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Abstract

This paper describes a real-time extension to Linux called LITMUSRT, which is being designed to
support real-time workloads on multiprocessor and multicore platforms. The recent shift by chip makers
to multicore designs, combined with building interest within the open-source community in supporting
real-time features in Linux, makes this research quite timely. The development of LITMUSRT was driven
by a desire to bridge the gap between those working on algorithmic issues pertaining to multiprocessor
real-time resource allocation and operating-systems researchers working to improve real-time support
within operating systems such as Linux.

1 Introduction

In this paper, we report on the development of a real-
time extension of Linux called LITMUSRT (LInux
Testbed for MUltiprocessor Scheduling in Real-
Time systems) [9, 11, 28], which is being designed to
support real-time workloads on multiprocessor plat-
forms. The development of LITMUSRT has been
driven by several trends. Foremost among these is
the advent of multicore platforms as an alternative to
single-core chip designs. Most (if not all) major chip
manufacturers have embraced multicore technologies
as a way to continue performance improvements in
their product lines. Given this trend, multiproces-
sors will soon become the “standard” computing
platform in many settings, including settings where
real-time constraints are required. Indeed, IBM’s
multicore Cell processor was originally designed for
gaming systems, where timing constraints naturally
arise. In more general-purpose settings, one envi-
sioned use of multicore platforms is as multi-purpose

home appliances , with one machine serving many of
the computing needs within a home [10]. These may
include time-sensitive and computationally-intensive
computations such as HDTV-quality media stream-
ing, in addition to non-real-time processing.

Another relevant trend is the surge of interest in
the open-source community in real-time variants of
Linux. In conjunction with this, a number of real-

time extensions of Linux have been proposed [22, 30].
In addition, features such as high-resolution timers,
priority inheritance, and shortened non-preemptable
sections, which enhance real-time predictability, have
been incorporated in the Linux kernel (in versions
2.6.16 to 2.6.22). Further improvements in support-
ing real-time execution are likely, as there is now a
sizable community of researchers interested in imple-
menting new real-time-oriented features in Linux (as
evidenced by the existence of the workshop in which
this paper appears).

Many of the real-time Linux variants under de-
velopment will be deployable on multicore and mul-
tiprocessor platforms. Unfortunately, most of these
variants have been produced without much regard
to recent algorithmic advances in work on multipro-
cessor real-time resource allocation. For example,
global scheduling policies (which schedule tasks from
a single run queue) are almost never implemented,
despite the fact that such policies are provably su-
perior to partitioning approaches in many ways (as
we discuss later). This “mis-match” between theory
and practice cannot be blamed solely on experimen-
talists. Indeed, in the last few years, scores of pa-
pers have been written on multiprocessor real-time
scheduling algorithms (too many for us to include
a citation list), yet working implementations do not
exist for many (if not most) of the algorithms that
have been recently proposed.
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The development of LITMUSRT has been mostly
driven by a desire to bridge this gap between
operating-systems researchers and those working on
algorithmic issues. In addition, our research group
is actively investigating real-time resource-allocation
issues of relevance to multicore platforms and we
seek to use LITMUSRT as a test platform in this
work. LITMUSRT is an extension of Linux (cur-
rently, version 2.6.20) that allows different (multipro-
cessor) scheduling algorithms to be linked as plug-
in components. In addition, a new multiprocessor
real-time locking protocol of our own design has also
been implemented in LITMUSRT. Although the cur-
rent LITMUSRT version is very much a prototype,
our ultimate goal is to extend it in ways that re-
sult in a feature-rich system that is capable of sup-
porting complex real-time applications on multicore
platforms.

In prior work, our research group has used the
current LITMUSRT system as a test platform [4,
9, 11, 28]. However, in these prior papers, we
have not had sufficient space to describe the current
LITMUSRT implementation or the rationale behind
its design in any detail. Such is the objective of this
paper. Towards this end, the rest of this paper pro-
ceeds as follows. We begin with an overview of rel-
evant real-time systems concepts related to schedul-
ing and synchronization in Section 2. Next, in Sec-
tion 3, we describe our overall objectives in produc-
ing LITMUSRT. Then, in Section 4, we explain in
some detail the various implementation choices that
underlie the current LITMUSRT design. We con-
clude the paper and discuss our plans for improving
the current LITMUSRT implementation in Section 5.

2 Background

In this section, we provide background on real-time
systems that is needed to understand our implemen-
tation.

2.1 Real-Time Systems Basics

For the most part, we focus in this paper on the
problem of supporting a real-time workload on m
processors that can be specified as a collection of spo-

radic tasks , denoted T1, . . . , TN . (We note, however,
that LITMUSRT currently supports other task/job
models as well. We provide brief explanations of
these models later.) Each task in a sporadic sys-
tem is invoked or released repeatedly; each such in-
vocation is called a job of the task. Each sporadic
task Ti is specified by a period , p(Ti), which de-
notes the minimum separation between its succes-
sive job releases, and by an execution cost , which

denotes the maximum execution time of any of its
jobs. The jth job (or invocation) of task Ti is de-
noted T j

i . T j
i becomes available for execution at its

release time, r(T j
i ), and should complete execution

by its absolute deadline, r(T j
i ) + p(Ti); otherwise,

it is tardy. The spacing between job releases must
satisfy r(T j+1

i ) ≥ r(T j
i ) + p(Ti). If the stronger re-

quirement r(T j+1

i ) = r(T j
i ) + p(Ti) is always met,

then the task system is called periodic. Task periods
and job release times (even for sporadic tasks) are
assumed to be integral with respect to the length
of the system’s scheduling quantum, but execution
costs may be non-integral. A task’s utilization or
weight is given by the ratio of its execution cost and
period. A task’s utilization reflects the processor
share that it requires. Task utilizations are of im-
portance when checking schedulability, i.e., whether
timing constraints are met.

A hard real-time system is considered to be
schedulable iff it can be shown that no job deadline is
ever missed. A soft real-time system is considered (in
this paper) to be schedulable iff it can be shown that
deadline tardiness is bounded, that is, some value
B exists such at all jobs are guaranteed to complete
by B time units after their deadlines. Algorithms
that are used to check schedulability must be de-
signed to account for overheads that arise in practice.
Sources of such overheads include context switching
times, cache-related overheads, etc. Such overheads
are typically accounted for by inflating per-job exe-
cution costs.

Real-time guarantees. In prior work on adding
real-time support within Linux, much attention has
been directed at increasing the predictability of cer-
tain components of Linux in such a way that the im-
pact of system overheads (e.g., interrupt latency) is
limited or bounded. While reducing system latency
is important and will ultimately improve the real-
time guarantees that can be made, they are not of
themselves enough to support real-time tasks—note
that “real fast” is not the same as real-time. (In fact,
for many real-time workloads, additional utility is
not gained by improving response times beyond what
is needed to ensure that all timing constraints are
met.) Real-time tasks need explicit support from the
scheduler so that guarantees related to their timing
constraints can be made. The LITMUSRT project
implements a variety of scheduling algorithms that
allow us to make such guarantees.

Overview of multiprocessor scheduling. Mul-
tiprocessor real-time scheduling algorithms can be
divided into two categories: those that partition the
task set, statically assigning tasks to processors, and
global approaches that schedule tasks from a single
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run queue and allow migration. Several multipro-
cessor scheduling algorithms have been implemented
in LITMUSRT. Most of these are based on the
uniprocessor earliest-deadline-first (EDF) scheduling
algorithm, in which jobs with earlier deadlines have
higher priority. These include: partitioned EDF

(P-EDF), and preemptive and non-preemptive global
EDF (G-EDF and G-NP-EDF). (Two variants of
P-EDF and G-EDF, called PSN-EDF and GSN-EDF,
respectively, have been implemented as well. We
briefly explain the need for these variants later.) In
addition, two variants of the global PD2 Pfair algo-
rithm [1] have been implemented.

