
11Embedded Linux Conference - 2007

Experiment with Linux
and ARM Thumb-2 ISA

Philippe Robin

ARM Ltd.

222Embedded Linux Conference - 2007

Summary
 ARM Roadmap and Processor Families
 Performance vs Code Size and ISA selection process
 Thumb-2 encoding and new instructions
 Changes in the Linux kernel
 Size reduction with kernel, libraries and applications
 Exception handler example
 Summary

333Embedded Linux Conference - 2007

ARM Activities

memory

SoC

Processors
System Level IP:
Data Engines
Fabric
3D Graphics

Physical IP

Software IP

Development Tools

Connected Community

444Embedded Linux Conference - 2007

Linux and ARM Processor Roadmap

2004 2005 2006

500

1000

1500

2000

D
M

IP
S

ARM1156

ARM1026 (area optimized)

ARM1176

ARM Cortex M3

ARM1136

ARM Cortex A8

 Super-scalar
 Thumb-2
 Neon

 Thumb-2
 Fault-Tolerance
 AXI

TrustZone
IEM
AXI

2007

Embedded control

Ap
pli

ca
tio

n c
on

tro
l

Cortex-R4

 Scalable.
 IEM
 AXI

ARM11- MPCore 4-way

Linux

uClinux

555Embedded Linux Conference - 2007

H

L

H

L

Processors Families

H

L

Applications
Processor

Market

Real-Time
Embedded

Market

Microcontroller
Market

ARM926EJ-S

Cortex-A8

ARM11 MPCore

ARM1176JZ(F)-S

ARM1136J(F)-S

600+ MIPS Uni-Proc

2000+ MIPS Uni-Proc

2000+ MIPS Multi-proc

600+ MIPS Uni-Proc

250+ MIPS Uni-Proc

ARM7TDMI
Cortex-M3

ARM968E-S

ARM946E-S

ARM1156T2(F)-S

ARM7TDMI

600+ MIPS Uni-Proc

150+ MIPS Uni-Proc

100+ MIPS Uni-Proc

Cortex R4(F) 600+ MIPS Uni-Proc

666Embedded Linux Conference - 2007

The Performance vs. Code Size Dilemma
 Thumb 16-bit ISA was created by analysing 32-bit ARM

Instruction Set and deriving best fit 16-bit instruction set,
thus reducing code size
 User required to “blend” instruction sets by compiling performance

critical code to ARM and the rest to Thumb

 But manual code blending is not optimal
 Requires profiling
 Modifications can

reduce performance
 Best results obtained

near the end of the project
 Difficult to manage

distributed development

 A “blended ISA” is a better solution

Thumb

Target

Performance

Code size

ARM

777Embedded Linux Conference - 2007

 The ISA Selection Process

Space for future
extensions

 The ARM Thumb-2 core technology combines 16- and 32-bit
instructions in a single instruction set and allows
programmers / compilers to freely mix the instructions
together without mode switching.

ARM ISA 32-bit

Thumb ISA
16-bit

Thumb-2 ISA
16- and 32-bit

New functionality

T-2 32-bit

BL{X}+2
IT, CBZ

Bit field insert/extract,
MOV 16bit immediate,
RBIT, etc.

Filter out
“unpopular”

T-2 16-bit

888Embedded Linux Conference - 2007

Thumb-2 Encoding

 Halfword pairs (hw1, hw2) of instructions are inserted into Thumb (thm) instruction stream.

The encodings selected are compatible with the existing Thumb BL and BLX instructions:
hw1 hw2

Thumb BL{X}: 11110 offset[22:12] 111n1 offset[11:1]

T-2 BL{X}: 11110 offset[22:12] 11AnB offset[11:1]

 Two extra offset bits are generated by XORing the A and B bits with Offset[22]. This means that
the offset is sign-extended when A = B = 1, which ensures backwards compatibility with the
existing instructions.

