main()

File "kfi-0.8/kfiresolve.py", line 134, in main
caller = callername(funclist, calleraddr)

File "kfi-0.8/kfiresolve.py", line 58, in callername
addr = eval("0x"+addr_str+"L")

File "<string>", line 1
0x0xc014352aL

^
SyntaxError: unexpected EOF while parsing

The fix was at line 55 and line 130 of the provided kfiresolve.py:

--- kfiresolve.py 2006-02-08 14:00:13.000000000 +0100
+++ kfiresolve.py.org 2006-02-08 13:59:39.000000000 +0100
@@ -55,7 +55,7 @@
return string with function and offset for a given address
def callername(funclist, addr_str):

convert address from string to number
- addr = eval(addr_str)
+ addr = eval("0x"+addr_str+"L")

if address is outside range of addresses in the
map file, just return the address without converting it

@@ -130,7 +130,7 @@

24

3. KFI for 2.6.X

pid = pid[:-1]
in_int = 1

- func = callername(funclist, funcaddr)
+ func = funcname(funcmap, funcaddr)

caller = callername(funclist, calleraddr)

if delta=="0": delta="no exit"

We are not sure this ”fix” in generally applicable - but we would be interested in hearing
of any problems with this fix (or if anybody has the original working and if so with what
distro/python version).

3.4.5. Data Acquisition 2nd shot

root@rtl17:~/kfi# kfi-0.8/kfiresolve.py trace.data /usr/src/linux-2.6.11-kfi/System.map > trace.log

This seems to be ok now and the results are reasonable - note that we are not reprinting
the header here, as the header is redisplayed unchanged:

Entry Delta PID Function Called At
-------- -------- ----- ------------------------- --------------------
16155377 1 1362 sched_clock+0x0 kfi_start+0x5a

3 1 1362 dnotify_parent+0x0 vfs_write+0xe5
4 no exit 1362 sub_preempt_count+0x0 dnotify_parent+0xc0
10 31 1362 sys_dup2+0x0 syscall_call+0x7
10 1 1362 expand_files+0x0 sys_dup2+0x9e
11 no exit 1362 sub_preempt_count+0x0 sys_dup2+0xd8
11 29 1362 filp_close+0x0 sys_dup2+0xf7
12 no exit 1362 dnotify_flush+0x0 filp_close+0x5a

3.4.6. field description

The fife fields in the decoded file have the following meanings.

• Entry:
The number that this function had in the entry list - the entry list is also limited by a
hard coded maximum of 512 entries include/linux/kfi.hMAX FUNC LIST ENTRIES

25

3. KFI for 2.6.X

• Delta:
Delta is the time difference in machin cycles aka TSC resolved to micro seconds by
kfi clock to usecs() in kfi.c, unfortunately 0 is a legal return value here consid-
ering that a microsecond is quite a lot of time for modern CPUs. Note that the ”no
exit” string that is printed in the delta simply means the delta was 0.

• PDI:
The process ID of the process that was being traced, the kernel shows up with PID 0
and interrupt context shows up as PID -1.

• Function:
The function that was called

• Called At:
The function + offset at which the call happened.

3.4.7. Runtime Configuration

The first trace we did above left everything at the defaults, which is start now, trace every-
thing, stop at the maximum logsize. To configure it to track specific events you need to
configure KFI.

An example:

root@rtl17:/kfi# grep do_IRQ /proc/kallsyms
c01059d0 T do_IRQ
c0143d50 T __do_IRQ
root@rtl17:~/kfi# ocho "new \

trigger start entry c0143d50 \
trigger stop exit c0116280 \
filter mintime 0 \
logsize 4000 \
end" > /proc/kfi

root@rtl17:~/kfi# dmesg
status: run id 2, not primed, not triggered, not complete

config:
mode 1
trigger start entry 0xC0143D50
trigger stop exit 0xC0116280
filter mintime 5

26

3. KFI for 2.6.X

filter maxtime 0
logsize 4000

KFI: new kfi run installed
root@rtl17:~/kfi# echo prime > /proc/kfi
...<give it some time>
root@rtl17:~/kfi# echo stop > /proc/kfi
root@rtl17:~/kfi# cat /proc/kfi_trace > do_irq.data
root@rtl17:~/kfi# /usr/src/linux-2.6.11-kfi/scripts/addr2sym -m /proc/kallsyms test2.data > test2.lst

This sequence will record the program flow starting at do IRQ and after decoding result in
a quite readable file.

