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History

« All started from Dynamic Power Management (DPM)
framework introduced in 2001 by Montavista and IBM

«  Community rejected DPM and it wasn't pushed much further
in the community

= In 2004, Todd Poynor (MV) submitted PowerOP which is the
operating point layer from DPM. Not much traction.

= In 2006, Eugeny and myself (NomadGS) attempt to get
PowerOP accepted by showing how it can be used on x86 as
well as embedded.

= Becomes clear that the operating point concept won't work
for every platform and therefore the wrong base abstraction.

= End of 2006, back to the drawing board.
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Back to the Drawing Board
- Features and Goals

= Run time control of individual hardware resources that
affect power consumption

= Scale voltage and clocks; control power domains
= Track use count of hardware resources
- Trigger action when use count is zero.

= Notify resource consumers when output value changes.
= Subscribe for notification only when required.

= Follow existing clock framework behavior and API as
much as possible

= Modular - allow separate board and SoC definition of
parameters. Runtime registration of parameter.

= Keep system operational
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Hardware resources

= Hardware resources are abstracted as a PM device
= PM device has input, output, and state.
= Export control over output and state
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= State allows generic control over pm device when use
count is zero. We don't have to special case output

values.
= State is platform and resource specific
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> Track use count and keep system
operational

= Must keep track of relationships between
parameters

» Define 3 types of relationships:
« Domain is between different types - clk, voltage

= Parent-child is between the same type - pll, clk
dividers

« Functional requires “set” method to be coordinated in
some way
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PM structures

= struct pm_device_ops - a pm provider driver methods

= init: initialize pm device

= set: set new output value

= round: round a given value to hardware supported value

- set_state: state that is used when ref count is zero

= recalc: determine new output value given parent value
= struct pm_device

= Ops: pm provider driver methods

= parent/child: track parent and children

= master/slave: track domains

= consumers: subscribed to the pm provider.

= target_value: output value set when node is enabled

= state: power state set when use count is zero

= usecount: tracks if devices is in use or not



API

- pm_dev_get - get handle to a pm device
=  pm_dev_put - release handle

« pm_dev_enable - tell pm device to become active and increase
use count.

« pm_dev_disable - decrease use count and set state

«  pm_dev_set - set output of pm device
- pm_dev_get_value

«  pm_dev_set_state - set the state that pm device should enter at
zero use count.

-  pm_dev_get_state
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Enable node activity
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= Changing a node output
triggers framework to tell
children to recalc.

= Children either change
configuration to stay at
same output value or
configuration stays the
same and output value
changes.

= If a change occurs
notification is sent out to
consumers of the pm_dev.
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Disable node activity
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Use Cases

= Select lower power states when pm device use counts are
Zero

= On PXA, voltage domains are controlled by the idle and
sleeps states. If voltage domain use counts are zero, a
lower idle or even sleep state can be selected in idle loop

= Selection logic (governor or equivliant) can change output of
a shared pm device.

= Framework ensures that all children of the device are
adjusted and consumers are notified

= Device drivers can control local pm devices (not shared)

= Parameter group can collect arbitrary pm devices into groups
and set the group using the parameter framework API.
(Platform independent)



Issues

= Separate frameworks for voltage and clocks?
« Typed interface
= Recently submitted voltage framework has different behavior

= Is there enough justification to track relationships between
clocks and voltages

= What we can do depends on the hardware.

= Current clock framework is interface only. Does it make
sense to move the code common among platforms to be
generic?
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