A Parameter based approach
to Linux power management

Matthew Locke and Eugeny Mints
April, 2007

Agenda

= History

= Background

= Features/Goals

= Parameter framework
= API

= Key Internals

= Use Cases

= Issues

History

« All started from Dynamic Power Management (DPM)
framework introduced in 2001 by Montavista and IBM

« Community rejected DPM and it wasn't pushed much further
in the community

= In 2004, Todd Poynor (MV) submitted PowerOP which is the
operating point layer from DPM. Not much traction.

= In 2006, Eugeny and myself (NomadGS) attempt to get
PowerOP accepted by showing how it can be used on x86 as
well as embedded.

= Becomes clear that the operating point concept won't work
for every platform and therefore the wrong base abstraction.

= End of 2006, back to the drawing board.

Operating Points

= Operating Points - set of

system wide parameters that . e
control power consumption. e TONETTATEeet e Hanager
- Parameters need to be set as " b X
a group for optimal User Space et ‘ l NetUink \
power/performance balance or

hardware dependencies ‘ 1
- Parameter Va|ueS were Kernel Space Algorithm H Selection Logic

platform specific - divider

values not frequencies.
= Operating framework

(PowerOP) maintained a list of
Va“d Opel‘atlng pOIntS. Operating Point framework
:__“ Naotifier — L
D | Drivers
M
= Did not address local device Hordwers

driver power management.

Back to the Drawing Board
- Features and Goals

= Run time control of individual hardware resources that
affect power consumption

= Scale voltage and clocks; control power domains
= Track use count of hardware resources
- Trigger action when use count is zero.

= Notify resource consumers when output value changes.
= Subscribe for notification only when required.

= Follow existing clock framework behavior and API as
much as possible

= Modular - allow separate board and SoC definition of
parameters. Runtime registration of parameter.

= Keep system operational

Parameter framework provides
individual control over power
parameters.

Tracks use count

Captures generic relationships
between h/w resources

User Space

Parameter Framework

System Power Manager Device Manager

N X

Sysfs [NetLink

Provides notifications.

Kernal Space

Parameter Group allows s/w to
set parameters as a group for
optimal power/performance
balance.

Also enables capturing
platform specific h/w
dependencies

Algorithm H Selection Logic

.

Constraint

Engine

Parameter Graups

"

Parameter Framework Drivers

Hardware resources

= Hardware resources are abstracted as a PM device
= PM device has input, output, and state.
= Export control over output and state

I
[IMput

Control output not ¥
configuration of oM
; Slate
the resource. Device [
Duiput

= State allows generic control over pm device when use
count is zero. We don't have to special case output

values.
= State is platform and resource specific

—
> Track use count and keep system
operational

= Must keep track of relationships between
parameters

» Define 3 types of relationships:
« Domain is between different types - clk, voltage

= Parent-child is between the same type - pll, clk
dividers

« Functional requires “set” method to be coordinated in
some way

Example relationship tree

V1, V2, V3 are voltage

domains on a SoC -T-\ Board
i rd S

VO is the voltage regulator SoC
on the board. It may V3
supply the same voltage to Parem-ch.lql::jm
all the domains or supply Parent it M2 Domain F'areni-child
separate sources.

@ D«nmam vdd

switch
parenl-;:hlld

parent-child \ l

Voltage

O
k«-&
B"

PM structures

= struct pm_device_ops - a pm provider driver methods

= init: initialize pm device

= set: set new output value

= round: round a given value to hardware supported value

- set_state: state that is used when ref count is zero

= recalc: determine new output value given parent value
= struct pm_device

= Ops: pm provider driver methods

= parent/child: track parent and children

= master/slave: track domains

= consumers: subscribed to the pm provider.

= target_value: output value set when node is enabled

= state: power state set when use count is zero

= usecount: tracks if devices is in use or not

API

- pm_dev_get - get handle to a pm device
= pm_dev_put - release handle

« pm_dev_enable - tell pm device to become active and increase
use count.

« pm_dev_disable - decrease use count and set state

« pm_dev_set - set output of pm device
- pm_dev_get_value

« pm_dev_set_state - set the state that pm device should enter at
zero use count.

- pm_dev_get_state

B
>

Enable node activity

= Enable on a node triggers ?
framework to walk up the tree
and enables parents/masters. (nerease use)i
- Starting from top set enabled)
node to last value passed into _
Set methOd. (ISIJEI'_‘{:CIL.I'I[1?>

= Stop when reach top or an

[MO) .«-"'H. [v2sg]
enabled node.

Does node
© have a parent?
Mo] o~ [Yed]

L

Set node to Enabi .
last value NSNS paran

I5 thera &
child?

B -
>

= Changing a node output
triggers framework to tell
children to recalc.

= Children either change
configuration to stay at
same output value or
configuration stays the
same and output value
changes.

= If a change occurs
notification is sent out to
consumers of the pm_dev.

Can node bo sot
10 value ghwe
parent valus?

.
7

Change node output activity

!

[Yes]

M

Wil output
change given
parent value?

[Yes]

N
pvy

"I'l
Natity
COnSUMErs
prechange event

Change node
output valua

§

Notity
CONSUMars pf.'IST o
chamge event

L
[

2| Iz there a chilg?

)

Vo)

Did cutput
Change because
of [ZIEL'{‘-'"IT value?

Yog]

Disable node activity

LS
» Disable checks use count. If ?
zero call set_state.
Decreass Uss
« If state causes pm device to lose i cou j
power, notify consumers. !
- Repeat for parents and masters. e
[Ma] ;’\L{M [T2E] Repeat for Parents/Masters
Tt

Iz slate a
poweor off stale

(Mg ﬁ [Yes]

Motify

consumerns that

they are going
fo lnse state

— Sot stale

O

PM stack

System Power ManiJ—i Device Manager \
User Space [_
Sysfs Netlink
Kernel Space Algorithm Selection Logic ‘
‘/ Constraint
i Engine

Parameter Groups

%

Parameter Framework Drivers

Use Cases

= Select lower power states when pm device use counts are
Zero

= On PXA, voltage domains are controlled by the idle and
sleeps states. If voltage domain use counts are zero, a
lower idle or even sleep state can be selected in idle loop

= Selection logic (governor or equivliant) can change output of
a shared pm device.

= Framework ensures that all children of the device are
adjusted and consumers are notified

= Device drivers can control local pm devices (not shared)

= Parameter group can collect arbitrary pm devices into groups
and set the group using the parameter framework API.
(Platform independent)

Issues

= Separate frameworks for voltage and clocks?
« Typed interface
= Recently submitted voltage framework has different behavior

= Is there enough justification to track relationships between
clocks and voltages

= What we can do depends on the hardware.

= Current clock framework is interface only. Does it make
sense to move the code common among platforms to be
generic?

Matthew Locke — CTO
408-386-1482

