

Porting and Evaluating the Linux Realtime Preemption on Embedded Platform

Katsuya Matsubara 1)

Hitomi Takahashi 1)

Hisao Munakata²⁾

1) IGEL Co., Ltd

²⁾ Renesas Solutions Corp.

Contents

- Background
- Linux Preemption
- Porting PREEM PT_RT for a Renesas SuperH -based platform
- Performance Evaluation
- Conclusion

Background

- Device Driver Development in Embedded World is different in the following senses:
 - Non-common new devices
 - Due to newly developed devices, it is quite hard to re-use existing device drivers
 - Tightly coupled with applications
 - Often monolithic system architecture. A pplication requires to manage devices directly in fine-grain.
 - Only one application dominantly uses the device.
 - Single-user, multi-task
 - IPR issue
 - Requires easiness of device driver development
 - Short development cycle

Objective

- Implement device drivers in user-space
 - Easy to develop
 - Close to applications
 - keeps kernel stable
- Evaluate kernel features for user-level device driver.
 - Functionality
 - Performance
 - NPTL
 - O(1)scheduler
 - PREEM PT_RT
 - API

Preemption in Linux

- Preemption points in 2.4/2.6 PREEM PT_NONE kernel
 - At return from interrupt handling
 - A t return from system call
 - W hen task sleeps voluntarily
- A ny tasks in kernel mode cannot be preempted!
 - Tasks are interrupted only when hardware interrupts had occurred

CONFIG_PREEMPT_NONE

■ Never preempt tasks in kernel

CONFIG_PREEMPT(_DESKTOP)

■ The scheduler selects an appropriate task when interrupt handler finished.

CONFIG_PREEMPT_RT

- Distributed by Ingo Molnar and a small group of core developers.
- Allows almost all of the kernel to be preempted.

CONFIG_PREEMPT_RT (contd.)

Features added/modified by PREEMPT_RT

- Preemption in critical regions
- Preemption in interrupt handlers
- Preemption in atomic (interrupt-disabled) operations
- (Priority inheritance of spinlocks and mutexes)
 - M erged to the mainline
- M iscellaneous optimizations
 - Cleaned up code
 - Fixed race conditions and locking problems

Preemption in critical regions

- Task can be preempted even if it is in a critical region with holding a lock.
 - spinlock_t and rwlock_t have been modified to allow preemption in protected region.
 - spin_lock_irq*(), e.g. spin_lock_irqsave(), does not actually inhibit hardware interrupt.
 - Original spinlocks are kept usable with raw_spinlock_t.

Preemption in interrupt handlers

- Interrupt handlers can be preempted;
 - Interrupt handlers run in process context (rather than in interrupt context)
- Some interrupt handlers marked with IRQF_NODELAY runs in interrupt context
 - e.g. CPU timer, FPU, etc.

Preemption in atomic operations

- Tasks are preempted even they request interrupt disabling.
 - local_irq_save() does not actually inhibit hardware interrupt.
 - raw_local_irq_save/restore()perform with original behavior.

Porting PREEMPT_RT to a new architecture

Renesas RTS7751R2D board

- SH7751R(SH-4 architecture)
- Peripherals
 - Network (RTL-8139DL)
 - Serials (SCIF, SM501 UART)
 - USB (provided by SM501)
 - 2D graphics (SM501)
 - PCI buses
 - CF/PCMCIA slots

■ Base software

- Linux-2.6.21-rc5
- patch-2.6.21-rc5-rt12

How to port PREEMPT_RT to a new architecture

- Read and modify codes in arch/, include/asm-arch, and drivers/
 - Rename semaphore definitions
 - Modify context switching
 - Do refactoring of critical regions
 - Do refactoring of interrupt handlers
- Other architecture's implementations (ARM, MIPS, PowerPC, and i386) are good resourses to find out which codes should be modified.

Semaphore definitions

- PREEM PT_RT provides <u>spinlock-based</u> semaphores and rwlocks for the priority inheritance feature.
- Original (architecture-dependent) semaphore and rwlock should be re-named to compat_*.

```
- static inline void down(struct semaphore * sem)
+ static inline void compat_down(struct compat_semaphore * sem)
{
    might_sleep();
    if (atomic_dec_return(&sem->count) < 0)
-         __down(sem);
+         __compat_down(sem);
}</pre>
```

Context Switching

17

- Original schedule() is renamed to __schedule() and new schedule() is defined.
- Append TIF_NEED_RESCHED_DELAYED flag in thread information flags
 - Indicates 'reschedule on return to userspace'
 - tst #_TIF_NEED_RESCHED, r0
 - + tst #_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_DELAYED, r0