In P-EDF, tasks are statically assigned to pro-
cessors and those on each processor are scheduled
on an EDF basis. In G-NP-EDF, tasks may migrate,
but once a job commences execution on a processor,
it will run to completion on that processor without
preemption. Thus, jobs may not migrate. Finally,
G-EDF allows jobs to be preempted and permits job
migration with no restrictions. No variant of EDF is
optimal, i.e., deadline misses can occur under each
EDF variant in feasible systems (i.e., systems with
total utilization at most the number of processors).
It has been shown, however, that deadline tardiness
under G-NP-EDF and G-EDF is bounded in such sys-
tems [14, 29].

In contrast to EDF-based algorithms, optimal
scheduling is possible with Pfair scheduling algo-
rithms [3, 27], i.e., deadline misses can be completely
avoided in any feasible system. In such algorithms,
a task T of weight T.wt is scheduled one quantum at
a time in a way that approximates an ideal alloca-
tion in which it receives L ·T.wt time over any inter-
val of length L over which it is continuously active
(i.e., submitting jobs). This is accomplished by sub-
dividing each task into a sequence of quantum-length
subtasks , each of which must execute within a certain
time window , the end of which is its deadline. Sub-
tasks are scheduled on an EDF basis, and tie-breaking
rules are used in case of a deadline tie. A task’s
subtasks may execute on any processor, but not at
the same time (i.e., tasks must execute sequentially).
The most efficient known optimal Pfair algorithm
is PD2 [1, 27], which uses two tie-breaking rules.
Two variants of PD2 are implemented in LITMUSRT:
synchronized PD2 (which we simply denote as PD2)
and staggered PD2 (denoted S-PD2) [19]. Under PD2,
quantum boundaries on different processors always
align. This alignment has the potential of creating
excessive bus contention at the start of each quan-
tum, if the tasks scheduled then initially experience
many cache misses when accessing memory. S-PD2

was proposed as a solution to this problem: under
it, quantum boundaries are “staggered” on different

processors so that they never align. We illustrate
this idea with an example below. While PD2 is ca-
pable of ensuring that all subtask deadlines for any
feasible system are met, such deadlines can be missed
under S-PD2 by up to one quantum. This amount,
though, is still considerably less than the amount by
which deadlines can be missed under G-EDF and G-

NP-EDF [14, 29]. Moreover, misses of job deadlines
can be avoided in S-PD2 by simply reducing a task’s
period by one quantum. Under both Pfair schemes,
if a task is allocated a quantum when it requires less
execution time, the unused portion of that quantum
is “wasted.” In contrast, under the EDF schemes
considered above, such a task would relinquish its
assigned quantum “early,” allowing another task to
be scheduled.

To see some of the differences in these algo-
rithms, consider Fig. 1, which depicts various two-
processor schedules for a system of three tasks, X ,
Y , and Z, as defined in the figure’s caption. There
are several things worth noting here. First, these
three tasks cannot be partitioned onto two proces-
sors, so this system is not schedulable under P-EDF

(so we do not depict a schedule for this case). Sec-
ond, under each of G-EDF, G-NP-EDF, and S-PD2, a
deadline is missed. Third, in the G-NP-EDF schedule
in inset (b), task Y ’s second job cannot execute at
time 3 since Z’s job must execute non-preemptively
(there is actually a deadline tie here). Fourth, each
task has the same window structure in insets (c) and
(d). For tasks Y and Z, this is easily explained: a
task’s window structure is determined by its weight
and both of these tasks have a weight of 2/3. As for
task X , under each Pfair variant, windows are de-
fined by assuming that each task’s execution cost is
an integral number of quanta. Thus, we must round
up X ’s cost to 2.0, giving it a weight of 2/3. Be-
cause of this, some quanta allocated to task X are
only half-used. Finally, note that in inset (d), quanta
on Processor 1 always begin at integral time instants,
while on Processor 2, they begin at the midpoint be-
tween two integral time instants.

Partitioning versus global scheduling. Global
scheduling algorithms are better able to utilize mul-
tiprocessor systems than partitioning approaches
when system overheads are negligible. For exam-
ple, as noted earlier, PD2 can schedule on m proces-
sors any sporadic task system with total utilization
at most m [1], and G-EDF and G-NP-EDF can ensure
bounded deadline tardiness for any such task system,
again, if total utilization is at most m [15]. In con-
trast, there exist task systems with total utilization
of approximately m/2 that no partitioning approach
can correctly schedule, even if bounded deadline tar-
diness is allowed [15].
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staggered quantum allocationpartially−used quantum

X X

Y Y

Z Z

0 1 2 3 4 5 6
(c)

X

Y

Z

X

Y

Z

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
(d)(a) (b)

0 1 2 3 4 5 6 7

Figure 1: (a) G-EDF, (b) G-NP-EDF, (c) PD
2, and (d) S-PD

2 schedules of a two-processor system of three tasks:
X, with an execution cost of 1.5 and period of 3.0, Y with an execution cost of 2.0 and a period of 3.0, and Z with
an execution cost of 4.0 and a period of 6.0.

While global scheduling algorithms may be theo-
retically superior, they tend to have higher schedul-
ing and migration costs than partitioning schemes.
As a result, many researchers have been dismissive of
global algorithms from a practical standpoint. One
of our main goals in developing LITMUSRT has been
to determine whether this viewpoint is warranted.
In particular, we wanted to know how partition-
ing and global real-time scheduling approaches com-
pare when real overheads, empirically determined,
are considered.

In [11], we report on results obtained using
LITMUSRT on a four-processor testbed to compare
the five multiprocessor scheduling algorithms de-
scribed above. The tested algorithms were compared
on the basis of both raw performance and schedula-
bility (with real overheads considered) assuming ei-
ther hard- or soft-real-time constraints. Raw per-
formance was assessed by measuring task comple-
tion times. Lower completion times are desirable in
settings where good average-case performance is re-
quired in addition to worst-case predictability. We
found that, for hard real-time systems, P-EDF and
PD2 are usually preferable, while for soft real-time
systems, G-EDF and G-NP-EDF are better. In the
hard real-time case, most partitioning and non-Pfair
global algorithms have rather similar schedulability
tests in the absence of overheads (a survey of such
tests can be found in [12]). As a result, partitioning
approaches tend to be preferable because they have
lower run-time overheads [11]. In addition, the op-
timality of PD2 tends to compensate for its higher
runtime overheads. In contrast, in the soft real-time
case, P-EDF is subject to bin-packing limitations, to
which G-EDF and G-NP-EDF are immune. In addi-
tion, G-EDF and G-NP-EDF benefit in comparison to
PD2 because they have lower runtime overheads.

2.2 Real-Time Synchronization

We now consider the issue of how to synchronize
accesses to shared resources in multiprocessor real-
time systems. Of the available options for doing
this, locking mechanisms are clearly the most com-
monly used. In recent work, members of our research
group devised a new multiprocessor real-time locking
scheme called the flexible multiprocessor locking pro-

tocol (FMLP) [5]. The FMLP has been implemented
in LITMUSRT, and an empirical comparison of it
to non-blocking approaches has been conducted as
well [9]. We discuss these research efforts in some de-
tail below, after first providing needed background.

Resources and shared objects. When locks are
used, jobs issue requests for exclusive access to re-
sources. If a request is not satisfied immediately,
then the issuing job is blocked. Once satisfied, the is-
suing job holds the resource until it completes its as-
sociated critical section and releases the resource. A
request R is contained (or nested) within another re-
quest R′ if the requesting job already holds R′ when
it requests R. A request is outermost if it is con-
tained within no other request.

