Prototyping User-Oriented Addressing Model in Linux Kernel

Maoke Chen, Taoyu Li, Xing Li
Network Research Center, Tsinghua University
Room 225 Main Building, Tsinghua University, Beijing 100084 P R China
mk@cernet.edu.cn, ldy03@mails.tsinghua.edu.cn, xing@cernet.edu.cn

Nicolas Mc Guire and Qingguo Zhou
Distributed and Embedded System Lab, Lanzhou University

Tianshui Nan Road No. 222, Lanzhou 730000 P R China
der.herr@hofr.at, zhouqg@lzu.edu.cn

Abstract

The emergence of slice-based computing model has raised high demand on replacing the interface-
based addressing model with user-oriented addressing (UOA) paradigm. Assigning IP addresses to users
instead of interfaces or hosts help us to realize high-granularity controls on port resource utilization,
identity authentication, and quality of service.

In this paper, we propose a reference prototype implementation of Linux operating system, which
enables an administrator to associate each user with a certain IPv6 (or IPv4) address. Processes of a
certain user can only use the user’s associated addresses, to send or receive packets. The system prototype
has been implemented via three major works. First, we add a data structure in the operating system
to record the user-address association. Second, the socket library in the kernel is modified in order that
address usage permission is checked when process invokes connect, bind or sendmsg operations. Finally,
a minimal set of administration tools has been developed so that the host administrator can configure
the user-address association according to necessity. Basic experiments have shown that the prototype is
working well without significant performance degradation.

We also would like to briefly discuss some controversy about user-oriented addressing model in this

paper, but only the implementation level, but also in the context of architectural design.

1 Introduction

Traditionally, an Internet address is an identifier for
a node, and also plays the role of global locator for
routing packets destined to that node [2]. Exactly
speaking, an IP address is assigned to an interface of
the node, either host or router, which is connected in
the Internet. This is the basic addressing model com-
monly applied in both IPv4 [11] and IPv6 [3, 6]. It is
well working since decades ago up to now, when ev-
eryone has one or many personal computers, having
communications with other peer ends among the In-
ternet. However, some recent approaches are steadily
changing the model of computing, and raising a chal-

Thttp:/ /setiathome.berkeley.edu
2http://www.planet-lab.org

lenge to the traditional interface-oriented addressing
model of the Internet.

These changes are mainly happening in the
network application area. Since the success of
SETI@Home!, it is believed that personal computers
have much more resources than one user’s need and
can be shared to other users. Later on, the Planet-
Lab? project makes a community whose members are
sharing their own computing resources to each other,
and introduces a new computing model — multi-
ple users are sharing their own personal computers
among the Internet. The change of computing raises
a call for the emergence of user-oriented addressing
to obsolete the legacy interface-oriented addressing

model. First, many users may have conflicting re-
quirements of employing well-known port numbers,
when they are deploying similar experiments or ser-
vices on same hosts in the shared computing infras-
tructure. On the other hand, in some new architec-
tures, such as NIRA [15] or LISP [5], traffic engi-
neering goal can be achieved via properly selecting
addresses in a multi-homed environment, and there-
fore it is also required to separate different users’
addresses to meet their traffic engineering require-
ments out of their different considerations and un-
derstandings to the end-to-end performance. Finally,
separating source addresses of users in each shared
computer is very important to tracing and identify-
ing real sources of malicious behaviours, which are
very harmful for today’s network and information
security.

User-oriented addressing is also attractive for the
operating system communities. As the UNIX design-
ers play the game of setting user ID to make isola-
tion for the security reason within the OS, we em-
ploy user-oriented address to provide isolation for the
network-contexted security. For safety-related sys-
tems, such kind of granular isolation is much useful.
For TCP connection migration (see, e.g. [14, 12]),
user-level addressing provides a convenience to dif-
ferentiated load balance in the migration support
group.

