
L4FIFO: Task Communication for DROPS

Cheng Guanghui, Nicholas MC Guire, Li Lian, Zhou Qingguo

Distributed and Embedded System Lab

School of Information Science and Engineering

Lanzhou University

Tianshui South Road 222,Lanzhou,P.R.China

cheng.guanghui@gmail.com

Abstract

The Dresden Real-Time Operating Systems Project (DROPS) is a research project aiming at the
support of applications with Quality of Service requirements[1]. In the DROPS project a key component
is L4Linux, the Linux server on top of the L4 microkernel[2]. Now DROPS could provide to concurrent
execution of many instances of L4Linux like Xen but there is no feasible interface to implement com-
munication between several instances of l4linux or l4linux and real-time task. In this paper the author
design an efficient and safety communication protocol named l4fifo for these communications. L4fifo is
an implementation of FIFO protocol for DROPS system mainly considering about efficiency and safety.

1 Introduction

DROPS originally aimed to contruct distributed
real-time operating system with guaranteeing a cer-
tain level of services to applications. Different from
RTLinux/RTAI and other real-time extension of
time sharing system the DROPS is subject for real-
time capacity from scratch based on L4 microkernel.
Later L4Linux is introduced as a key component into
DROPS system and the DROPS could also co-exist
with real-time tasks and non real-time task cocur-
rently like RTLinux/RTAI. Similary both of them
could use modified Linux named L4Linux as a time-
sharing system for general purpose.

Fiasco is a L4 implementation by TU-Dresden
operating systems group and now it could fu-
fill the L4 version 2 standard. In contrast with
L4Ka::Pistachio and NICTA::Pistachio-embedded
Fiasco is real-time capacity with preemptibiltiy. Fi-
asco is the base in the whole DROPS system.

L4Linux could provide the full compatibility for
Linux (now support x86 and ARM) and have a little
performance loss comparing with native Linux[3][4].
Typically in the DROPS system L4Linux coud be
executed concurrently as many instances with only
limitation of hardware performances.

Although under-constructed L4Env is a pro-
gramming environment for application develop-
ment on top of the L4 microkernel family and
it could provided such as System Resource Man-
ager(roottask), Dataspace management (dm phys,
dm mem,dm generic), Linux Device Driver Eniron-
ment (dde linux), a full Uclibc support, etc. But
compared to popular POSIX it is not enough and it
is necessary to provide more feasible and more stan-
dard interface for developers[5].

This paper is organized as following. In the sec-
tion 2 we describle the l4fifo architecture.The lock-
free mechanism will be shown in the section 3 and
Section 4 describles the pinned memory. Section 5
discusses dataspace protection and In the section 5
there is a future work description.

2 L4FIFO Architecture

From the abstraction we know l4fifo design must con-
sider the safety and efficiency because the original
aim of L4 is for how to make operating system more
safety and how to make the microkernel have the
least performance loss[6]. Therefore, communication
itself is not first but it is indeed the basic function of

1

l4fifo and many methods or mechanism will be used
to purse the safety and efficiency.

In the l4 architecture, anthing is server which
could provide service for anything calling this server
as following.

FIGURE 1: Architecture of L4FIFO

3 Lock free

Mutual exclusion has been a well-known resolution
for sharing resources in the computer system for a
long time and but lock-based algorithm will have
more performance loss comparing to lock-free algo-
rithms. In the real-time system the lock-based al-
gorithms will cause the priority inversion problem
especially in the communication between different
prioriry processes. Nonblocking or lock-free algo-
rithms could provide provide full preemptability and
allow for multi-CPU concurrency. In addtion, pri-
ority inversion could be avoided[7]. These features
cause lock-free algorithms very interesting for real-
time systems. Especially L4/Fiasco is a lock-free-
based real-time microkernel[7].

L4fifo implementation is based on lock-free
mechanism. Basically all the lock-free algorithms
base on compare-and-swap on top of CAS (x86/32
,x86/64) or CAS2(x86/64)[7]. The choice of CAS
or CAS2 is independent on the complexity of data
structure and the target architecture. In the l4fifo
what we need to compare and swap is the length of
address which directly decides to use CAS or CAS2.

