
PaRTiKle OS, a replacement for the core of RTLinux-GPL

S. Peiro, M. Masmano, I. Ripoll, and A. Crespo

Industrial Informatics and Real-Time Systems Group

Universidad Politecnica de Valencia, Spain

{speiro,mmasmano,iripoll,acrespo}@ai2.upv.es

Abstract

RTLinux-GPL1 is an RTOS which uses a dual-kernel approach, that is, executing a real-time kernel
(RTLinux-GPL itself) jointly with a general purpose OS (Linux). By using this approach, complex
real-time application with both, hard and soft real-time requirements can be implemented easier.

However, the core of RTLinux-GPL is getting bloated and hard to maintain, with several out-of-date
and not-working features. Moreover it’s future is unclear regarding the adquisition of the RTLinux-GPL
patent by Wind River. This facts forced us to consider either to reengage its code or to start a new kernel
from scratch to replace it. Although the first option seems to be more suitable, since RTLinux-GPL is a
mature and stable code, important design flaws (specifically, problems when a RTLinux-GPL application
deals with signals and system calls) has headed us towards the second one.

In this paper we present this new core, called PaRTiKle, which is intended to be downward compatible
with existing RTLinux-GPL applications.

1 Introduction

RTLinux-GPL is a hard Real-Time executive which
uses an original approach to develop complex hard
real-time applications in a fairly easy way: executing
a hard RTOS (RTLinux itself) jointly with Linux in
the same box. This approach enables splitting up
a hard real-time application according to its critical-
ity, the part with deadline requirements is run on the
RTOS while the part with no “special” time require-
ments is executed on Linux.

RTLinux-GPL has been successfully used in a
large amount of real-time applications such as:

• Satellite On-Board Data Processing.
• Real-time spacecraft simulation and hardware-

in-the-loop testing.
• Real-time solution in petroleum industrys Cy-

ber data acquisition simulation system.
• RTLinux Based Online Real Time Simulator

of SPMSM Using the Block Pulse Approxima-
tion.

• etc.

However, several factors (among others: unmain-
tainability of the RTLinux-GPL’s code, uncertainty
about WindRiver’s next step, etc.) have pushed us
to implement a new real-time kernel, PaRTiKle.

In this new kernel we have meant to go a step
further than in RTLinux-GPL, since PaRTiKle, un-
like RTLinux-GPLhas been designed to be an RTOS
on its own. That is, PaRTiKle does not have any
knowledge either about virtualisation nor Linux but
the virtualisation task is left to XtratuM [2, 3]. In
fact, our current implementation can be executed in
multiple execution environments: as a Linux regular
application, on the top a bare machine and, eventu-
ally, as a XtratuM domain.

In this paper we describe the architecture of this
new kernel, and compare it with RTLinux-GPL.

This paper is organised as follows: a brief
overview of RTLinux-GPL and PaRTiKle is given in
section 2 and 3 respectively. Section 4 compares the
features of both kernels. Section 5 describes the pro-
cess of configuring and compiling a PaRTiKle kernel
jointly with an application. Section 6 describes the
live-cd. Conclusions and future work can be found
in the sections 7 and 8, respectively.

2 RTLinux-GPL brief overview

RTLinux-GPL [5] is a real-time operating system
that uses a dual-kernel approach (figure 1). One
of them is the Linux kernel, which provides all the

1RTLinux is a registered trademark of Wind River Systems, Inc.

1

features of a general purpose OS, whereas the other
one is the RTLinux-GPL kernel, which fits hard real-
time requirements. Applications are coded using the
POSIX Threads (IEEE 1003.1b) API, and the appli-
cation code is loaded into the kernel space by means
of Linux Kernel Modules (LKM) infrastructure.

To provide real-time requirements RTLinux-
GPL, takes over interrupts and executes the Linux
kernel as the lowest priority task in the system.
RTLinux-GPL executive itself is non-preemptible.

FIGURE 1: RTLinux-GPL architecture

3 PaRTiKle overview

PaRTiKle is a new embedded real-time operat-
ing system designed to be as compatible with the
POSIX.51 [7] standard as possible.