.align 2

- 1: .long schedule
- + 1: .long __schedule

Critical Regions and Atomic Operations

- Review all critical regions and atomic operations to make sure that there are no race conditions or locking problems.
 - Do refactoing the code or replace spinlocks or local_irq_save by raw_* if needed

Interrupt Handlers

- IRQF_NODELAY
 - This flag is automatically set for the timer with the PREEM PT_RT patch.
 - Review other handlers, and mark appropriately if they need to run in interrupt context. In our work, there was no need to mark additionally.

```
-#define IRQF_TIMER 0x00000200
+#define __IRQF_TIMER 0x00000200
#define IRQF_PERCPU 0x00000400
#define IRQF_NOBALANCING 0x00000800
+#define IRQF_NODELAY 0x00001000
+#define IRQF_TIMER (__IRQF_TIMER | IRQF_NODELAY)
```

Other Changes

- The Ingo's patch consists of pieces of codes which assumes that CONFIG_GENERIC_TIME is set to 'y'.
 - The patch overrides the original code, and it relies on codes that are enabled only when CONFIG_GENERIC_TIME is set.
 - In SH, this was the case.
 - Fixed the codes to use original codes if CONFIG_GENERIC_TIM E is not set.
- Replaced a spinlock defined at 8250 serial driver
 - SCIF, which is SH internal serial I/O, driver uses spinlock_irq_* for atomic and mutual exclusion.
 - Replaced the spinlock with raw_spinlock.

Diff from patch-2.6.21-rc5-rt12 for SH platform (1/3)


```
arch/sh/kernel/cpu/clock.c
arch/sh/kernel/cpu/sh4/sq.c
arch/sh/kernel/entry-common.S
arch/sh/kernel/irq.c
                                   2
arch/sh/kernel/process.c
                                      8 ++-
arch/sh/kernel/semaphore.c
arch/sh/kernel/sh ksyms.c
arch/sh/kernel/signal.c
                                     7 +++
arch/sh/kernel/time.c
arch/sh/kernel/traps.c
arch/sh/mm/cache-sh4.c
                                       12 ++---
                                   2
arch/sh/mm/init.c
arch/sh/mm/pg-sh4.c
```

D iff from patch-2.6.21-rc5-rt12 for SH platform (2/3)

arch/sh/mm/tlb-flush.c 20 ++++---arch/sh/mm/tlb-sh4.c include/asm-sh/atomic-irq.h 24 ++++---include/asm-sh/atomic.h 8 +-include/asm-sh/bitops.h 24 ++++----include/asm-sh/pgalloc.h 2 include/asm-sh/rwsem.h 46 ++++++++ 8 +-include/asm-sh/semaphore-helper.h include/asm-sh/semaphore.h 61 ++++++++++++++ include/asm-sh/system.h 12 ++--include/asm-sh/thread info.h 2

D iff from patch-2.6.21-rc5-rt12 for SH platform (3/3)


```
include/linux/serial_core.h | 2
kernel/hrtimer.c | 4 +
kernel/time.c | 4 +
kernel/time/ntp.c | 4 +
kernel/time/ntp.c | 6 ++
```

29 files changed, 178 insertions(+), 131 deletions(-)

Performance Evaluation: Impact to ULDD

- Proposed ULDD framework at ELC 2006
 - http://www.igel.co.jp/file/uldd060411celfelc2006.pdf
- U serspace I /O driver (UIO)

From: Hans J. Koch

This interface allows the ability to write the majority of a driver in userspace with only very small shell of a driver in the kernel itself. It uses a char device and sysfs to interact with a userspace process to process interrupts and control memory accesses.

(Quoted from Greg Kroah-Hartman's log)

An Experiment with ULDD

- Implement a SM 501 UART driver with UIO
- M easure the schedule latency (when kernel handler invokes user handler)

Result

The effectiveness of PREEM PT_RT can be particularly observed when the scheduler policy for ULDD is set to SCHED_FIFO under high system load.

Conclusion

- Ported PREEM PT_RT for Renesas SH -4 architecture:
 - M odified some code in arch/sh and include/asm -sh
 - Read code of related devices and modified some code in drivers
- Implemented a user-level device driver with UIO:
 - It performs well even it is located in user space.
 - PREEM PT_RT gives a good effect on user-level drivers.

Future Work

- Submit the patch to IkmI and for Iinux -rt mI SOON!
- Catch up the latest version (2.6.21 c6 rt0).
- Support other SuperH based platforms.
 - CPU architecture families; SH-3, SH-4A
 - Peripheral devices on the other SH platforms

References

- PREEM PT_RT
 - patches
 - http://people.redhat.com/mingo/realtime-preempt/
 - RT Wiki
 - http://rt.wiki.kernel.org/index.php/Main_Page
- UIO
 - http://w w w .kroah.com /log /linux /uio.html