Thumb-2 32-bit32 bitsnot 00 111

Current 16-bit Thumb B unconditional16 bits 00 111

Current 16-bit Thumb instruction16 bits xxnot 111

FunctionalityLengthhw1[12:11]hw1[15:13]

thm hw1 hw2 thm hw1 hw2 thm

i i+2 i+4 i+6 i+8 i+C

Instruction Flow

999Embedded Linux Conference - 2007

Thumb-2 32-bit Instructions
 ARM-like

 Data Processing Instructions
 DSP and Media instructions
 Load and Store instructions
 Branch instructions
 System control – BXJ, RFE, SRS etc.
 Coprocessor (VFP, MOVE™, etc.)

 New
 Bitfield insert/extract/clear BFI, {S|U}BFX, BFC
 Bit reverse RBIT
 16 bit immediate instructions MOVW, MOVH
 Table branch TB{B|H} [Rbase, Rindex]
 Additional memory system hints (PLI)

101010Embedded Linux Conference - 2007

Thumb-2 Move 16-bit Constant
Two 32 bit instructions to load a 32 bit constant, one instruction for each half word

 Replaces one 32 bit instruction and a 32 bit literal (ARM) or one 16 bit instruction
and a 32 bit literal (Thumb)
 Single MOVW would be used for the majority of cases

 Reduce the size of literal pools

 Reduce data access to I-TCM via D-side for constant loads (~5X)

MOVW Rd,#imm16
 Rd = ZeroExtend(imm16)

MOVT Rd,#imm16
 Rd[31:16] = imm16 // Rd[15:0] unaffected

111111Embedded Linux Conference - 2007

Thumb-2 Bit Field Instructions
Allow insertion and extraction of signed/unsigned bit fields

 Provides better handling of packed structures

 Replaces bit mask and shift operations

BFC, BFI, SBFX, UBFX

ARM* or Thumb-2 ARM

BFI R0, R1, #bitpos, #fieldwidth AND R2, R1, #bitmask
BIC R0, R0, #bitmask << bitpos
ORR R0, R0, R2, LSL #bitpos

121212Embedded Linux Conference - 2007

Thumb-2 Table Branch Instructions

New Base + Offset Branching mechanism for switch statements generates
branch targets directly from a table of destination offsets

 Thumb-2 code size as small or smaller than Thumb –Ospace
 Thumb-2 code performance as fast as ARM –Otime
 Thumb-2 code executes in a single instruction and uses packed table

[Rindex]

RbaseCurrent PC

New PC

TB{B|H}

Next INSTR

offset<<1

Offsets table (bytes or half words)

131313Embedded Linux Conference - 2007

New Thumb-2 Flow Control Instructions

Compare and Branch

CBZ Rn, <label>
CBNZ Rn, <label>

Optimises for the common case of “Branch If
Zero” or “Branch If Non-Zero”

If-Then Conditional

IT{x{y{z}}} <cond>

The If-Then (IT) instruction causes the next 1-4
instructions in memory to be conditional

Allows short conditional execution bursts in
16-bit instruction set

12 Bytes, 4 to 20 cycles10 Bytes, 4 or 5 cycles16 Bytes, 4 cycles

l2 ……

 ADD r0, r4, r0

l1 LDR r0,[r1] ADDNE r0, r4, r0

 B l2 ADDEQ r0, r3, r0 ADDNE r0, r4, r0

 ADD r0, r3, r0 LDRNE r0, [r2] ADDEQ r0, r3, r0

 LDR r0,[r1] LDREQ r0, [r1] LDRNE r0, [r2]

 BNE l1 ITETE EQ LDREQ r0, [r1]

ThumbThumb-2ARM

4 Bytes,1 or 2 cycles2 Bytes, 1 cycle8 Bytes, 1 or 2 cycles

BEQ lnBEQ ln

CMP r0, #0CBZ r0, lnCMP r0, #0

ThumbThumb-2ARM

141414Embedded Linux Conference - 2007

Thumb-2 Compiled Code Size

ARM Thumb-2 Thumb

Thumb-2 Performance Optimized
26% smaller than ARM

ARM Thumb-2 Thumb

Thumb-2 Space Optimized
32% smaller than ARM

151515Embedded Linux Conference - 2007

Thumb-2 Performance

0
10
20
30
40
50
60
70
80
90

100

dhry
rotate

FFTpulse
osp

f
jpeg

ConvEn4

Vite
rbget

fB
itA

lty
pBAi

co
mpres

s

matr
ix0

1

Avera
ge

ARM
Thumb-2
Thumb

 Thumb-2 performance is 98% of ARM performance
 Thumb-2 code achieves 125% of Thumb performance