PaRTiKle has been designed bearing the follow-
ing ideas in mind:

• being as portable, configurable and maintain-
able as possible.

• support for multiple execution environments,
allowing, thus, to execute the same application
code (without any modification) to be executed
under different environments (so far): in a bare
machine, a Linux regular process and as a hy-
pervisor domain.

• support for multiple programming languages,
currently PaRTiKle supports Ada, C, C++,
Java (the current support of this last language
is only supported when GCC compiler version
3.4 is used).

3.1 Architecture

Figure 2 shows the architecture of PaRTiKle, as can
be seen, the kernel can be split up in two well-
differentiated and isolated parts, the kernel context
(on the bottom) and the application context (on the
top). Both parts interact via the PaRTiKle’s sys-
tem calls (entry point). The way this mechanism is

implemented is architecture dependent. For exam-
ple, in the x86 stand-alone version, it is implemented
through segmentation, each context is held in a dif-
ferent segment. A system call is performed through
a change of segment (lcall assembler instruction).
An attempt from the application to access the kernel
memory space triggers a processor exception which
winds up the execution of the whole application.

FIGURE 2: PaRTiKle architecture

The PaRTiKle kernel has been designed and im-
plemented as a set of hardware-independent subsys-
tems and a set of drivers. The drivers can only
be accessed through the hardware abstraction layer
(HAL). Briefly, these subsystems are:

• Scheduler: currently, the scheduler only im-
plements a Rate-Monotonic (RM) scheduling
policy, however, we expect to implement other
policies in a close future.

• Physical memory management: this subsystem
is in charge of managing the free available phys-
ical memory.

• Timing management: this subsystem is in
charge of managing the hardware timer and
clock, providing multiple virtual timers to the
kernel and the application.

• Kernel libc: a minimal C library used only by
the kernel. This library cannot be accessed by
the application.

• System calls: as mentioned above, all kernel
services are provided via a single entry point.
Figure 3 shows how the system call mecha-
nism is implemented, when an application in-
vokes a system call, it is processed as a jump
to Entry point with the appropriate parame-
ters. Once inside the kernel context, a call to
the suitable system call is performed and the
returned value is returned to the application.

On the other hand, in the application context,
PaRTiKle provides a standard C library. And, op-

2

tionally, the correspondent language run-time sup-
port (currently, Ada, C++ and GCJ run-times are
available, although the last one is out-of-date).

FIGURE 3: PaRTiKle’s system call mech-

anism

3.2 Execution Environments

PaRTiKle has been designed to be run under sev-
eral different execution environments. So far, three
different execution environments are available, all of
them for the x86 architecture: 1) on a bare machine,
2) as a Linux regular process and 3) as a domain
of XtratuM [2], giving this last alternative the pos-
sibility of executing PaRTiKle jointly with another
general purpose operating system (Linux so far), as
RTLinux-GPL does.

1. On a bare machine: PaRTiKle is the only sys-
tem executed in the system, it is in charge of
managing the whole hardware. This environ-
ment is the best option for application with
only hard-real time constraints, and small foot-
print.

2. As a Linux regular process: This environment
is intented for testing purposes. The generated
code is executed as a regular Linux process.
PaRTiKle still has direct access to the hard-
ware, however, real-time constraints are not
guaranteed whatsoever.

3. As a XtratuM domain: XtratuM is an hypervi-
sor that provides hardware virtualisation and
enables the execution of several kernels (or run-
times) concurrently. PaRTiKle can be built to
be XtratuM aware and then loaded using the
XtratuM domain’s loader xmctl:

FIGURE 4: PaRTiKle on XtratuM

The figure 4 shows the functional blocks that com-
pose XtratuM. The XtratuM’s HAL is composed
by an interrupt and a timer driver, plus two extra
drivers physical memory manager and screen which
do not deal with the hardware but with the root do-
main. On the top of these drivers we find the virtual

timer and the scheduler.
The virtual timer multiplexes the hardware

timer between the existing domains. The scheduler,
at least in the first versions of XtratuM, implements
a fixed priority policy. The interaction of XtratuM
with the domains are performed via system calls and
the virtual event dispatcher.