In lock-based synchronization schemes, blocking,
by spinning or suspension, is inherent. Spin-based
locking algorithms are commonly called spin locks .
Of greatest interest here are FIFO spin locks known
as queue locks , wherein blocked tasks wait within a
FIFO queue of spinning tasks [24]. Such locking al-
gorithms are designed so that all spinning is local ,
i.e., via read-only spin loops that (in the absence of
preemption) give rise to only a constant number of
shared-memory accesses when used in systems with
coherent caches or distributed shared memory. Spin
locks can be used by tasks with little (or no) interac-
tion with the kernel. In contrast, suspension-based
blocking is used in OS-based synchronization proto-
cols in which resources are acquired and released via
system calls.
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The literature on lock-based synchronization is
vast and includes (for example) mechanisms that
are hybrids of pure spin-based and suspension-based
mechanisms (e.g., [20]). However, for our purposes,
a locking mechanism must have analyzable blocking
behavior so that job blocking times can be accounted
for when checking schedulability. Thus, mechanisms
derived in work on non-real-time systems for which
the required analysis does not exist are of no interest
to us.

Prior synchronization-related work. Rajku-
mar et al. [25] were the first to propose locking pro-
tocols for real-time multiprocessor systems. They
presented two multiprocessor variants of the priority-
ceiling protocol (PCP) [26] for systems where parti-
tioned, static-priority scheduling is used. In later
work, several protocols were presented for systems
scheduled by P-EDF. The first such protocol was
presented by Chen and Tripathi [13], but it is lim-
ited to periodic (not sporadic) task systems. In later
work, Lopez et al. [21] and Gai et al. [17] presented
protocols that remove such limitations, at the ex-
pense of imposing certain restrictions on critical sec-
tions (such as, in [17], requiring all global critical sec-
tions to be non-nested). A scheme for G-EDF that
is also restricted was presented by Devi et al. [16].
The FMLP, mentioned earlier, does not restrict the
kinds of critical sections that can be supported and
can be used under either G-EDF or P-EDF. In the
FMLP, resources are protected by either spin-based
or suspension-based locks. The FMLP is the only
scheme known to us that is capable of supporting ar-
bitrary critical sections under G-EDF. Furthermore,
the schemes in [16, 17, 21] are special cases of it.

The FMLP. We now provide an overview of the
FMLP. It is not our intent here to describe every
detail of this protocol—a full description of it can be
found in [5]. Instead of repeating that description
here, we instead have opted to explain how the de-
sign choices underlying the FMLP were made. Such
a description should (hopefully) suffice when trying
to understand the description of our implementation
of synchronization in LITMUSRT, given later.

The FMLP is considered to be “flexible” for two
reasons: it can be used under either partitioned
or global scheduling, and it is agnostic regarding
whether blocking is via spinning or suspension. Re-
garding the latter, resources are categorized as either
“short” or “long.” Short resources are accessed us-
ing queue locks and long resources are accessed via a
semaphore protocol. Whether a resource should be
considered short or long is user-defined, but requests
for long resources may not be contained within re-
quests for short resources. The terms “short” and

“long” arise because (intuitively) spinning is appro-
priate only for short critical sections, since spinning
wastes processor time. However, the experimental
results presented in [9] call this view into question.

The remaining details underlying the design of
the FMLP were resolved with the express purpose of
trying to ease the task of calculating worst-case job
blocking times. In this regard, simple mechanisms

are much more desirable than complex ones: with
complex mechanisms, very conservative assumptions
must be made when determining blocking times, and
as a result, estimated blocking times may grossly
overestimate those observed in practice. These es-
timates are very important because they determine
the impact of synchronization when checking system
schedulability.

With this in mind, the FMLP was designed by
systematically considering a number of issues, and
for each, considering different design choices. In each
case, the choice that was adopted was that which re-
sulted in better blocking-time estimates. From these
design decisions, a number of underlying principles
of the FMLP emerged, as listed below.

• Discourage preemptions of resource-holding

jobs . When a resource-holding job is pre-
empted, other jobs waiting for the same re-
source may be substantially delayed. Thus, in
the FMLP, such preemptions are discouraged.
With one exception, this is done by actually
executing resource requests non-preemptively.
The exception is long resources under G-EDF,
for which priority inheritance is used instead:
a job that holds a resource inherits the prior-
ity of the highest-priority job it blocks. Pri-
ority inheritance is not used under P-EDF be-
cause priorities on different processors cannot
be meaningfully compared (two jobs on differ-
ent processors with equal deadlines may have
very different priorities from a per-processor
perspective: one may have the highest prior-
ity on its processor, and the other the lowest
priority on its processor). Note that, in the
case of long resources under P-EDF, a request-
ing job executes non-preemptively only if it is
not suspended. (Suspensions are not an issue
for short resources.) The group-locking mech-
anism discussed below ensures that such a job
suspends at most once per outermost request.

• Prioritize lock requests on a FIFO basis. If lock
requests are ordered on an EDF basis, then it
can be difficult to bound blocking times. In
particular, a job’s blocking time would depend
on future higher-priority job arrivals; usually
conservative assumptions are made regarding
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such arrivals, which can result in high blocking-
time estimates. The FMLP instead prioritizes
requests in FIFO order. With FIFO ordering
(and non-preemptive execution) on m proces-
sors, a request can be blocked by at most m−1
preceding requests. In most systems, m will
be rather small, and hence this bound is quite
close to being tight.

• Use a (very) simple deadlock-avoidance mech-

anism. It can be difficult to accurately
bound blocking times when complex deadlock-
avoidance mechanisms are used (such as
priority-ceiling-related mechanisms [25]). In
the FMLP, deadlock is prevented by “group-
ing” resources and allowing only one job to ac-
cess resources in any given group at any time.
Two resources are in the same group iff they
are of the same type (short or long) and re-
quests for one may be nested within those of
the other. A group lock is associated with each
resource group; before a job can access a re-
source, it must first acquire its corresponding
group lock. For short resources, group locks
are acquired using queue locks, and for long re-
sources, they are acquired using a semaphore
protocol. Note that, in the case of nested re-
source requests, all blocking incurred by a job
occurs when it attempts to acquire the corre-
sponding group lock.

Under P-EDF, it is possible that all tasks that
request long resources from a given group may be
assigned to the same processor. Such long resources
are called local (others are called global). In dealing
with local resources under P-EDF, Baker’s unipro-
cessor stack resource protocol (SRP) [2] is used in
the FMLP instead of the more complex mechanisms
outlined above. Lopez et al. [21] were the first to
propose this optimization. Note that, since there is
no notion of locality under G-EDF, this technique
cannot be used under it. It is worthwhile to note
that under P-EDF the synchronization protocol of
Gai et al. [17] is equivalent to the FMLP when all
long resource requests are local, and that of Lopez
et al. [21] is equivalent to the FMLP when all long
resource requests are local and there are no short
resource requests.

Experimental evaluation. In recent work [9], we
presented an empirical comparison of the long- and
short-resource variants of the FMLP and lock-free
and wait-free algorithms on our LITMUSRT testbed.
Lock-free and wait-free algorithms are user-level syn-
chronization alternatives to locking that can be used
when the resource in question is a shared data object.
In lock-free and wait-free object implementations,

object accesses may occur concurrently. In the lock-
free case, such accesses may “interfere” with each
other, and accesses that experience interference must
be retried. In the wait-free case, object accesses are
implemented in a non-blocking way that ensures that
each access completes in a bounded number of steps
(statement executions). In the evaluation in [9], we
first obtained system and synchronization overheads
by running benchmarks on LITMUSRT. Using these
overheads, we then conducted two sets of schedu-
lability experiments. In each, both hard and soft
real-time schedulability were considered.