Analysis of the performance of code for EEMBC* benchmarks on ARM11 like cores

* Uncertified EEMBC benchmarks based information showing relative performance ONLY

161616Embedded Linux Conference - 2007

Thumb-2 – Changes to Linux Kernel
 A new control bit has been introduced with ARMv7 to control whether

exceptions are taken in ARM or Thumb state
 Modified Interrupt and Exception handling code accordingly

 Most 32-bit Thumb instructions are unconditional (whereas most of ARM
instructions can be conditional)

 Many changes are due to adding unified syntax and flow control
instructions
 Use of If-Then (IT) instruction for instance

 There is no increase in the number of general purpose or special
purpose registers, and no increase in register sizes

 Most Thumb 32-bit instructions cannot use the PC as a source or
destination register.

 BL and BLX instructions are treated as 32-bit instructions instead of two
16-bit instructions
 Note that 32-bit Thumb instructions can only take exceptions on their start

address
 New T variants of LDR, STR
 New variants of LDREX and STREX

 Thumb-2 has B, H, and D (Byte, Halfword, and Doubleword) variants

171717Embedded Linux Conference - 2007

ARM vs Thumb-2 Memory Footprint

5619000
(dynamic)

5176036 (static)

724888

542520
824544

Thumb-2 mode

71%1019832 2.6.19 kernel

96%
77%

5793064
(dynamic)

6707792 (static)

MPlayer

81%669496 libm-2.3.6.so
73% 1123552 libc-2.3.6.so

RatioARM Mode

 Using GCC 4.1 with –O2 option
 Average 20% size reduction on common libraries
 Kernel is 29% smaller in Thumb-2 compared to ARM

181818Embedded Linux Conference - 2007

Sample - Exception Handler in Thumb-2
 .macro vector_stub, name, mode, correction=0
vector_\name:
 .if \correction
 sub.w lr, lr, #\correction
 .endif

 @ save lr_<exception> (parent PC) and spsr_<exception>
 @ (parent CPSR) to the SVC stack
 srsdb sp, #SVC_MODE

 @
 @ Switch to SVC32 mode, save sp and lr and set up the stack.
 @ IRQs remain disabled.
 @
 mrs lr, cpsr
 eor.w lr, lr, #(\mode ^ SVC_MODE)
 msr cpsr_cxsf, lr

 @ may be overwritten by the usr handlers
 str.w sp, [sp, #(S_SP - S_FRAME_SIZE)] @ save sp_svc to the SVC stack
 str.w lr, [sp, #(S_LR - S_FRAME_SIZE)] @ save lr_svc to the SVC stack

 sub.w sp, sp, #S_FRAME_SIZE

 @
 @ the branch table must immediately follow this code
 @
 ldr.w lr, [sp, #S_PSR] @ read the saved spsr_<exception>
 and.w lr, lr, #0x0f
 add.w lr, pc, lr, lsl #2 @ address in the branch table
 ldr.w pc, [lr, #4] @ branch to handler in SVC mode
 .endm
[...]
 .macro svc_entry
 stmia sp, {r0 - r12}
 .endm
[...]
__dabt_svc:
 svc_entry

 add r0, sp, #S_PC

 @
 @ get ready to re-enable interrupts if appropriate
 @
 mrs r9, cpsr
 tst r3, #PSR_I_BIT
 it eq
 biceq r9, r9, #PSR_I_BIT