3.3 Language Runtime’s support

Although PaRTiKle has been completely written in
C and Assembly, it also supports the following lan-
guages’ run-times:

• C++ using the g++ compiler2,
• Ada which uses gnat from GAP2005 [11].
• Java with the gcj compiler (currently out-of-

date).

To provide a complete and advanced support
for the exceptions handling mechanism (try{ ..

}catch or exception ... when), the DWARF2
specification has been included.

Apart of the specific compiler needed for each
language, PaRTiKle needs to be aware of the pro-
gramming language in order to link correctly the ap-
plication with the more appropriate runtime.

4 Comparative of RTLinux-

GPL and PaRTiKle

There are some important diferences between both
systems, they are discussed one by one and then sum-
marised in table 1.

2Full support of all the C++ language features, but the standard library which is still incomplete.

3

Feature RTLinux-GPL PaRTiKle

Spatial isolation X
√

Language support Ada, Assembly, C, C++3 Ada, Assembly, C, C++, GCJ4

Driver support Serial, mbuff, rtfifo, console, disk, CAN Serial, mbuff, rtfifo, console, disk, RAM filesystem
User API POSIX PSE51 (compatible) POSIX PSE51 (compatible) + RTLinux extensions
Licence Strict GPL LGPL

TABLE 1: Summary of the differences

• Spatial isolation: There exists either a real
or, at least, virtual isolation between the kernel
space and the application space.

• Language support: The languages used to
implement complex and robust real-time appli-
cations such as Ada and C++ are supported.

• Driver support: Support for common de-
vices such as keyboard, console, serial, network
cards, etc.

• User API: Application programming inter-
face provided by the kernel, it can be standard
such as POSIX, pSOS+ or a custom one.

• Licence: The legal licence covering the ker-
nel and the implications of it on the end user
application.

5 How to build a PaRTiKle ap-

plication

In this section we explain how to build a naive
hello.c application, from scratch. The application
code is:

#include <stdio.h>

int main (int argc, char **argv) {

printf ("Hello World!!!\n");

return 0;

}

It is important to note that neither any non-
standard C function has to be added in the code
nor any non-standard C header has to be included.

The first step, supposing that we have already
got PaRTiKle is to configure and compile it:

Configuration: The configuration interface of
PaRTiKleis similar to the one used by Linux (in fact,
the scripts have been taken from the Linux code).
Execute the following command inside the partikle
folder:

make menuconfig

FIGURE 5: PaRTiKle configuration menu

The picture 5 shows a screenshot of the config-
uration menu. The configuration tool, among other
things, permits to:

• Select the architecture and the execution envi-
ronment, currently only the x86 architecture is
available, nevertheless, support for ARM and
PPC architectures is planned.

• Enable the different language run-time, by de-
fault only C is supported.

• Several core choises: stack default size, debug
support, etc.

Building the kernel The next step, once PaR-
TiKle has been configured, is to compile it, this is
done executing the command make in the partikle
folder:

make

>> Detected PaRTiKle path: /usr/src/partikle/

>> Building PaRTiKle utils: done

>> Building PaRTiKle kernel [xm_i386]: done

>> Building PaRTiKle user libraries: done

The result of this compilation is two files:
partikle_core.o which holds all the kernel related
code and ulibc.a which holds the user code. If any
language run-time support was selected during the

3Using the old sjlj mechanism.
4Using the new DWARF2 mechanism.

4

configuration stage, it is compiled during this stage
and can be found in its correspondent directory.

Building the application Eventually, the last
step is to compile the application code and then link
it with PaRTiKle’s object files. The result is a single
object file which contains both the kernel and the
application code.

PaRTiKle includes wrappers for the gcc and ld

commands (pgcc and ldkernel respectively) to ease
this step.

Therefore to compile our hello.c example the
next command should be executed:

pgcc -O2 -c -o hello.o hello.c

ldkernel -o hello.prtk hello.o

Some additional examples can be found under
the folder user/examples.