In the first set of experiments, we considered
only locking mechanisms. Our goal was to deter-
mine when (if ever) suspending is better than spin-
ning. We considered a wide spectrum of lock nesting
levels and critical-section durations. In these exper-
iments, suspension-based locking never resulted in
better schedulability than spin-based locking. (On
the other hand, more processor time may be avail-
able to background jobs if suspension-based locking
is used.) In the second set of experiments, we consid-
ered specifically the problem of implementing shared
data objects. Our main objective here was to deter-
mine when (if ever) lock-free and wait-free techniques
are preferable to locking techniques. Our study fo-
cused on three representative objects: read/write
buffers, queues, and binary heaps (listed in order of
increasing complexity). In this study, schedulabil-
ity was generally better with locking, but wait-free
implementations tended to be comparable (even for
more complex objects for which wait-free implemen-
tations are often dismissed as impractical) and were
even superior for simple objects (buffers). On the
other hand, lock-free implementations were viable
only for simple objects.

2.3 Real-Time Linux

As noted earlier, there has been much recent inter-
est in real-time variants of Linux. In fact, too many
approaches have been developed for us to be able to
adequately discuss them all here. Further, there does
not even appear to be a strong consensus on what
constitutes a proper “real-time Linux.” In prac-
tice, real-time products use various approaches rang-
ing from using an unmodified stock kernel, nested
OS architectures, where Linux is scheduled as the
idle tasks of a real-time OS (RTOS), to intricate
processor-allocation schemes where the underlying
hardware is partitioned among real-time and non-
real-time applications, potentially even among mul-
tiple OSs [22].

In this paper, by “real-time Linux,” we mean
modified versions of the stock Linux kernel with im-
proved real-time capabilities that are the single top-
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level resource manager, not paravirtualized variants
such as RTLinux[30] or L4Linux[18], where real-time
tasks are not actually Linux tasks, nor other archi-
tectures where actual real-time guarantees are not
based on Linux itself. Stronger notions of “real-time”
can be provided in such systems, at the expense of a
more restricted and less familiar development envi-
ronment.

Limitations of real-time Linux. To satisfy the
strict definition of hard real-time, all worst-case over-
heads must be known in advance and accounted for.
Unfortunately, this is currently not possible in Linux,
and it is highly unlikely that it will ever be. This is
due to the many sources of unpredictability within
Linux (such as interrupt handlers and priority inver-
sions within the kernel), as well as the lack of deter-
minism on the hardware platforms on which Linux
typically runs. The latter is especially a concern,
regardless of the OS, on multiprocessor platforms.
Indeed, research on timing analysis has not matured
to the point of being able to analyze complex inter-
actions between tasks due to atomic operations, bus
locking, and bus and cache contention. Despite these
observations, there are now many advocates of us-
ing Linux to support applications that require some
notion of real-time execution. As noted by McKen-
ney [23],

I believe that Linux is ready to han-

dle applications requiring sub-millisecond

process-scheduling and interrupt laten-

cies with 99.99+ percent probabilities of

success. No, that does not cover every

imaginable real-time application, but it

does cover a very large and important

subset.

3 LITMUSRT

In this section, we present an overview of LITMUSRT

and its design.

3.1 What is LITMUSRT?

LITMUSRT is an extension of Linux that supports
a variety of real-time multiprocessor scheduling poli-
cies. In its current state, it is most useful as a testbed
within which different scheduling policies can be im-
plemented and empirically evaluated—it is not yet a
stable, production-ready system. However, our ulti-
mate goal for LITMUSRT is to create a stable sys-
tem that supports complex real-time applications on
multicore platforms.

LITMUSRT is designed in such a way that
adding support for additional scheduling policies

is straightforward—indeed, some of our currently-
supported scheduling policies were implemented and
tested in well under a week. Thus far, LITMUSRT

has been used by our group to conduct the two em-
pirical studies mentioned earlier in Section 2 [9, 11],
and in two other efforts that involved implement-
ing scheduling policies for workloads that cannot be
specified using a simple sporadic task model [4, 8].
Overall, LITMUSRT has proven to be very useful in
our work as a highly-extensible real-time scheduling
testbed, and we believe that it may also be useful to
other researchers.

LITMUSRT was implemented by modifying the
Linux 2.6.20 kernel configured to run on a symmet-
ric multiprocessor (SMP) architecture. Our partic-
ular development platform is an SMP consisting of
four 32-bit Intel(R) Xeon(TM) processors running at
2.70 GHz, with 8K instruction and data caches, and
a unified 512K L2 cache per processor, and 2 GB of
main memory.

Why provide real-time support in Linux? We
chose to create our testbed by modifying Linux in-
stead of an existing RTOS for two reasons. First,
Linux is free, open-source software that is easy to ob-
tain and modify, and is widely accepted by both de-
velopers and end users. Second, the potential client
base for LITMUSRT as it evolves will include many
real-time graphics and multimedia applications de-
veloped within our own department. The developers
of those applications actually prefer Linux as a de-
velopment platform.

Our objectives in designing LITMUSRT are in
agreement with the earlier-noted sentiments ex-
pressed by McKenney. Thus, while we purposely
limit attention to deploying scheduling and syn-
chronization algorithms for which formal analysis
exists—such algorithms should not be the weakest
link from the standpoint of timing correctness—we
acknowledge that producing system designs in any
Linux-based system in which real-time correctness
is guaranteed with certainty is not feasible. Re-
lated to this, we expect systems to be provisioned in
LITMUSRT using experimentally-determined worst-
case (average-case) values for execution costs and
system overheads in the hard (soft) real-time case,
instead of using analytically-determined, verified val-
ues. This is, in fact, the approach we have taken in
our prior work. Thus, in LITMUSRT, the term “hard
real-time” should really be interpreted to mean that
deadlines are almost never missed, and “soft real-
time” to mean that deadline tardiness almost always

remains within some bound, even if individual tasks
misbehave. These are stronger guarantees than pro-
vided by most real-time Linux variants in commercial
use today.
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3.2 Challenges

We next describe the challenges we faced in creating
LITMUSRT.

Supporting the sporadic task model. One
common requirement for all of our scheduling poli-
cies is a need to support the sporadic task model.
In order to correctly support this model within
LITMUSRT, job releases need to occur at times when
they can be handled immediately. We implemented a
tick-based scheduler with the tick representing both
a scheduling quantum and the time between consec-
utive local timer interrupts. We require jobs to be
released only at quantum boundaries, so that they
can be handled during local timer interrupts. To
achieve this, jobs need to have periods that are an
integral number of scheduling quanta; however, since
scheduling decisions can be made between quantum
boundaries when a job completes, execution costs are
allowed to be non-integral.

Aligned quanta. Some multiprocessor real-time
scheduling algorithms such as PD2 require synchro-

nized quanta support, i.e., their correctness relies on
the assumption that different processors experience
timer interrupts at the same time. Other algorithms
that do not necessarily require such support may
benefit from the existence of a uniform time base
across processors so that job releases are observed by
all processors at the same time. (One exception to
this rule is S-PD2, which requires staggered quanta.)
Standard Linux does not provide aligned quanta—
in fact, aligned quanta are not desirable in a purely
throughput-oriented system due to bus-contention is-
sues.

I/O support. Research on multiprocessor real-
time scheduling analysis has yet to produce effective
ways for accounting for disruptions caused by I/O.
Nonetheless, support for I/O is crucial for real im-
plementations. This is especially important in our
case since the primary use of our test platform is for
research, where logging data to stable storage is a
necessity in many cases.

Deterministic synchronization. Spin-based
locking in LITMUSRT (as provided by the FMLP) is
implemented using queue locks. Unfortunately, to
handle most internal synchronization, the Linux ker-
nel uses non-FIFO spin locks. This adds a source of
non-determinism that could be substantial in some
cases. Currently, it does not appear feasible to re-
place all spin locks inside the kernel with queue locks.
Thus, we must be aware of their potential impact on
the real-time guarantees that can be made.

3.3 The Design of LITMUSRT

LITMUSRT has been implemented via changes to
the Linux kernel and the creation of user-space li-
braries. Since LITMUSRT is concerned with real-
time scheduling, most kernel changes affect the
scheduler and timer interrupt code. The kernel mod-
ifications can be split into roughly three components.
The core infrastructure consists of modifications to
the Linux scheduler, as well as support structures
and services such as tracing and sorted run queues
that can be used by scheduler plugins. The scheduler

plugins encapsulate the available real-time schedul-
ing algorithms by providing functions that imple-
ment the methods of the scheduler plugin interface.
Finally, a collection of system calls provides a user-
space API for real-time tasks to interact with the
kernel. In the following subsections, we describe each
component in turn.

