Lightweight RTAI for TA-32

Michael Heimpold and Robert Baumgartl
Chemnitz University of Technology
Department of Computer Science
09107 Chemnitz, Germany
{michael.heimpold, robert.baumgartl}@cs.tu-chemnitz.de

Abstract

Using the TA-32 architecture for time-critical tasks allows highest computing performance at reason-
able hardware cost. Because many open source real-time operating systems are based on Linux, the
comparatively high resource requirements of Linux also apply to these systems.

In this work we present a port of the RTAI API to a bare IA-32 machine which eliminates Linux’ core
subsystems. Instead of a full API reimplementation we used an established Linux/RTAI as a starting
point and gradually eliminated the Linux functions. This methodology minimizes changes to the RTAI
code and ensures easy maintenance of the resulting code base.

Our measurements show that the resulting system is as efficient as a conventional RTAI. The uncom-
pressed memory footprint of the kernel is about 370 KiB. Hence, the resulting system is a small and
efficient real-time kernel of clear design which provides the RTAI API and is ideally suited for embedded

systems with low resources.

1 Introduction

For several reasons, the Intel IA-32 is not a tradi-
tional architecture for real-time systems. Its com-
plex caching hierarchy, branch prediction unit and
incomplete documentation makes worst case execu-
tion time (WCET) estimation difficult. On the other
hand, its superior price/performance ratio and its
very good support of the Linux operating system and
the GCC toolchain lead to more and more [A-32-
based embedded systems.

Although Linux in itself cannot be regarded as
fully real-time, several projects exist to co-locate a
real-time API with the classic Linux kernel. Usu-
ally, the Linux subsystem is executed as low-priority
real-time task. Interrupt virtualization ensures that
no part of the Linux kernel hogs the CPU for indef-
inite periods of time. Examples are the well-known
RTLinux project [9], the Real-Time Application In-
terface (RTAI) [8], or Xenomai [10].

Because these real-time operating systems are
based on Linux, the comparatively high resource re-
quirements of Linux in terms of CPU power and
memory size also apply to them. According to [5], at

least 2 MiB of RAM are necessary to successfully run
Linux. For hardware platforms below that boundary
no open-source real-time operating system has been
available.

Therefore, the idea has been coined to strip the
real-time kernel from the Linux subsystem and thus
create a very small and efficient operating system
with a well-established real-time API. As a conse-
quence, this project has been proposed and realized.

In typical real-time enabled Linux systems, the
Linux subsystem is used for

e loading and booting the real-time kernel and

e non-real-time functions (e.g.logging, user in-
teraction, ...).

Hence, some way of establishing the system must be
found. Additionally, if non-real-time-functionality is
necessary, it must be reimplemented as low-priority
real-time task.

The remainder of the paper is structured as
follows: section 2 gives a short overview of simi-
lar projects and documents some of the earlier re-
search work. In section 3, we present the design

of Lightweight RTAI by looking at two major as-
pects: which concepts of Linux we identified to pre-
serve and which concepts were deliberately omitted
from LRTAI The following section 4 presents some
performance numbers and memory requirements and
demonstrates that LRTAI is already very competi-
tive. The paper closes with a short summary and a
look on new projects.

2 Related Work

The first system realizing a low-resource real-time
kernel based on open source software was Stand-
Alone RTLinux by Esteve et al. [1]. The work
was done by an incremental code migration from the
RTLinux tree to the code base eliminating the Linux
functionality in the process. It seems that this ap-
proach is disadvantageously in terms of maintainabil-
ity of the code base.

Because of that drawback and because we
wanted to provide the RTAI API instead of RTLinux,
we decided to do a similar project, called Lightweight
RTAI. It has been originally developed for a digi-
tal signal processor (DSP), the Texas Instruments
TMS320C6x [4, 6]. In contrast to the project de-
scribed in this paper, the port could not be realized
by gradually removing functionality from a conven-
tional Linux/RTAI system. Neither Linux nor the
GNU Compiler Collection are available for that ar-
chitecture. Instead, the main effort was to instru-
ment the RTAT source code to compile with the pro-
prietary Texas Instruments compiler.