 @
 @ Call the processor-specific abort handler:
 @
 @ r2 - aborted context pc
 @ r3 - aborted context cpsr
 @
 @ The abort handler must return the aborted address in r0, and
 @ the fault status register in r1. r9 must be preserved.
 @
 ldmia r0, {r2, r3} @ load the lr_<exception> and spsr_<exception>
#ifdef MULTI_ABORT
 ldr r4, .LCprocfns
 mov lr, pc
 ldr pc, [r4]
#else
 bl CPU_ABORT_HANDLER
#endif
 @
 @ set desired IRQ state, then call main handler
 @
 msr cpsr_c, r9
 mov r2, sp
 bl do_DataAbort

 @ IRQs off again before pulling preserved data off the stack
 @
 disable_irq

 @
 @ restore the registers and restart the instruction
 @
 ldmia sp, {r0-r12}
 ldr lr, [sp, #S_LR]
 add sp, sp, #S_PC
 rfeia sp! @ restore pc, cpsr

191919Embedded Linux Conference - 2007

Sample – Exception Handler in ARM
 .macro vector_stub, name, mode, correction=0
vector_\name:
 .if \correction
 sub lr, lr, #\correction
 .endif

 @ Save r0, lr_<exception> (parent PC) and spsr_<exception> (parent CPSR)

 stmia sp, {r0, lr} @ save r0, lr
 mrs lr, spsr
 str lr, [sp, #8] @ save spsr

 @ Prepare for SVC32 mode. IRQs remain disabled.

 mrs r0, cpsr
 eor r0, r0, #(\mode ^ SVC_MODE)
 msr spsr_cxsf, r0

 @ the branch table must immediately follow this code

 and lr, lr, #0x0f
 mov r0, sp
 ldr lr, [pc, lr, lsl #2]
 movs pc, lr @ branch to handler in SVC mode
 .endm
[...]
 .macro svc_entry
 sub sp, sp, #S_FRAME_SIZE
 stmib sp, {r1 - r12}

 ldmia r0, {r1 - r3}
 add r5, sp, #S_SP @ here for interlock avoidance
 mov r4, #-1 @ "" "" "" ""
 add r0, sp, #S_FRAME_SIZE @ "" "" "" ""
 str r1, [sp] @ save the "real" r0 copied
 @ from the exception stack

 mov r1, lr

 @ We are now ready to fill in the remaining blanks on the stack:
 @ r0 - sp_svc
 @ r1 - lr_svc
 @ r2 - lr_<exception>, already fixed up for correct return/restart
 @ r3 - spsr_<exception>
 @ r4 - orig_r0 (see pt_regs definition in ptrace.h)

 @
 stmia r5, {r0 - r4}
 .endm

__dabt_svc:
 svc_entry

 @ get ready to re-enable interrupts if appropriate

 mrs r9, cpsr
 tst r3, #PSR_I_BIT
 biceq r9, r9, #PSR_I_BIT

 @ Call the processor-specific abort handler:
 @ r2 - aborted context pc
 @ r3 - aborted context cpsr
 @
 @ The abort handler must return the aborted address in r0, and
 @ the fault status register in r1. r9 must be preserved.

#ifdef MULTI_ABORT
 ldr r4, .LCprocfns
 mov lr, pc
 ldr pc, [r4]
#else
 bl CPU_ABORT_HANDLER
#endif

 @ set desired IRQ state, then call main handler

 msr cpsr_c, r9
 mov r2, sp
 bl do_DataAbort

 @ IRQs off again before pulling preserved data off the stack

 disable_irq

 @ restore SPSR and restart the instruction

 ldr r0, [sp, #S_PSR]
 msr spsr_cxsf, r0
 ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr

202020Embedded Linux Conference - 2007

Summary
 Thumb-2 core technology improves both ARM and Thumb

ISAs to increase system performance and reduce cost.
 Thumb-2 core technology extends the Thumb ISA to provide a

blended instruction set.
 Average 20%better code density than ARM for Linux kernel and

libraries using GCC

 With Thumb-2 developers don’t have to manually balance
between ARM and Thumb code

 Contribute kernel changes to mainline in 2007/2008
 Thumb-2 support has been available with GNU compilation tools since

2006

 Higher code density can be achieved using optimized tool
chains such as ARM RealView compilation tools