Kernel Instrumentation Run ID 2

Logging started at 3620056640 usec by entry to function __do_IRQ
Logging stopped at 3620152644 usec by log full

Filter Counters:
Total entries filtered = 0
Entries not found = 40

Number of entries after filters = 4000

Entry Delta PID Function Caller
-------- -------- -------- ---------------- ------------

1 45 -1i __do_IRQ do_IRQ+0x5c
3 6 -1i mask_and_ack_8259A __do_IRQ+0xb2
7 1 -1i sub_preempt_count mask_and_ack_8259A+0x71

...

The current filter configuration of the specific run id (in this case 5) will be dumped to the
console with a very high log level - so you most likely get it smeared all over your current
console (...), now to the details of the new command:

• trigger:
trigger is the condition at which tracing should start or stop - trigger needs to be
further configured with:

27

3. KFI for 2.6.X

– start:
the start condition

– stop:
the stop condition

both the start and the stop condition take the hex address of a kernel function , the
functions that can be passed are all that are listed in the respective System.map file
(generated in the top level kernel directory on kernel build). You can specify if the
entry or the exit of the passed function is to trigger by passing the entry or exit modifier
before the address of the function.

• filter:
The filter directive allows setting of time filters - to reduce the amount of traced data
one can tell KFI to only trace events that fulfill the specified timing criteria of

– mintime:
the minimum time in microseconds that the function must have taken

– maxtime:
the maximum time in microseconds that the function may have taken to execute
- not really sure what this maxtime would be good for - but its configurable.

• end the end keyword tells the parser to stop looking for tokens in the new command.

So the above command , with the following mappings from the System.map file:

c01167f0 T scheduler_tick
c0116280 T schedule_tail

give a tracer starting at scheduler tick (0xc01167f0) and ending at schedule tail
c0116280, recording all functions that run at least for 5 microseconds, and logging 4000
entries.

Note on mode filed The following mode fields are supported, which are passed as flags
value internally.

#define KFI_MODE_TIMED 0x01
#define KFI_MODE_AUTO_REPEAT 0x02
#define KFI_MODE_STOP_ON_FULL 0x04

A further mode flag noted in a comment KFI MODE OVERWRITE does not seem to exist
any more (if anyone can clarify this - drop me a note pleas). We also did not find any
configuration option to set the KFI mode - so this seems to be ”work in progress”.

28

3. KFI for 2.6.X

3.4.8. Performance Impact

The performance impact of kfi - even without any active run - is so high that it hardly is
suitable for production systems.

L M B E N C H 3 . 0 S U M M A R Y

(Alpha software, do not distribute)

Basic system parameters

OS Description Mhz tlb cache mem scal
pages line par load

bytes
------------- ----------------------- ---- ----- ----- ------ ----
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7700 1
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7500 1
Linux 2.6.14S i686-pc-linux-gnu 1599 32 64 2.7000 1
Linux 2.6.11 kfi 1599 32 64 2.8200 1
Linux 2.6.11 kfi 1599 32 64 2.7800 1
Linux 2.6.11 kfi 1599 32 64 2.7500 1

Processor, Processes - times in microseconds - smaller is better

OS Mhz null null open slct sig sig fork exec sh
call I/O stat clos TCP inst hndl proc proc proc

------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
Linux 2.6.14S 1599 0.19 0.55 3.24 4.84 8.80 0.49 1.98 183. 1200 9523
Linux 2.6.14S 1599 0.19 0.47 3.18 4.80 22.1 0.49 2.04 174. 1106 9070
Linux 2.6.14S 1599 0.19 0.38 3.12 4.50 18.4 0.49 1.97 163. 1064 8972
Linux 2.6.11 1599 0.46 2.41 22.3 29.9 176. 2.48 17.2 593. 2554 14.K
Linux 2.6.11 1599 0.46 2.53 22.8 31.4 164. 2.47 17.5 624. 2631 15.K
Linux 2.6.11 1599 0.46 2.58 22.8 31.5 164. 2.47 17.5 614. 2591 14.K

Basic integer operations - times in nanoseconds - smaller is better

OS intgr intgr intgr intgr intgr
bit add mul div mod

------------- ------ ------ ------ ------ ------
Linux 2.6.14S 0.6300 0.6300 2.5100 25.7 26.9

29

3. KFI for 2.6.X

Linux 2.6.14S 0.6300 0.6300 2.5000 25.7 26.9
Linux 2.6.14S 0.6300 0.6300 2.5100 25.7 26.9
Linux 2.6.11 0.6400 0.6400 2.5700 26.3 27.5
Linux 2.6.11 0.6400 0.6400 2.5500 26.0 27.3
Linux 2.6.11 0.6400 0.6300 2.5400 26.0 27.3