Running the resulting application depends on
the selected execution environment, for example,
in the case of PaRTiKle+XtratuM, the application
must be loaded as a XtratuM domain:

xmctl start

insmod /usr/src/xtratum/xm.ko

xmctl load hello.prtk

Loading the domain "hello.prtk" ... Ok (Id: 1)

xmctl unload hello.prtk

Unloading the domain "(1)" ... OK

Figure 6 summarises the whole process.

FIGURE 6: PaRTiKle building

6 Slax-rtl: PaRTiKle live-cd

To ease the utilisation and assessment of PaR-
TiKle+XtratuM, we have built a live-cd iso image
with a complete development environment (see sub-
section 9 for further details).

These were the reasons that pushed us to select
a SLAX distribution to create Slax-rtl:

• Modularity: the main reason to choose
SLAX was its modularity since all the required
changes for the filesystem respect an official
SLAX iso image can be packed and compressed
into a SquashFS file.

• Easiness of modification: modularity eases
the organisation of changes, addittion of pro-
grams and customisation (remastering) the dis-
tributed iso; assuming that those changes are
independent and do not interfere with the sys-
tem.

• Automated iso creation: the construction
of a SLAX iso, relies on the linux-live [12] pack-
age of utilities, which automate all the steps
needed to build a complete working system,
from kernel configuration and compilation, to
the initial RAM filesystem creation.

6.1 Modifications in Slax-rtl

The modifications with respect to the official
SLAX v5.1.8 have been:

Firstly, a XtratuM aware kernel and its ker-
nel modules were configured and compiled. After
this, an initial RAM filesystem was created to hold
the minimum amount of modules and commands
required to start up the SLAX’s linux-live system.
Then, the development tools and project source trees
needed were packaged on compressed as SquashFS
modules and included in the iso image:

• Official_Development_module_5_1_4.mo:
the official development tools: make/gcc/ld

• Subversion_1_4_0.mo: subversion tools to
update the project source trees,

• rtlinux.mo: the project source trees:
/usr/src/{linux,xtratum,partikle}, with
a compiled XtratuM’s module: xm.ko ready to
use.

At boot time the modules are mounted over the
system’s root directory: / by using the UnionFS file
system, thus populating the filesystem with the slax-
rtl changes.

7 Conclusions

In this paper we present an assessment of a new hard
real-time kernel, PaRTiKle, which, when used jointly
with XtratuM, provides all the benefits RTLinux-
GPL but without, as far as we think, its drawbacks.

Besides, PaRTiKle can also be executed as a
stand-alone kernel and as regular Linux process. Due
to our previous experience adding language support
in RTLinux-GPL [14, 16, 15], it has been quite
straightforward implementing complete support of

5

the following languages in PaRTiKle: Ada, C++,
Java.

Since, PaRTiKle has been designed as a re-
placement of RTLinux-GPL, it offers a compatibil-
ity layer with all POSIX non-portable function (such
as pthread make periodic np, pthread delete np,
pthread wait np). Furthermore, the people from
DSLab have already sent us an implementation of
shared memory and RT-FIFOS for XtratuM [4].

8 Future work

Although, a lot of work has been done, the kernel is
far from being finished. So far, our priorities are:

• Porting PaRTiKle to other architectures, ARM
and PPC. Both of them, widely used for em-
bedded systems.

• Implementing a low-level standard interface
between the kernel and the drivers to ease
the support of new hardware. The Real-Time
Driver Model (RTDM) seems to be a solid can-
didate but we have still to compare it with
other existing possibilities.

• Porting the COMEDI (Linux Control and mea-
surement device interface) [13] drivers.

• Implementing some additional drivers depend-
ing on the new emerging necessities.

• Etc.

9 Project Information

PaRTiKle is being actively developed by the Real-
Time Systems Group of the Universidad Politecnica
de Valencia, Spain. Although PaRTiKle and Xtra-
tuM are different projects, both of them are tightly
related, and they are being developed in parallel us-
ing the same subversion tree.