After successfully finishing that project the ques-
tion arose, whether it would be possible to adapt LR-
TAI to a conventional TA-32 architecture but it was
postponed for some time because of the assumed dif-
ficulties adapting and porting the boot process and
the Linux module management.

In the meantime, Masmano et al published a new
version of Stand-Alone RTLinux which seems to im-
prove on the initial approach [7].

3 System Design

3.1 Possible Approaches

Two different approaches can be distinguished to re-
alize the formulated goal. The first one is to reimple-
ment the RTAT API from scratch without relying on
any Linux functionality. This seems straightforward
enough and offers a very high degree of flexibility.
From a developer’s point of view, this approach is
not too favorable. Testing the kernel cannot start
before it is more or less complete. Additionally, im-
plementation effort is high and will invariably lead

to programming errors which are hard to track in
the prospected environment. This might not pose
a problem but could negatively influence the accep-
tance of the project by other parties who prefer a
matured and well-tested code base.

The second approach is to start with an estab-
lished RTAI/Linux system, identify all Linux de-
pendencies and gradually removing unwanted parts
respectively reimplementing needed functionality.
Here, testing is performed in parallel with imple-
mentation work. By relying as much as possible on
the very-well established RTAI code base one ensures
both a maximum of code quality of the resulting op-
erating system and a minimum of additional work.
Of course, this strategy offers less degrees of freedom
regarding the implementation, but from our point
of view, the RTAI code seems more or less optimal.
Therefore, we chose the latter approach to realize
Lightweight RTAI.

Apart from the primary design prinziples,
Lightweight RTAI was expected to be implemented
with a minimum of code changes to existing RTAI
code. New functions were consequently located in
new source files. The goal was a simple patch against
the latest RTAI source code tree to ease maintain-
ability and portability to new versions of RTAIL

3.2 Taken-over Linux Concepts

Although the goal of this project is to separate and
eliminate Linux from RTAI as thorough as possible,
some Linux concepts were taken over to Lightweight
RTAL

3.2.1 Binary Image Layout

Traditional Linux/RTAI uses the Linux kernel mod-
ule interface to establish the system. All RTAI com-
ponents as well as real-time applications are loaded
by insmod. As soon as the RTAI core module is
loaded, the kernel relinquishes its execution control
and is subsequently executed as a lowest-priority
RTAT application. By stripping Linux from RTAI,
this mechanism is not available anymore. There-
fore, another way of booting the system must be
conceived.

The simplest form of booting an operating sys-
tem image is to use a bootloader to copy the image
from file to main memory and transfer control by
simply jumping to a predefined entry address. Most
currently available loaders are able to perform that
function. As a disadvantage, this mechanism doesn’t
allow to pass parameters between bootloader and
kernel image. As this is clearly an important fea-
ture for LRTAI, we did not pursue that idea further.

Another option would be to define a new image
layout and parameter passing mechanism. Although
this approach is the most flexible and many boot-
loaders are open source, it requires the modification
of any bootloader considered for booting LRTAI.

Instead, we chose to keep the Linux binary image
layout for LRTAI. In this way, all bootloaders capa-
ble of booting Linux could be used for booting LR-
TAI, too; they detect a standard Linux image when
loading LRTATL

In this way, we could also preserve the traditional
kernel command line interface. It consists of a sim-
ple command string which can be edited by the user
during execution of the bootloader. After editing,
the starting address of that string is written to a
well-known memory location within the loaded ker-
nel image. While booting, the kernel iterates over
all elements of that command line. Typically, call-
back functions are invoked for every known element
registered at compile time. By preserving that mech-
anism, we can provide a means to configure LRTAI
at boot time.