Basic float operations - times in nanoseconds - smaller is better

OS float float float float
add mul div bogo

------------- ------ ------ ------ ------
Linux 2.6.14S 2.5000 2.5000 10.9 6.2800
Linux 2.6.14S 2.5000 2.5100 10.9 6.2800
Linux 2.6.14S 2.5100 2.5000 10.9 6.2800
Linux 2.6.11 2.5500 2.5500 11.2 6.4200
Linux 2.6.11 2.5500 2.5500 11.1 6.3800
Linux 2.6.11 2.5500 2.5500 11.1 6.3800

Basic double operations - times in nanoseconds - smaller is better

OS double double double double
add mul div bogo

------------- ------ ------ ------ ------
Linux 2.6.14S 2.5000 2.5000 11.0 5.6600
Linux 2.6.14S 2.5000 2.5100 11.0 5.5900
Linux 2.6.14S 2.5100 2.5000 10.9 5.5700
Linux 2.6.11 2.5500 2.5500 11.2 5.6300
Linux 2.6.11 2.5400 2.5400 11.1 5.5800
Linux 2.6.11 2.5400 2.5400 11.1 5.5900

Context switching - times in microseconds - smaller is better

OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw

------------- ------ ------ ------ ------ ------ ------- -------
Linux 2.6.14S 0.5600 1.2100 88.0 32.8 123.5 33.7 111.0
Linux 2.6.14S 1.2400 0.6500 82.7 32.2 123.8 34.0 110.7
Linux 2.6.14S 0.6100 0.9300 89.4 33.6 122.8 33.9 111.2
Linux 2.6.11 5.2500 5.5800 99.1 40.2 131.1 41.2 119.1
Linux 2.6.11 5.4400 5.7700 95.1 40.5 132.6 41.5 120.3
Linux 2.6.11 7.8800 5.6900 98.9 40.5 132.8 41.8 120.0

30

3. KFI for 2.6.X

Local Communication latencies in microseconds - smaller is better

OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP
ctxsw UNIX UDP TCP conn

------------- ----- ----- ---- ----- ----- ----- ----- ----
Linux 2.6.14S 0.560 5.768 9.00 17.8 38.5 25.2 51.6 100.
Linux 2.6.14S 1.240 6.114 10.4 18.2 38.4 27.9 54.3 101.
Linux 2.6.14S 0.610 5.789 9.29 18.1 34.7 26.5 58.0 108.
Linux 2.6.11 5.250 36.8 59.8 144.2 196.7 174.0 234.5 636.
Linux 2.6.11 5.440 37.8 60.7 144.6 191.6 174.8 228.1 625.
Linux 2.6.11 7.880 38.8 60.2 144.2 192.8 176.1 229.9 621.

File & VM system latencies in microseconds - smaller is better

OS 0K File 10K File Mmap Prot Page 100fd
Create Delete Create Delete Latency Fault Fault selct

------------- ------ ------ ------ ------ ------- ----- ------- -----
Linux 2.6.14S 35.0 16.5 115.2 32.7 931.0 0.531 2.58240 13.3
Linux 2.6.14S 34.2 16.1 115.4 31.5 943.0 0.605 2.62850 5.605
Linux 2.6.14S 34.9 17.0 106.3 34.0 715.0 0.313 2.20530 5.854
Linux 2.6.11 280.3 103.1 572.1 196.4 6172.0 0.197 8.41610 111.6
Linux 2.6.11 280.0 103.7 570.1 196.7 6076.0 8.26760 111.6
Linux 2.6.11 334.1 113.5 641.0 224.4 6438.0 8.45520 112.4

Local Communication bandwidths in MB/s - bigger is better

OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem
UNIX reread reread (libc) (hand) read write

------------- ---- ---- ---- ------ ------ ------ ------ ---- -----
Linux 2.6.14S 160. 157. 102. 400.6 696.2 292.0 292.6 608. 425.4
Linux 2.6.14S 154. 161. 102. 398.6 696.3 290.4 289.2 608. 430.2
Linux 2.6.14S 158. 167. 101. 398.1 696.3 288.1 289.0 608. 432.7
Linux 2.6.11 121. 345. 69.1 313.0 683.0 287.8 288.9 596. 415.7
Linux 2.6.11 124. 351. 69.4 314.2 682.5 286.2 284.2 596. 419.9
Linux 2.6.11 124. 334. 68.8 312.4 682.8 284.3 285.2 596. 424.3

