
Matthew Locke and Eugeny Mints

April, 2007

A Parameter based approach
to Linux power management

NomadGS

Agenda

 History

 Background

 Features/Goals

 Parameter framework

 API

 Key Internals

 Use Cases

 Issues

NomadGS

History

 All started from Dynamic Power Management (DPM)
framework introduced in 2001 by Montavista and IBM

 Community rejected DPM and it wasn’t pushed much further
in the community

 In 2004, Todd Poynor (MV) submitted PowerOP which is the
operating point layer from DPM. Not much traction.

 In 2006, Eugeny and myself (NomadGS) attempt to get
PowerOP accepted by showing how it can be used on x86 as
well as embedded.

 Becomes clear that the operating point concept won’t work
for every platform and therefore the wrong base abstraction.

 End of 2006, back to the drawing board.

NomadGS

Operating Points

 Operating Points - set of
system wide parameters that
control power consumption.

 Parameters need to be set as
a group for optimal
power/performance balance or
hardware dependencies

 Parameter values were
platform specific - divider
values not frequencies.

 Operating framework
(PowerOP) maintained a list of
valid operating points.

 Did not address local device
driver power management.

NomadGS

Back to the Drawing Board
- Features and Goals

 Run time control of individual hardware resources that
affect power consumption
 Scale voltage and clocks; control power domains

 Track use count of hardware resources
 Trigger action when use count is zero.

 Notify resource consumers when output value changes.
 Subscribe for notification only when required.

 Follow existing clock framework behavior and API as
much as possible

 Modular - allow separate board and SoC definition of
parameters. Runtime registration of parameter.

 Keep system operational

NomadGS

Parameter Framework

 Parameter framework provides
individual control over power
parameters.

 Tracks use count

 Captures generic relationships
between h/w resources

 Provides notifications.

 Parameter Group allows s/w to
set parameters as a group for
optimal power/performance
balance.

 Also enables capturing
platform specific h/w
dependencies

NomadGS

Hardware resources

 Hardware resources are abstracted as a PM device

 PM device has input, output, and state.

 Export control over output and state

 State allows generic control over pm device when use
count is zero. We don’t have to special case output
values.

 State is platform and resource specific

Control output not
configuration of
the resource.

NomadGS

Track use count and keep system
operational

 Must keep track of relationships between
parameters

 Define 3 types of relationships:
 Domain is between different types - clk, voltage

 Parent-child is between the same type - pll, clk
dividers

 Functional requires “set” method to be coordinated in
some way

NomadGS

Example relationship tree

 V1, V2, V3 are voltage
domains on a SoC

 V0 is the voltage regulator
on the board. It may
supply the same voltage to
all the domains or supply
separate sources.

NomadGS

PM structures

 struct pm_device_ops - a pm provider driver methods
 init: initialize pm device
 set: set new output value
 round: round a given value to hardware supported value
 set_state: state that is used when ref count is zero
 recalc: determine new output value given parent value

 struct pm_device
 ops: pm provider driver methods
 parent/child: track parent and children
 master/slave: track domains
 consumers: subscribed to the pm provider.
 target_value: output value set when node is enabled
 state: power state set when use count is zero
 usecount: tracks if devices is in use or not

NomadGS

API

 pm_dev_get - get handle to a pm device

 pm_dev_put - release handle

 pm_dev_enable - tell pm device to become active and increase
use count.

 pm_dev_disable - decrease use count and set state

 pm_dev_set - set output of pm device

 pm_dev_get_value

 pm_dev_set_state - set the state that pm device should enter at
zero use count.

 pm_dev_get_state

NomadGS

Enable node activity

 Enable on a node triggers
framework to walk up the tree
and enables parents/masters.

 Starting from top set enabled
node to last value passed into
set method.

 Stop when reach top or an
enabled node.

NomadGS

Change node output activity

 Changing a node output
triggers framework to tell
children to recalc.

 Children either change
configuration to stay at
same output value or
configuration stays the
same and output value
changes.

 If a change occurs
notification is sent out to
consumers of the pm_dev.

NomadGS

Disable node activity

 Disable checks use count. If
zero call set_state.

 If state causes pm device to lose
power, notify consumers.

 Repeat for parents and masters.

NomadGS

PM stack

NomadGS

Use Cases

 Select lower power states when pm device use counts are
zero

 On PXA, voltage domains are controlled by the idle and
sleeps states. If voltage domain use counts are zero, a
lower idle or even sleep state can be selected in idle loop

 Selection logic (governor or equivliant) can change output of
a shared pm device.

 Framework ensures that all children of the device are
adjusted and consumers are notified

 Device drivers can control local pm devices (not shared)

 Parameter group can collect arbitrary pm devices into groups
and set the group using the parameter framework API.
(Platform independent)

NomadGS

Issues

 Separate frameworks for voltage and clocks?

 Typed interface

 Recently submitted voltage framework has different behavior

 Is there enough justification to track relationships between
clocks and voltages

 What we can do depends on the hardware.

 Current clock framework is interface only. Does it make
sense to move the code common among platforms to be
generic?

Matthew Locke – CTO

408-386-1482