A wealth of information about PaRTiKle and
XtratuM can be found at its respective web-sites:

• PaRTiKle: http://www.e-rtl.org/partikle
• XtratuM: http://www.xtratum.org

on them you can find information about tracking,
downloads and development versions of the projects:

• tracker: https://www.gii.upv.es/trac/rtos/
• repos: https://www.gii.upv.es/svn/rtos/trunk/
• slax-rtl iso: http://www.xtratum.org/node/31

References

[1] Miguel Masmano, Ismael Ripoll, Alfons Crespo, Au-
drey Marchand, Nanokernels for multidomain sup-
port Deliverable: D-EP2 Frescor, Responsible: UP-
VLC

[2] M. Masmano; I. Ripoll; A. Crespo, An overview of
the XtratuM nanokernel, Universidad Politcnica de
Valencia, Spain

[3] Nicholas McGuire, XtratuM Hardware Initialization,
Distributed & Embedded Systems Lab, Lanzhou
University, China

[4] Shuwei Bai, Yiqiao Pu, Kairui She, Qingguo Zhou,
Nicholas MC Guire, Lian Li, XM-FIFO: Interdo-
main Communication for XtratuM , Distributed &
Embedded Systems Lab, Lanzhou University, China

[5] Michael Barabanov, A Linux based Real-Time Oper-
ating System, Master’s Thesis, New Mexico Institute
of Technology.

[6] Victor Yodaiken and Michael Barabanov, RTLinux
Version Two, VJY Associates LLC

[7] POSIX Standarization Comitee, PSE.51 Minimal
Real-time System Profile, POSIX

[8] Yoshinori K. Okuji. GRand Unified Bootloader,
available at http://www.gnu.org/software/grub/

[9] The EtherBoot Project, available at
http://www.etherboot.org/

[10] Yoshinori K. Okuji, Bryan Ford, Erich
Stefan Boleyn, and Kunihiro Ishiguro.
The Multiboot Specification, available at
http://www.gnu.org/software/grub/

[11] GAP2005 GNAT/GPL, from AdaCore co. available
at https://libre.adacore.com/

[12] Tomas Matejicek et al. The SLAX Live
CD, available at http://www.slax.org/
http://www.linuxlive.org

[13] David Schleef et al. Linux control and measure-
ment device interface (COMEDI), available at
http://www.comedi.org/

[14] M. Masmano, Jorge Real, Ismael Ripoll, and A. Cre-
spo Running Ada on Real-Time Linux, 8th Interna-
tional Conference on Reliable Software Technologies
- Ada-Europe 2003. Lecture Notes in Computer Sci-
ence (Vol 2655).

[15] M. Masmano et al. Ocera RTLinux CC, available at
http://www.ocera.org/download/components/WP5/rtlcc-0.1.html

[16] M. Masmano, Ismael Ripoll, Jorge Real, and A. Cre-
spo Early Experience with an Implementation of
Java on RTLinux, Sixth Real-Time Linux Work-
shop. 2004.

6

http://www.e-rtl.org/partikle
http://www.xtratum.org
https://www.gii.upv.es/trac/rtos/
https://www.gii.upv.es/svn/rtos/trunk/
http://www.xtratum.org/node/31
http://www.gnu.org/software/grub/
http://www.etherboot.org/
http://www.gnu.org/\discretionary {-}{}{}software/\discretionary {-}{}{}grub/
https://libre.adacore.com/
http://www.slax.org/
http://www.linux\discretionary {-}{}{}live.org
http://www.comedi.org/
http://www.ocera.org/\discretionary {-}{}{}download/\discretionary {-}{}{}components/\discretionary {-}{}{}WP5/\discretionary {-}{}{}rtlcc-0.1.html

	Introduction
	RTLinux-GPL brief overview
	PaRTiKle overview
	Architecture
	Execution Environments
	Language Runtime's support

	Comparative of RTLinux-GPL and PaRTiKle
	How to build a PaRTiKle application
	Slax-rtl: PaRTiKle live-cd
	Modifications in Slax-rtl

	Conclusions
	Future work
	Project Information