Note that, in the discussion that follows, the
term real-time task means tasks that are scheduled
by LITMUSRT. Normal Linux tasks that run with a
static priority from the “POSIX real-time range” are
not considered to be real-time tasks in LITMUSRT.
Since they do not follow the sporadic task model,
they are considered to be just best-effort tasks with
a high static priority.

3.4 Core Infrastructure

Unlike with conventional OS scheduling algorithms,
tasks are not always eligible to execute when sched-
uled with real-time algorithms. For example, a
sporadic task that has completed a job may not
be scheduled until its next job release. To facil-
itate the releasing and queuing of real-time tasks,
LITMUSRT provides the abstraction of a real-time

domain, which is implemented by the abstract data
structure rt domain t. rt domain t consists of a
ready queue and a release queue (as well as one lock
per queue). When a real-time domain is instanti-
ated, it is parametrized with an order function that
is used to sort tasks in the ready queue (the release
queue is ordered by ascending release time). Most
scheduling plugins in LITMUSRT use the EDF order
function. However, list sorting with various orders is
used heavily in the feedback-control EDF (FC-EDF)
algorithm, which is an adaptive scheduling algorithm
briefly described later that was recently added to
LITMUSRT [4]. Wrapper functions are provided in
the real-time domain for operations such as queu-
ing, dequeuing, and inspecting designated queue ele-
ments. This removes the need for list-handling in
most scheduler plugins, thereby reducing develop-
ment effort (and also removing a common source of
bugs).
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To realize sorted (run) queues, LITMUSRT ex-
tends the Linux list.h API with (parametrized)
functions to insert an element into a sorted list
(list insert()) and to sort lists (list qsort()).

Scheduling quanta are defined to be the intervals
between local timer interrupts. To realize aligned
quanta, LITMUSRT synchronizes timer interrupts
during boot across all processors. As explained in
greater detail later, this is done by having each pro-
cessor disable its local timer within the local timer in-
terrupt handler, enter a barrier, and restart its timer
immediately afterward. When all processors reach
the barrier, they will be simultaneously released, re-
sulting in all processors restarting their timers at ap-
proximately the same time. Using this method, we
have been able to achieve aligned quanta with an er-
ror of at most 10 µs on our test platform—in some
cases, error is as low as 1-2 µs. A slight alteration of
this method can be used to realize staggered quanta,
as required by S-PD2.

Since LITMUSRT is mainly intended as a re-
search platform, strong introspection support is re-
quired to understand system behaviors. Thus,
the core infrastructure provides several tracing fa-
cilities. With the O(1)-scheduler [6], printk()

cannot be used while a run-queue lock is held.
This limitation exists because printk() may in-
voke try to wake up(), which will acquire run-
queue locks to unblock the syslogd process. Unfor-
tunately, most of the scheduling code executes while
holding a run-queue lock, which makes debugging
difficult. Accordingly, a macro infrastructure called
TRACE() is provided in LITMUSRT as an alternative
to printk()-based debugging. The collected debug
messages are exported to user-space via a custom
character device driver. However, to avoid the re-
cursive locking issues that plague printk(), polling
is employed.

To obtain detailed insight into the schedules cre-
ated by plugins, as well as to enable performance
studies,1 a framework called sched trace() is pro-
vided to export a per-processor stream of scheduling
events to user-space (also via a custom character de-
vice driver and realized with polling).

Finally, to record fine-grained overhead measure-
ments, LITMUSRTalso contains a version of Feather-

Trace [7], a static, lightweight tracing facility devel-
oped at UNC. While TRACE()- and sched trace()-
based logging can be disabled at compile time via
configuration options, Feather-Trace is unintrusive
enough to stay enabled at all times.

The core LITMUSRT infrastructure also includes

an implementation of the MCS queue lock [24]. Ide-
ally, deterministic locking primitives should be used
throughout the kernel, but this is problematic, as
discussed earlier.

As the heart of LITMUSRT, the core infrastruc-
ture is also responsible for interfacing with the rest
of Linux. It initializes a real-time scheduler plugin
(based on a kernel command-line parameter) during
system boot. To pass control to the plugin, it hooks
into the Linux scheduler tick() and schedule()

functions. Overriding the Linux scheduler works
as follows. Real-time tasks are assigned the high-
est static Linux scheduling priority upon creation.
However, they are not kept in the standard Linux
run queues. Instead each plugin is responsible for
managing its own run queue. (Similarly, time-slice
management is also delegated to plugins for real-
time tasks.) When schedule() is invoked, control
is passed to the current scheduler plugin. If it selects
a real-time task to be scheduled on the local proces-
sor, then the task is inserted into the run queue and
the Linux scheduler is bypassed. When a real-time
task is preempted, it is removed again from the run
queue, thereby taking it out of the reach of the Linux
scheduler.

LITMUSRT has two modes of operation, real-
time and non-real-time. When started, the system is
initially in non-real-time mode. Real-time tasks are
not scheduled as long as the system is in non-real-
time mode. This feature allows complete task sys-
tems to be set up before they are scheduled, thereby
allowing for the synchronous release of the first jobs
of all tasks. The core LITMUSRT timer tick function
(rt scheduler tick()) manages transitions to and
from real-time mode.

3.5 Scheduler Plugins

As mentioned before, real-time scheduling policies
are implemented as scheduler plugins. Such plugins
are realized similarly to other pluggable components
in Linux such as file systems. To create a sched-
uler plugin, functions that realize the thirteen meth-
ods2 of the plugin interface defined by the struct
sched plugin t and described below need to be im-
plemented and registered by passing a pointer to an
instance of sched plugin t to the LITMUSRTcore.
Some of the methods are optional and do not need
to be implemented by a plugin. From the plugins
available, only one can be in use at any time. The
choice is made at boot time based on the kernel
command-line parameter rtsched. Switching to a

1For example, we studied the impact of slack scheduling on average- and worst-case response times of best-effort jobs under
EDF-HSB [8], which is an algorithm briefly described later that was designed for systems with both real-time and non-real-time
components.

2Sometimes also called “operations” or “callbacks.”

9



different plugin at run-time, while possible in the-
ory, is currently not implemented. The current ver-
sion of LITMUSRT contains the following scheduler
plugins (the first four corresponding algorithms were
described earlier):

1. P-EDF.

2. G-EDF.

3. G-NP-EDF.

4. PD2 (and S-PD2 when staggered quanta are en-
abled).

5. Partitioned EDF with synchronization support
(PSN-EDF): similar to P-EDF, except that jobs
cannot be preempted within critical sections,
and the SRP is used to handle long local
resources (see the earlier description of the
FMLP).

6. Global EDF with synchronization support
(GSN-EDF): similar to G-EDF, except that jobs
cannot be preempted within critical sections,
and priority-inheritance is employed for long
resources. To bound the time that any job may
be blocked due to non-preemptive sections in
other jobs, the m highest-priority jobs on an
m-processor system are linked to processors so
that newly-arriving, high-priority jobs cannot
preempt medium-priority jobs multiple times
due to non-preemptive sections in low-priority
jobs (see [5] for a detailed discussion of linking).

7. EDF for heterogeneous task systems (EDF-

HSB): an EDF-based approach that uses P-EDF

for hard-real-time tasks, G-EDF for soft-real-
time tasks, and methods that minimize best-
effort task response times.

8. Feedback-Control EDF (FC-EDF): an “adap-
tive” variant of G-EDF that uses feedback-
control techniques to dynamically adjust task
weights.