In the l4fifo because the reader or writer could
operate the same address in a short period so that
the other doesn’t know whether the target address
has been modified. So the reader or writer needs
to check the end address of reading or writing last
time and if they are not equal the last address could
overwrite the present address and the last address is
correct. The following is CAS code segment in the
IA-32 Arechitecture.

#define CAS(adr, ov, nv) ({ \

__typeof__(ov) ret; \

__asm__ __volatile__(\

"cmpxchg %3 %1" \

:"=a"(ret), "=m"(*(volatile char *)(adr)) \

:"a"(ov), "r"(nv) \

); \

ret; \

})

4 Pinned memory

fifo is used for communications between different
tasks and it has to take frequent writing and over-
writing with application execution. In common when
the memory demand is sufficiently slow the system
will move part of memory image to the hard disk and
when the system is free the removed the memory im-
age will be back to the system. After the frequent-
used memory belong int to the l4fifo is moved to the
hard disk the next l4fifo operation has to wait for
the reinitialization of l4fifo memory. In this case fifo
operation will be slow especially the system is very
busy.

A good method is to enable these memory pages
to be maitained in the system all the time. Of course
if there are too many pinned memory segments in the
system the swap partition has a bad efficiency with
the replacement of memory region.That means that
once the memory is mapped to a client, no pagefaults
will occur accessing that memory.

Luckily, in the l4env packages, the dm phys
could provide pinned memory directly. We could
use dm phys to create a 16M dataspaces subject for
l4fifo.

dm_phys Cpool=1,0x00100000,0x00300000,0x00400000,fif

5 Dataspace protection

Dataspace is a concept from SawMill virtual memory
framework in the context of L4 microkernel and it is
an unstructed data container[8]. For examples datas-
paces are files, anonymous memory, frame buffer, etc.

Acess to any form memory is provided via datas-
paces which are unstructed data containters for any
type of data. Dataspaces are provided by dataspaces
managers. Clients call dataspaces manager to create
data space and obtain a data space descriptor. A
descriptor can be used to map dataspaces from one
address space to another using IPC. Access rights can
be restricted in such mapping operations. Dataspace
managers construct from other dataspaces of which
some may represent physical memory[7].

When the fifo client requests data from fifo
server the dataspace manager provides a mapping

2

to the client and the client could proceed to use the
data.dataspace is better to be sure the safety of data
acess.

6 Future work

This paper is only a design technical report and all
the implementation of l4fifo is not finished yet. So in
the future the first work is to get an available l4fifo
not a thesis. And then we should have a benchmark
about the l4fifo and check its efficiency.

References

[1] http://os.inf.tu-dresden.de/drops/overview.html

[2] http://os.inf.tu-dresden.de/L4/
LinuxOnL4/overview.shtml

[3] The Performance of 08-Kernel-based Syst
H.Haretig, M. Hohmuth, J. Liedtke, S. oberg,
J. Wolter Appeared at 16th SOSP,, Technicl

University Dresden

[4] General Performance Assesement of the
L4/Fiasco Micro-kernel Cheng Guanghui,
Zhou Qingguo*, Nicholas Mc Guire, Wu Wen-
zhong ,Appeared at 7th RTLinux Workshop
2006, Lanzhou, China

[5] http://os.inf.tu-dresden.de/l4env/doc/index.xml

[6] Can we make operating systems reliable and
secure?, Tanenbaum, A.S. HerderJ.N. Bos,
H,Dept. of Comput. Sci., Vrije Univ., Am-

sterdam, Netherlands IEEE Xplore

[7] Pragmatic Nonblocking Synchronization for Real-
Time Systems, Michael Hohmuth Hermann
H01rtig Proceedings of the General Track: 2002

USENIX Annual Technical Conference

/bibitempaper 8 The SawMill framework for vir-
tual memory diversity Aron, M.; Yoonho Park;
Jaeger, T.; Liedtke, J.; Elphinstone, K.; Deller,
L. Computer Systems Architecture Conference,
2001. ACSAC 2001. Proceedings. 6th Aus-

tralasian

[8] PCI 9656BA Data Book Version 1.0,2003, PLX
Technology, Inc.

[9] RTLinux3.1 Getting Started with RTLinux,2001,
FSM Labs, Inc.

[10] Advanced filesystem implementers guide, intro-
ducing XFS, Daniel Robbins,01 Jan 2002,Gen-

too TechnologiesInc.

3