3.2.2 Kernel Image Compression

To reduce the image size of traditional Linux kernels,
compression has been employed for a long time. Be-
cause the usually used zlib algorithm does not work
in-place, this concept requires more main memory: it
must provide space for both the compressed and un-
compressed image as well as the decompression code.
On systems with very small main memory this could
pose a problem. Additionally, the boot process is
prolonged because the image decompression requires
processing time.

We decided to include that feature in LRTAI be-
cause it allows to use smaller mass storage (flash
memory or EEPROM) the kernel is loaded from.
Even though flash memory capacity is increasing at
a rapid rate, a small kernel footprint means more
space for application programs. Of course, this eval-
uation depends on the price ratio between RAM and
flash memory and must potentially be revised in the
future.

3.2.3 Initcall Mechanism

When modules are loaded dynamically into or un-
loaded from the Linux kernel, standard functions
to initialize and register respectively deregister that
module are executed by the kernel. The same mech-
anism is used implicitly when modules are compiled
statically into the kernel. To this aim, the so-called
inatcall table is used which holds pointers to initial-
ization functions of different priority.

Because RTAI applications also are kernel mod-
ules and therefore frequently depend on that initial-
ization mechanism it must not be removed. Cur-
rently, the module_init function of an RTAI imple-
mentation translates to the Linux implementation of
device_initcall.

3.2.4 Memory Management

After a successful boot of the Linux kernel, some
memory regions which are only needed during boot-
strap (e. g. the initialization functions of a compiled-
in driver) and which must be explicitly marked by
the programmer are freed by the system. Although
LRTALI is stripped down to a minimum and therefore
potentially provides only a small amount of mem-
ory to be freed after bootstrap, this mechanism has
been preserved to further reduce memory consump-
tion. We feel that this will lead to more memory
savings in later project stages with LRTAI providing
more functionality.

Linux provides a preliminary memory manage-
ment which is solely used during bootstrap, the so-
called Bootmem Allocator. It statically initializes
page tables and performs a linear mapping between
available memory and address space. It is limited
to 8 MiB of RAM. Because Linux’ low-level memory
management is very complex, we decided to retain
the bootmem allocator and use it in LRTAI. The
upper bound of 8 MiB should not pose a problem,
because with such an amount of memory traditional
Linux/RTAT will run.

The second level of memory management is tra-
ditionally provided by Jeff Bonwick’s slab allocator.
Because of the code size and complexity of that al-
locator, a simple and small replacement exists for
embedded systems, the so-called slob allocator. It
is more memory-efficient but at the same time more
susceptible to fragmentation [3]. Because real-time
applications usually do not make heavy use of the
heap, we deemed the slob allocator ideally suited for
LRTAI and adapted it accordingly to use the boot-
mem allocator. It solely provides kmalloc(), ksize()
and kfree() and is used during the boot process and
in the case of LRTAI applications requesting private
heap.

3.3 Removed Linux Concepts

As a general-purpose operating system, Linux offers
a lot of features. Many of them would be useful if in-
cluded in LRTAI, some features are actually required
by RTAI while sharing the existing code (e.g. spin-
locks). However, including features leads to a large
memory footprint in the end. Therefore, shrinking

the system as much as possible for small-scale sys-
tems means omitting code and functionality. This
section briefly discusses some related aspects.

3.3.1 File System Layer

The RTAI API does not provide a file abstraction. If
file support is needed, it is accomplished by the Linux
subsystem without real-time guarantees (e. g., when
loading a new RTAI module). As a consequence, we
removed the file system layer from LRTAI. Of course
this eliminates the possibility to store data to or read

data from mass storage as well as dynamically load-
ing LRTAI code.

3.3.2 Device Driver Infrastructure

Stripping Linux from RTAI eliminates functions typ-
ical device drivers rely on. Therefore, with the excep-
tion of the real-time aware driver for the serial inter-
face provided by RTAI itself and the drivers for the
interrupt/timer circuit, LRTAI does not provide any
device drivers nor infrastructure for them. Hence,
porting drivers from Linux to LRTAI may require
some effort but this is the case for classical RTAI,
too.