The thirteen methods that encompass the cur-
rent scheduler-plugin interface are described below.
As LITMUSRT gains additional features, the num-
ber of methods will grow. For example, the addition
of synchronization support introduced the last three
methods listed below. By providing reasonable de-
fault implementations, existing plugins do not have
to be changed when the interface is expanded.

1. When a new real-time task is added to the
task set, the scheduler plugin is queried with

a call to prepare task(). This allows the plu-
gin to examine the task and perform scheduler-
specific initialization. If the task does not meet
requirements imposed by the plugin, then it
can veto the acceptance of the new task. This
allows plugins to implement custom admission
tests. However, plugins do not currently im-
plement such tests.

2. Scheduler plugins are notified of tasks
that block (for any reason) by calling
task blocks(). This allows plugins to remove
blocking tasks from internal data structures.
Most plugins do not need to act on this event
because in Linux only the scheduled task can
block, and scheduled tasks are usually not kept
in the ready queue3 in LITMUSRT.

3. The common Linux wake-up function
try to wake up() invokes the plugin method
wake up task() if it determines that the task
in question is a real-time task. LITMUSRT

makes sure that this method is only called once
per blocking task, and only if task blocks()

was called previously, even if multiple calls to
try to wake up() are initiated. The mecha-
nism works correctly even if the wake-up occurs
before the task could block (e.g., if the wake
up occurs before the task in question could
block by calling schedule() with its state set
to TASK UNINTERRUPTIBLE, which may happen
when I/O operations complete very quickly).

4. When a real-time task exits, scheduler plug-
ins are notified with a call to tear down. To
avoid memory leaks, a plugin should free any
resources that it allocated for the exiting task.

5. When the system transitions to or from real-
time mode, scheduler plugins are notified by
a call to mode change(). After being so noti-
fied, the plugin should place all real-time tasks
in state TASK RUNNING in the release queue for
immediate release.

6. Real-time scheduler plugins are notified of
each timer tick on each processor by a call
to scheduler tick(), regardless of whether a
real-time task is scheduled or not. This en-
ables scheduler plugins to release jobs and to
preempt any task (real-time or non-real-time)
at quantum boundaries.

7. The main scheduling function is schedule().
A plugin should select which real-time task to

3To be more accurate, there is one ready queue and one release queue under global algorithms, and one of each such queue
per processor under partitioned algorithms.
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execute next. The Linux scheduler will only be
consulted if this method selects no task.

8. To prevent race conditions, global schedulers
must ensure that a task cannot be selected
for execution on one processor before a con-
text switch involving that task has finished on
a different processor, otherwise stack corrup-
tion could occur. One way to ensure this is to
only re-insert a preempted task into the ready
queue after the context switch has completed.
For that reason, finish switch() is called af-
ter every context switch that involved a real-
time task.

9. Individual jobs of a real-time task may com-
plete early. In that case, the task should be
put back into the release queue, where it must
remain until its next job release. To notify
a scheduler of such a condition, the method
sleep next period() is invoked.

10. Certain schedulers, such as EDF-HSB, have
parameters that affect how tasks are sched-
uled. In order to configure scheduler plug-
ins through a unified interface, the method
scheduler setup() was introduced. However,
it is considered to be deprecated and will be re-
moved in a future release because it duplicates
functionality that is available through the proc
file system.

The remaining three methods pertain to the im-
plementation of the FMLP. Supporting priority-
inheritance is optional for plugins, and currently only
the plugins implementing the FMLP (PSN-EDF and
GSN-EDF) implement this support.

11. When a task that was blocked on a long-
resource group lock is unblocked, it may have
to inherit the priority of a task that is located
behind it in the FIFO wait queue for that group
lock. To check for that condition, the long-
resource code calls inherit priority().

12. When a task releases a long-resource group
lock, it may have to relinquish an inher-
ited priority. This is done by calling
return priority().

13. When a task blocks on a long-resource group
lock, it may have a higher priority than any
other task in the wait queue for that group lock
(if any). In that case, the priority of the lock-
holder should be raised. The long-resource
code calls pi block() when a task blocks on
a group lock to account for that situation.

3.6 System Call API

LITMUSRT introduces a number of new system calls
to Linux. While some of these system calls can
be used directly, most of them are intended to be
used by liblitmus, a user-space library that provides
higher-level abstractions. The introduced system
calls are organized by purpose into five groups: man-
aging real-time tasks, querying state information,
controlling job releases, system setup, and synchro-
nization.

Real-time task management. Three system
calls were introduced for real-time task management.
Real-time tasks are created in three steps. First, a
new task is created with the Linux clone(2) system
call (the flag CLONE REALTIME must be given). The
child task will be started in the state TASK STOPPED

to give the creator time to properly configure the
new real-time task. The parent task can then config-
ure the child with either the set rt task param()

(for sporadic tasks) or the set service levels()

(for adaptive tasks) system call. Once it is set up,
the new task is added to the real-time task set with
the system call prepare rt task(). Note that this
API currently prohibits real-time tasks from config-
uring themselves. The reasons for this limitation are
mostly historic, and we plan to make real-time task
creation more flexible in a future release.

State information. Four system calls were
added to allow real-time tasks to query infor-
mation about the system and themselves. The
currently-active scheduling policy can be obtained
with sched getpolicy(). Task-specific informa-
tion can be obtained with get rt task param(),
which retrieves a sporadic task’s parameters such
as its worst-case execution time and period,
get cur service level(), which only applies to
adaptive tasks, and get job no(), which returns the
sequence number (starting at zero) for the task’s cur-
rent job.

Job control. There are two different system calls
to signal the completion of a job. The simple one,
sleep next period(), completes the current job un-
conditionally and places the invoking task on the
release queue. This allows for a straightforward
real-time task implementation. However, it has a
subtle, potentially-unwanted behavior when a job
overruns its allocation. In that case, the kernel
will have already advanced to the next job by the
time the job completion is signaled from user-space.
Since sleep next period() works unconditionally,
this will effectively skip the job after an overrun
(which could be the desired behavior in some cases
to control overload). To account for this situation, a
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second system call, wait for job no(), was added
that allows the job that should be released next to
be specified. If that job has already been released
(e.g., due to an overrun of the previous job), then
the system call returns immediately. It also allows
a real-time task to skip several jobs by specifying a
job release in the future.

System setup. Scheduler-specific settings can
be configured with the scheduler setup() sys-
tem call. Mode transitions are initiated with the
set rt mode() system call.

Synchronization. To support the FMLP, eleven
system calls have been introduced. Eight of these
provide support for long resources: X sema init(),
for allocation, X sema free()), for de-allocation,
X down(), for acquisition, and X up(), for release,
where X is either pi (for non-SRP-controlled re-
sources4) or srp (for SRP-controlled resources in
P-EDF). Further, SRP-controlled resources also re-
quire real-time tasks to register their intent to ac-
cess SRP-controlled resources so that priority ceilings
can be correctly computed. This is done using the
reg task srp sem() system call.

To properly support spin-based resource access
under the FMLP, real-time tasks need to become non-
preemptive for short periods in user-space. We im-
plemented non-preemptive sections by letting each
real-time task register the address of a flag in user-
space during initialization. This is done using the
system call register np flag(). A task sets its flag
prior to entering a non-preemptive section. When a
delayed preemption is required because the task to
preempt is executing non-preemptively (as indicated
by its flag), the kernel sets a second flag in user-
space. When a task leaves a non-preemptive section,
it resets its flag and checks the kernel’s flag. If it is
set, then the task invokes the system call exit np()

to both reset the kernel flag and call the scheduler.
This technique requires only one system call in the
case of a delayed preemption, and zero otherwise.

4 Implementation

Our implementation efforts in developing
LITMUSRT have focused on several key tasks: devis-
ing support for different quanta alignments, incor-
porating multiprocessor scheduling algorithms into
Linux using our plugin interface, providing support
for various synchronization mechanisms, and devel-
oping user-space libraries that provide an interface
for a user wishing to use LITMUSRT to schedule a
real-time workload.