Memory latencies in nanoseconds - smaller is better
(WARNING - may not be correct, check graphs)

OS Mhz L1 $ L2 $ Main mem Guesses

31

4. Conclusion 2.6.X

------------- --- ---- ---- -------- -------
Linux 2.6.14S 1599 1.8780 12.8 157.5
Linux 2.6.14S 1599 1.8770 12.8 157.5
Linux 2.6.14S 1599 1.8780 12.8 157.5
Linux 2.6.11 1599 1.9050 13.2 160.2
Linux 2.6.11 1599 1.9050 13.3 160.3
Linux 2.6.11 1599 1.9050 13.3 160.2

Lines listing Linux 2.6.14S are standard (unpatched Linux), lines listing 2.6.11 are kfi patched
kernel runs. The only really unexplainable results are the AF UNIX results - no idea why
a KFI patched kernel would show a factor two higher bandwidth (?). It also is interesting
to observe how strong the distortion is - whith impact reaching from negligable (¡8% on
16p/64K context switches) to a factor 8 slower on 0k file creation.

Results are from three consecutive runs of lmbench-3.0-3a [?].

3.5. Status of KFI for 2.6.X

Unfortunately the quality of the documentation and the tools is clearly lower than was the
case with the 2.4.X kfi releases. The kernel configuration is to be qualified as buggy.

4. Conclusion 2.6.X

Although 2.6.X code looks a lot cleaner than the 2.4.X code - there seems to be legacy
comments (thats really bad) and some unimplemented ”features” - comments on those (i.e.
TRIGGER PROC, TRIGGER LOG FULL) would be help-full. Also the lack of some sort of status
interface is iritating (i.e. list installed runs and status of these).

Never the less KFI stays an interesting tool for runtime debugging of embedded Linux sys-
tems, and even more so for learning the details of the kernel.

Given the current status one can only recommend using/relying on this tool if one is willing
to invest the engineering effort of actually understanding it at the source code level (which
is not that much effort) making it possible to maintain/modify it on your own.

Although the current patch is officially for X86 only - we did not discover anything archi-
tecture dependent with the exception of the config files of other arch not being patched -
thus it should be trivial to run KFI on other architectures as was the case with the 2.4.X
KFI versions.

32

5. List of Acronyms

5. List of Acronyms

CVS - Concurent Version Control
GNU - GNU Not UNIX (recursive acronym)
LKML - Linux Kernel Mailing List
KFI - Kernel Function Instrumentation
GCC - GNU C Compiler
LTT - Linux Trace Toolkit
TSC - Time Stamp Counter (x86)
X86 - Intel 80X86 Processor family

33

References

References

[1] Free Software Foundation, Free Documentation Li-
cense, as published by the Free Software Foundation,
http://www.gnu.org/copyleft/fdl.html,FSF,2004

[2] Free Software Foundation, General Public License, as published by the Free
Software Foundation, http://www.gnu.org/copyleft/gpl.html,FSF,2004

[3] Slackware Linux, Slackware 10.1, http://www.slackware.org/,Slackware
Linux Inc.,2005

[4] CE Linux Forum, Kernel Function Instrumentation,
http://tree.celinuxforum.org, (C) CE Linux Forum Member Compa-
nies, 2005.

[5] - Embedded Linux Kickstart Session, http://www.opentech.at/documents.html,
2004.

[6] Distributed and Embedded Systems Lab, Lanzhou University
http://dslab.lzu.edu.cn/, DSLabs, 2006

[7] OpenTech EDV Research GmbH - OpenTech documents,
http://www.opentech.at/documents.html,OpenTech,2005

34

	Kernel function instrumentation - tool analysis
	Source
	Patch file
	Patch analysis
	Basic technology
	Installation
	Data acquisition
	Dynamic Data acquisition (post boot)
	Data interpretation
	Performance Impact

	Conclusion 2.4.X
	KFI for 2.6.X
	Patch file
	Building 2.6.11 with KFI
	kernel config
	Configuration bug
	Compiling and Installing

	Data acquisition
	What not to do in 2.6.X
	Configuring KFI at runtime

	Data interpretation
	addr2sym
	Data Acquisition 1st shot
	kfiresolve.pl problems
	kfiresolve.py problems
	Data Acquisition 2nd shot
	field description
	Runtime Configuration
	Performance Impact

	Status of KFI for 2.6.X

	Conclusion 2.6.X
	List of Acronyms