Additionally, the code concerning management
of tasks in user space, such as the scheduler or signal
management as well as user/kernel space transitions
(system calls) has been evicted. Likewise, Linux’
memory management has been dropped. This code
is quite complex and provides many unneeded func-
tions. Further, it is strongly interwoven with the file
system layer.

This concludes our discussion of system design
aspects of LRTAI. A more thorough analysis as well
as many implementational details can be found in

[2].

4 Performance Evaluation

4.1 Testing Environment

The following system configuration has been used for
all measurements:

e AMD K6, 200 MHz,

e 128 MiB RAM installed, but only 8 MiB used
by LRTALI,

e Linux kernel version 2.6.17,
e ADEOS IPIPE version 1.3-08,
e RTAI version 3.4,

e Linux timer interrupt running at 100 Hz.

Because of the missing device driver and file sys-
tem support, it is impossible to log timing values
into a file. Instead, the test system transmitted its
measured data via the serial console to another host
which redirected the received data into a file. Ad-
ditionally, no (potentially complex) driver functions
would spoil our measurement.

The somewhat ancient configuration was chosen
because it was equipped with a serial interface. Typ-
ical x86-based embedded systems provide a similar
computing power, therefore we deemed our measure-
ment platform adequate.

We tested our LRTAI against a conventional
RTAI/Linux installation on the same machine based
on the Debian Sarge distribution.

4.2 Scheduling Latencies

To evaluate scheduling performance, we used the la-
tency measurement module of RTAI and adopted it
slightly to fit both environments. This was necessary,
because in the original code, a user-space process
reads the measurement data from a FIFO and logs
them. In our version, measurement data is simply
output by the kernel module via rt_printk() instead.

The module sets up a task with a period of 100 us
which calculates the difference between the expected
and the true activation time. Each measurement col-
lected 250.000 data values. The RTAI/Linux system
was stressed by CPU and I/O load by using cpuburn
and flood pinging the system. Due to the lack of
driver support, only CPU load could be generated
for LRTAI. This was achieved by finalizing system
initialization with an endless loop instead of a call to
cpu_idle().

126008 T T T
Lightweight RTAI e
108088 [

80800 -

68008 -

nunber of neasurenents

48800 -

28000 -

8 L L L L
8006 1e008 126088 14608 168608 180608 20008 22000 24008 26008
latency [ns] {nin = 9219 ns, nax = 24305 ns)

FIGURE 1: Scheduling Latency of LRTAI
in Oneshot Timer Mode

90688

Linux/RTAL

80880 -

70080 -

60008 -

50eas -

40008 -

nunber of neasurenents

30008 -

20008 -

10008 -

8 L L
180008 158608 20008 25008 38000 35000 48008 45008
latency [ns] {nin = 18895 ns, nax = 44419 ns}

FIGURE 2: Scheduling Latency of
Linuxz/RTAIT in Oneshot Timer Mode

Figures 1 and 2 depict the measured scheduling
latency in oneshot timer mode for LRTATI and stan-
dard Linux/RTAI, respectively. The first interesting
fact to note is that the average latency is slightly
smaller for LRTAI. This could be explained by the
nonexistent I/0 load in the LRTAI test case. Fur-
ther, the worst case for LRTAI is 24.305 ns, whereas
Linux/RTAI needs almost twice that time in the
worst case (44.419 ns). Third, the timing variance
is also smaller for LRTAI

Figures 3 and 4 present the results for periodic
timer mode. The performance is similar as in the
previous experiment. Again, the worst cases both
for minimum and maximum scheduling latency are
smaller for LRTAI than for Linux/RTAI. Here, the
timing variance of LRTAI is quite superior.