4.1 Supporting Scheduling Quanta

We first discuss our methods for supporting in Linux
aligned and staggered quanta. Aligned quanta pro-
vide a consistent view of time that is convenient
when all tasks have periods that are some multiple
of the quantum size. However, in EDF-scheduling
variants, scheduling decisions (and hence quantum
allocations) do not always occur at timer interrupts,
as is the case with PD2 and S-PD2. For example, if
a job J in an EDF scheme completes between timer
interrupts, then a new job J ′ may be scheduled. In
our implementation, such a job J ′ can be preempted
at the next timer interrupt, if a higher-priority job
is released at that time. In such a case, J ′ would
have executed for less than a full quantum prior to
its preemption.

Before describing how we achieved different
quanta alignments, we first digress to provide a brief
introduction to the local timer interrupt hardware
on our test platform and its operation in Linux.
This overview is based heavily on material from [6],
and the architecture of our Intel-based test plat-
form. Kernel-related information should be relevant
through Linux version 2.6.20, the version on which
LITMUSRT was developed.

Introduction to local timers. In our hard-
ware configuration, each processor contains an Ad-
vanced Programmable Interrupt Controller (APIC),
which is on the same chip as the processor it-
self. Each APIC contains a local timer that gen-
erates local timer interrupts on each processor, re-
sulting in a call to smp apic timer interrupt(),
the local timer interrupt handler. This handler
then calls smp local timer interrupt(), which
calls update process times(), which results in a
call to scheduler tick(), the function that is re-
sponsible for making scheduling decisions during this
interrupt. Thus, these timer interrupts represent the
quantum boundaries for each processor in our sys-
tem. As each APIC is programmed to generate in-
terrupts at the same frequency on all processors, the
interval between timer interrupts is identical across
all processors. However, these interrupts do not nec-
essarily coincide. Creating such an alignment would
require that all local timers be started at the same
time. In Linux, this is not guaranteed, since the time
at which each processor starts its local timer is not
predictable.

Selecting the quantum size. Given that we re-
quire task periods to be multiples of the quantum
size, the size of our scheduling quantum should be
reasonably small. In our case, we chose the highest

4pi stands for “priority inheritance.” The pi system calls are also used for non-SRP-controlled resources in P-EDF, even
though priority inheritance is not used for such resources.
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natively-supported timer frequency, 1000 Hz, result-
ing in a quantum size of 1 ms. Experimentation with
higher timer frequencies resulted in an unstable sys-
tem, and require a more in-depth study to determine
the feasibility of their use.

Supporting quanta alignments. We supported
aligned and staggered quanta by aligning local timer
interrupts across processors as follows.

• After initializing local timers normally at sys-
tem boot, each processor waits for some num-
ber of local timer interrupts to be gener-
ated before attempting to align quanta. This
allows various parts of the system to ini-
tialize and stabilize prior to quantum align-
ment. We conservatively wait for thirty
seconds before attempting to align inter-
rupts. We achieved this by adding a check
within the Linux local timer interrupt handler,
smp local timer interrupt(), that calls our
function synchronize quanta() when enough
interrupts have been generated.

• Within our synchronize quanta() call, the
local timer for the calling processor is
disabled (by calling the Linux function
disable APIC timer()), and the calling pro-
cessor waits at a barrier. This barrier is imple-
mented through the use of a variable of type
atomic t, so that concurrent reads and incre-
ments are performed correctly. Each processor
may only pass through the barrier once all pro-
cessors have reached it. As a result, all proces-
sors will pass through the barrier at the same
time.

• If staggered quanta are desired, then each pro-
cessor will delay for an additional amount of
time immediately after passing through the
barrier, so that quantum boundaries on differ-
ent processors will be evenly distributed over
time. This time is equal to the logical CPU
identifier of the processor (the result of calling
smp processor id()) multiplied by the quan-
tum size (1 ms) divided by the number of
processors. For example, with a 1-ms quan-
tum size and four processors, some processor
(ideally) reaches a quantum boundary every
250 µs.

• Finally, each processor restarts its local
APIC timer by calling the Linux func-
tions setup APIC LVTT() and enable

APIC timer().

Staggering delays were realized using a non-timer-
based kernel delay function called udelay(), which

is implemented using a software loop with microsec-
ond granularity.

The result of this method is that timer inter-
rupts are either aligned or staggered, as required.
A boot option allows us to specify whether aligned
or staggered quanta should be provided. Note that
we can get aligned quanta even if quanta were sub-
stantially misaligned before using this method. Such
a statement cannot be made about standard Linux.
Also, note that other (non-timer) interrupts cannot
interfere significantly with this method of aligning
or staggering quanta, since it relies on barriers, and
the network and most I/O devices are not yet ini-
tialized. (It is worth noting that this approach was
devised after considering many that did not work, in-
cluding approaches that use a global timer interrupt
distributed with interprocessor interrupts (IPIs), and
various proposed patches.)

Processor sleep states and interrupts. Some
Intel processors may enter sleep states where local
timer interrupts are not reliably generated by the
local APIC timers, if they are generated at all. In
such cases, the method described above would not be
a reliable way of providing aligned quanta. To gener-
ate local timer interrupts more reliably in this case,
Linux disables the local APIC timers for such proces-
sors and instead broadcasts a global interrupt (gen-
erated by a single external timer source) through the
use of IPIs. These interrupts then result in the ap-
propriate calls of the smp apic timer interrupt()

interrupt handler. While this fix generates inter-
rupts more reliably, it is problematic for our im-
plementation of aligned/staggered quanta, since the
time at which IPI signals arrive at each APIC is not
much more predictable than the times at which lo-
cal timer interrupts are invoked at each processor
without our method. While the processors that are
part of our test platform do not contain the offending
sleep states, allowing us to avoid this issue, it high-
lights an important point. That is, we will need to
be able to support aligned quanta in systems where
local timers are unreliable or non-existent. Such is
likely to be the case for many multicore platforms.

Future directions. In the near future, we plan
to begin the next major development cycle of
LITMUSRT during which LITMUSRT will be ported
to two new architectures (Intel and Sun multicore
platforms) and the most recent version of the Linux
kernel. Starting with kernel version 2.6.22, timer
interrupts are no longer generated at a static fre-
quency, and the impact of this change will be ex-
plored at this time. Additionally, depending on the
timer hardware provided with the Intel- and Sun-
based machines that we plan to acquire, certain de-
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tails could change and require substantial changes to
the implementation described here.

4.2 Scheduler Plugin Implementation

We now discuss the details of how we sup-
port scheduling algorithms within LITMUSRT by
considering an example, namely our plugin for
G-EDF. Most of the scheduling decisions in this
plugin are made in the tick handler function
gedf scheduler tick() and the scheduling func-
tion gedf schedule(), both of which are consid-
ered in detail below. (These two functions imple-
ment the scheduler tick() and schedule() meth-
ods described earlier in Section 3.5 when discussing
the plugin interface.) The G-EDF plugin uses the
sched trace() framework described earlier to ex-
port the execution history to user space (if enabled
in the kernel configuration).

State information. The G-EDF scheduler uses
the real-time domain abstraction supplied by the
LITMUSRT core infrastructure, parametrized with
the EDF order function. Since G-EDF is a global
scheduling algorithm, there is exactly one real-time
domain for the whole system that manages runnable
and to-be-released tasks. Further, G-EDF maintains
per-processor state that tracks whether a processor
is currently executing a real-time task, and if so, that
task’s current deadline. In addition, a per-processor
will schedule flag is maintained to indicate that
a processor is about to reschedule (i.e., it is about
to invoke the scheduler). This flag is used to avoid
the repeated sending of IPIs to initiate rescheduling
across processors in cases where a processor has con-
currently determined that rescheduling is necessary.

