
Joining the herd of cats:
how to work with the

kernel development process

Jonathan Corbet
corbet@lwn.net

Slides: http://lwn.net/talks/elc2007/

I:
Introduction

Why?

“There are a number of very good Linux kernel developers,
but they tend to get outshouted by a large crowd of
arrogant fools. Trying to communicate user requirements
to these people is a waste of time. They are much too
'intelligent' to listen to lesser mortals.”

-- Jack O'Quin, Linux audio developer

Why?

There is great value to working with the community
Influence development directions
Offload code maintenance
Better support for customers
More efficient development
Benefit from community expertise
Take ownership of your platform – and make it better

Free software is different

Proprietary softwareProprietary software

Product driven

Free software

Process driven

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Free software

Process driven

Bottom-up requirements

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Short time horizon

Free software

Process driven

Bottom-up requirements

Long-term view

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Short time horizon

Internal QA

Free software

Process driven

Bottom-up requirements

Long-term view

External QA

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Short time horizon

Internal QA

Hierarchical decisions

Free software

Process driven

Bottom-up requirements

Long-term view

External QA

Consensus decisions

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Short time horizon

Internal QA

Hierarchical decisions

Private

Free software

Process driven

Bottom-up requirements

Long-term view

External QA

Consensus decisions

Public

Free software is different

Proprietary softwareProprietary software

Product driven

Top-down requirements

Short time horizon

Internal QA

Hierarchical decisions

Private

Complete control

Free software

Process driven

Bottom-up requirements

Long-term view

External QA

Consensus decisions

Public

Little control

The kernel is even more different

It's big

Over 2,000 contributors 3/2006 to 4/2007

Only 10 contributed over 1% of changes

It's worldwide

Significant contributions from
North America
Europe
Japan
South America
India
...

It's of great commercial interest

At least 2/3 of kernel work is by paid developers

It's growing quickly

750,000 lines added 3/2006 to 3/2007

It's the wild west

It's the wild west

...but that is changing

II:
Process
issues

Do: understand the patch lifecycle

Much developer pain results from a failure to
understand how code gets into the kernel.

Patch lifecycle: the beginning

Patch Lifecycle: the RFC

Patch lifecycle: first code

Patch lifecycle: repairs

Patch lifecycle: wider testing

Finally: into the mainline

Patch lifecycle: repeat

Lifecycle: the corporate view

Do: communicate early

Let the community know what you are doing

Avoid duplication

Avoid mistakes

Do: release early

Big vendor mistake:
“We'll release the code after it passes internal QA”

By then it is too late

Do: expect to make changes

No initial code submission is perfect

Kernel developers have different goals

The kernel release cycle

The kernel release cycle

Do: observe the merge window

“I'm really fed up with having to pull big changes
after the merge window, because it just doesn't
seem to let up. I'm going to go postal on the
next maintainer who doesn't understand what
'merge window' and 'fixes only' means”

-- Linus Torvalds

II:
Patch

submission

Do: Send in your changes

Avoid having to carry changes out-of-tree

Draw attention to problems

Influence the direction of the kernel

Don't: send multipurpose patches

Patches should:
Be small (if possible)
Do exactly one thing

If you have a big change:
Split it into independent pieces

Do: send bisectable patches

“git bisect” is a great tool for finding regressions
Binary search on the patch stream

To support bisect:
Your patch series must work after every patch

Do: take care in submitting patches

Use diff -u
No MIME attachments
Describe them properly

A one-line summary at top
Longer description below (if needed)
Justify the patch

Include a Signed-off-by: line
Avoid word-wrapping

Thunderbird is especially bad here

See:
Documentation/SubmittingPatches

Find the correct mailing list

linux-kernel is not the right place for all patches

Example: networking patches go to netdev

See:
MAINTAINERS
vger.kernel.org/vger-lists.html

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.
4) 350 new messages. Ouch!

...I was only gone for an hour...

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.
4) 350 new messages. Ouch!

...I was only gone for an hour...
5) I'll post my great idea for using C++ in the kernel

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.
4) 350 new messages. Ouch!

...I was only gone for an hour...
5) I'll post my great idea for using C++ in the kernel
6) These people have no clue of how to program!

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.
4) 350 new messages. Ouch!

...I was only gone for an hour...
5) I'll post my great idea for using C++ in the kernel
6) These people have no clue of how to program!
7) My full mailbox is making me miss those great

penny stock alerts.

Aside: the new linux­kernel
subscriber

1) I want to be part of this, I'll subscribe
2) I have mail from Linus! Cool!

...I wish I understood it
3) Hmm...I have a lot of mail from Linus

...I thought he was a nicer guy than that.
4) 350 new messages. Ouch!

...I was only gone for an hour...
5) I'll post my great idea for using C++ in the kernel
6) These people have no clue of how to program!
7) My full mailbox is making me miss those great

penny stock alerts.
8) Unsubscribe. I'll go run Windows now.

On mailing lists

Ask whether you really need to read linux-kernel
Many of us do

Consider a subsystem list instead

If so, read it sparingly
Look for interesting topics and contributors

Do: listen to reviewers

Reviewing patches is hard, thankless work

When a reviewer makes a comment
Say “thanks”
Respond politely
Fix the problem (or justify the current code)

Don't: attack reviewers

...even if they are rude

Don't: take criticism personally

Patch reviewers do not hate you

They do not hate your company

They do not hate your employees

Requests for major changes

Reviewers may ask for big changes
Push functionality into higher layers
Reimplement major functionality
Clean up a longstanding mess

Their goals are different than yours
Long-term maintainability is key

Try to accommodate these requests
They usually make sense in the long term

Do: Let go

Others will patch your code
An Acked-by: for good changes is polite

They may replace it outright!
Consider it the sincerest form of flattery

Once you release code under a free license
...you no longer have control
It gets better without work from you!

III:
Coding
issues

Do: follow the coding style

Documentation/CodingStyle

Do: avoid unnecessary abstractions

Things to avoid:
HAL layers
Unused parameters “just in case”
Single-line functions

API stability

There is no stable internal kernel API
Get used to it

Ways to cope
Get your code into the mainline
http://lwn.net/Articles/2.6-kernel-api

Don't: add multi­version code

Support the current mainline kernel
...and no others

Do: clean up your messes

Breaking an internal API is OK
...if there is a good reason for it

But:
you have the responsibility to fix in-tree code

Don't add regressions

...even to fix something else

Don't: change the user­space API

Breaking applications is bad news

The API includes
System call behavior
/proc files
Sysfs files
Netlink

Don't: assume all the world is a PC

Linux runs on all kinds of systems
handhelds to supercomputers
32/64 bit
Single processor through thousands of processors
A few dozen architectures

Your code should build and work everywhere

In particular:
Get your locking right from the beginning

Do: avoid silly mistakes

Use the tools:
gcc -W
lockdep
fault injection framework
slab poisoning
sparse
...

Red flags

#ifdef
typedefs
ioctl()
Silence
inline functions
Heavy stack usage
Unnecessary abstractions

HAL layers
Single-line functions
Unused parameters

IV:
Final
notes

Don't: submit tainted code

Read the Developer's Certification of Origin
Be sure you mean it

Be very careful with reverse engineering
Chinese wall approach should be used

Don't: ship binary­only modules

Legality of these modules is dubious

The benefit is even more dubious

Respect your customers: give them the source

Do: use the resources available

There is information and help out there
kernelnewbies.org
Kernel mentors
Documentation/HOWTO
LWN

Do: join in and have fun

Questions....?