606888

50000 -

40088 -

30000

nunber of neasurenents

20088 -

10088 -

=-180008 -8068 -6688 =-4800 =2008 a 2860 4808
latency [ns] {nin = -11162 ns, nax = 2248 ns}

a
=126008

FIGURE 3: Scheduling Latency of LRTAI
in Periodic Timer Mode

45688

Linux/RTAT e

48880 -

35080 -

30008 -

295688 -

20000 -

nunber of neasurenents

15668 -

10888 -

5000 |

8 L L
=25088 -20000 -15000 -18060 =5688 a b1 18068 15008 20008
latency [ns] {nin = -21219 ns, nax = 19847 ns}

FIGURE 4: Scheduling
Linux/RTAI in Periodic Mode

Latency of

We can conclude that LRTAI is competitive in
comparison to Linux/RTAL

4.3 Image Size and Memory Foot-
print

The current kernel image size of the generated LR-
TAI zImage is about 122 KiB. The corresponding
memory footprint is about 370 KiB. Therefore, it is
possible to run LRTAI and quite some real-time ap-
plications on systems with less than 1 MiB of RAM
installed. We believe that this boundary can even be
lowered with ongoing project’s progress.

5 Conclusions and Outlook

In this paper we have demonstrated that it is possible
to port the RTAI API to a bare IA-32 machine. We
started with a fully-fledged Linux/RTAI and grad-
ually removed as much Linux components as pos-
sible. The resulting real-time kernel has an uncom-
pressed memory footprint of approximately 370 KiB.
As we have demonstrated by our measurements, the
scheduling latency of the kernel is even a bit bet-
ter than for Linux/RTAI. We can therefore conclude
that Lightweight RTAI is a small and very efficient
real-time kernel for systems with low resources.
LRTALI is not yet optimal. There are still some
dependencies of the RTAI scheduler implementation
which require access to some Linux code paths. This
is because RTAI is capable to “steal” and return
tasks from Linux’ scheduler. Currently, the Linux in-
ternal implementation of these functions are directly
called. This could be improved upon in further LR-
TAI versions and would result in a further footprint
shrink. Likewise, the changes introduced in the build

system could be minimized, improving compatibility
to RTAIL

A second point of improvement are new features.
As a first example, support for APICs could be im-
plemented which would be the base for symmetric
multiprocessing. By optimizing selected code paths
by hand, it seems that the performance of the ker-
nel, which is already better than that of traditional
Linux/RTAI, could be improved even further.

A thorough comparison of Lightweight RTAI
with Embedded RTLinux [7] would be very interest-
ing. Both approaches potentially could be improved
by learning from the adversary.

LRTAT is released under the GNU Public Licence
and is available from our web site. Interested people
are invited to join the development team.

References

[1] Stand-Alone RTLinuxz-GPL. Fifth Real-Time
Linux Workshop, Valencia, 2003, VICENTE Es-
TEVE, ISMAEL RIPOLL, ALFONS CRESPO

[2] Lightweight RTAI for IA-32. Diploma The-
sis, Chemnitz University of Technology, 2007,
MICHAEL HEIMPOLD

[3] Anatomy of the Linuz Slab Allocator.
http:/ /www.ibm.com/developerworks/linuz/library
/I-linuz-slab-allocator/, 2007, M. TiM JONES

[4] Lightweight RTAI for DSPs. First Workshop
on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), 2005, JENS
KRETZSCHMAR, ROBERT BAUMGARTL

[5] The Linuz FAQ. Part III: The Kernel
http://tldp.org/FAQ/Linuz-FAQ/kernel.html
Davip C. MERRILL

[6] Completing and Testing Lightweight RTAI/Cé6x.
Student Research Paper, Chemnitz University of
Technology, 2006, MICHAEL LUFT

[7] Embedded RTLinuz: A New Stand-Alone
RTLinux Approach. Eighth Real-Time Linux
Workshop, Lanzhou, China, 2006, MIGUEL MAS-
MANO ET AL

[8] https://www.rtai.org/ (10/01/07)
[9] http://www.fsmlabs.com/ (10/01/07)

[10] http://www.zenomai.org/ (10/01/07)