Preemption check. Each processor’s state infor-
mation is stored in a struct that includes the dead-
line of its currently-running task (if there is no
such task, the deadline is taken to be infinite),
and these structs are organized collectively in a
linked list that is sorted in increasing deadline or-
der. This list, called the “processor queue,” is used
to quickly determine whether preemptions are nec-
essary on job releases. The preemption-check func-
tion gedf check resched() (registered as part of
the real-time domain initialization), which is called
whenever a task has been added to the ready queue,
only needs to compare the deadline (which may be
infinite) stored for the last processor in the pro-
cessor queue with that of the highest-priority task
in the ready queue (the first task in the queue) to
determine whether preemptions are necessary. If

preemptions are determined to be necessary, then
gedf check resched() sends IPIs to the appropri-
ate processors to cause rescheduling to occur.

Scheduler tick. When the function gedf

scheduler tick() is invoked on some processor,
it updates the budget of the currently-running real-
time task (if there is one) on that processor. It
also checks the global real-time domain for new job
releases.

Since the Linux scheduler tick routine is by-
passed for real-time tasks, the management of pro-
cessor time budgets is delegated to the scheduler
plugins. In the G-EDF plugin, the budget of a
task is decreased each time it incurs a scheduler
tick, which is similar to the stock Linux sched-
uler (in version 2.6.20).5 When the budget of the
currently-running real-time task is exhausted, a pre-
emption is initiated by returning FORCE RESCHED to
the LITMUSRT core tick handler. Further, the pro-
cessor’s will schedule flag is set, as is a flag in the
task control block that indicates a job completion.

If the system is in real-time mode, then the real-
time domain is also checked for new job releases after
acquiring the release-queue lock. In the case that a
job has to be released, the ready-queue lock is also ac-
quired and the corresponding task is transferred from
the release queue to the ready queue. This triggers
the preemption-check function as discussed above. If
a preemption is required due to the job release, then
the lowest-priority processor is forced to reschedule.

Task selection. The function gedf schedule() is
invoked whenever a new real-time task needs to be
selected for execution. If it is invoked upon a job
completion, then some ready task (if one exists) will
be selected to execute. However, in other cases, it
is possible that a new task is not selected because
the currently-running tasks have higher priority than
any other ready task. To check for job completions
(either determined by the scheduler tick function or
signaled by the completing task using one of the job-
control system calls described in Section 3.6), the
real-time flag field in the task control block is con-
sulted. If it is set to RT F SLEEP, then the completing
task is prepared for its next job release by advancing
its deadline and release fields appropriately.

If the system is currently in real-time mode, then
the currently-scheduled real-time job (if there is one)
on the processor where gedf schedule() is invoked
is examined. If it is the highest-priority pending job,
then no change is required and gedf schedule() re-
turns the currently-scheduled task. Note that this
scenario may occur when a task experiences signifi-

5Linux version 2.6.23 changes this behavior to timestamp-based accounting with nanosecond resolution. We intend to update
LITMUSRT to use the same—much more accurate—approach in a future release.
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cant tardiness.
On the other hand, if a preemption is required,

then the highest-priority task is dequeued from the
ready queue and selected as the next task to be
scheduled on the local processor. To actually sched-
ule the new task, it is inserted into the Linux run
queue. Correspondingly, the prior task is removed
from the Linux run queue. Finally, the position of
the processor’s entry in the processor queue is up-
dated to reflect the new deadline.

Note that, if a preemption occurs, then the pre-
empted task will not be requeued until the context
switch has been completed. The delayed reinsertion
into the real-time domain is performed in the func-
tion gedf finish switch() (which is an implemen-
tation of the finish switch() method mentioned in
Section 3.5).

Other methods. G-EDF provides the gedf

prepare task() function to add newly-created real-
time tasks to the current task set. Upon initial
arrival, a task’s Linux scheduling priority is set
to the maximum static priority, its state is set to
TASK RUNNING (recall from Section 3.6 that it was
created in state TASK STOPPED), and its first job’s re-
lease time and deadline are initialized. After initial-
ization, it is added to the release queue. G-EDF does
not have to handle blocking tasks since all blocking
is implemented using native Linux routines, which
ensure that any currently-executing real-time task
has been removed from the run queue by the time
the plugin’s method is invoked. Similarly, there
is no need to perform per-task tear-down opera-
tions since no resources are allocated for individ-
ual tasks. The G-EDF mode-change handler reini-
tializes the per-processor state and prepares new job
releases of all real-time tasks to occur synchronously
ten milliseconds after the mode change. The func-
tionality needed to provide proper support for the
sleep next period() system call is provided by the
LITMUSRTcore function edf sleep next period()

since no scheduler-specific behavior is required.

4.3 User-Space Libraries

As mentioned before, the system call API is not in-
tended to be used directly. Instead, real-time tasks
should use the two user-space libraries liblitmus

(real-time task creation and control) and libso

(shared objects) that abstract low-level kernel op-
erations.

liblitmus, the task creation and control library,
provides wrappers around all system calls and also
provides convenience functions that perform typical
initialization tasks such as locking a newly-created
task’s virtual memory into the system’s memory to

avoid page faults and registering the location of the
task’s non-preemptive section flag. Further, it also
provides some utilities intended to be used in shell
scripts, most notably rt launch, which can be used
to start arbitrary programs as real-time tasks.

The real-time shared object library, libso, uses
the synchronization services provided by LITMUSRT

and the Linux system call mmap(2) to provide the ab-
straction of FMLP-controlled shared objects as well
as process naming and in-object memory manage-
ment. Short resource group locks are implemented
in libso by using the MCS queue lock algorithm [24]
together with the flag-based mechanism described
earlier in Section 3.6 to signal non-preemptive sec-
tions.

5 Conclusion

In this paper, we have presented an overview of
LITMUSRT, an extension to Linux that we have de-
veloped to support real-time workloads on multipro-
cessor systems, and we discussed its current imple-
mentation status. At the heart of LITMUSRT is a
scheduler plugin interface that allows new schedul-
ing algorithms to be added in a reasonably straight-
forward manner—additional subsystems of impor-
tance include user-space libraries that support the
creation and execution of real-time workloads, as
well as real-time task synchronization. Given cur-
rent trends in processor design, and recent interest in
providing real-time support within Linux, we believe
that this work is timely and could provide a foun-
dation on which other researchers and developers
can create and empirically evaluate multiprocessor
real-time scheduling and synchronization approaches
within Linux.

Future work. A number of directions exist for ex-
tending LITMUSRT. First, we want quantum align-
ments to be re-synchronized periodically, so that
alignments are corrected should they become out-of-
sync. (On our platform, in our experience, this is not
a common occurrence, but it could be on other plat-
forms.) Second, we want to provide support for finer-
grained locking in global schedulers. Third, we want
to reduce scheduling overheads in global algorithms
so that they are logarithmic or constant in the num-
ber of processors or logical CPUs, instead of linear,
as they are now. This will become especially impor-
tant as the number of logical CPUs (cores or hard-
ware threads) on a platform increases. Fourth, there
are several parts of the implementation that need to
be debugged or made more robust to erroneous use.
Fifth, we wish to use Feather-Trace as a mechanism
to improve the efficiency of the sched trace() func-
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tion that we provide to facilitate scheduler debugging
and evaluation. Finally, we are planning a large de-
velopment cycle in which we will port LITMUSRT to
both the most recent kernel version, and two mul-
ticore architectures: a quad-processor Intel machine
consisting of quad-core chips (16 total cores), and
the Sun UltraSPARC T2 (Niagara 2), which con-
sists of eight cores with eight hardware threads per
core (eight total cores, 64 total hardware threads).
Our goal is to evaluate both LITMUSRT and various
scheduling approaches in environments with shared
caches and higher core counts. This development
cycle will also consider issues related to significant
changes to the Linux scheduler, and achieving the
quantum alignments desired in a kernel with a sub-
stantially different timer interrupt infrastructure, on
different timer hardware.
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