All of these motivate the design of the user-
oriented addressing or, briefly in this paper, the UOA
model and its implementation. The rest parts of the
paper is organized as follows. Section 2 will briefly
explain the relationship between user-oriented ad-
dressing and the virtual machine approaches. Then,
in Section 3, we identify what problems has to
be solved for realising the user-oriented addressing
model in operating system, and then describe the
design details in the following Section 4. Before the
concluding remarks, we discuss several controversial
problems on the architecture level of thought.

2 Related Works

Isolating user network identifiers can be achieved by
virtualisation with well-known software such as Xen,
VMWare, vserver etc. PlanetLab does select virtual-
isation as its foundation stone for the slice-based user
isolation model [8, 9]. In the PlanetLab, each user
is assigned with a “slice” and a “slice” is a network
of potential virtual machines, each of which, called
as “sliver”, is hosted by a computer node among the
system. Each node hosts tens or hundreds of sliv-
ers, dynamically configured according to the number
of concurrently active slices. User can apply a slice

3http://www.geni.net/

for large-scale development, experiment and deploy-
ment of planetary services. PlanetLab is commonly
considered as a prototype of Global Environment for
Network Innovation (GENT)3. and accordingly virtu-
alisation is accepted as the foundation stone of GENI
[1].

Rather than virtual machine approaches, we are
trying an alternative solution for user isolation. On
the other hand, user-oriented addressing is also use-
ful in virtualised computing environment, supporting
more granular isolation. Therefore, we proposed this
idea and a first-step design to the Real-time Linux
community in 2006 [16], and this time we focus on
the design principles and the details in prototype im-
plementation with the Linux kernel.

3 Requirements Analysis

To support user-oriented addressing in a UNIX-like
operating system, it is necessary 1) to add data struc-
ture(s) enumerating available address(s) of each user
ID, and 2) to mandate each user can use his available
address(s) only when any processes of that user make
connections, start waiting for connections, transmit
data to or receive data from their peers. For the
compatibility issue, it is definitely required that any
change in the operating system is transparent to ap-
plications, i.e. ever-exiting applications can run in a
system enabled with user-oriented addressing with-
out need of any modifications.

3.1 Constraints of address utilisation

An user, actually UID in an operating system, can
use and only use those address permitted for its us-
age. Detailedly speaking, the term “use” contains 3
aspects of meanings: being destination, being source,
and selecting address to bind. Accordingly, we have
three constraints which are treated as criteria for im-
plementation.

1. (Destination Availability Constraint, DAC)
When a packet is arriving, a user’s process is
forbidden to receive it unless its destination ad-
dress is available to that user.

2. (Source Availability Constraint, SAC) A user’s
process is forbidden to send packets, unless the
packet’s source address is available to that user.

3. (Selecting Constraint, SC) A user’s process is
forbidden to establish a connection or to re-
serve a set of resources for future connections,
unless the address it uses is available to that
user.

Moreover, to the consideration of scalability, the
augmentation in operating system must be light-
weight, without introducing too many overhead to
the system.

3.2 Possible solutions

Obviously, complete virtualisation is a thorough so-
lution for user isolation, including the network con-
text. However, every user having its own virtual
machine is a very resource-consuming approach, and
makes the system unscalable. On the other hand,
what the virtual machine isolate are mostly unnec-
essary to be isolated for our purpose. We only need
to isolate the network context of users.

A possible way of making such a dedicated isola-
tion is using net-filter facility, such as iptables in the
Linux system . iptables can do the owner-match for
packet sender, and packets with unmatched senders
will be discarded. The SAC constraint is satisfied in
this way.

An variation of using net-filter facility is combin-
ing it with policy-based routing (PBR). According to
a packet’s owner, we can define a tag in it and set
policy rules for that tag. Because selecting source
address according to routing table is very popular
for IPv4 and has become standard in IPv6 [4], the
SC constraint can be satisfied as well. Unfortunately,
with PBR or not, the iptables-based solutions cannot
solve the DAC problem nonetheless.

Virtual interface is a potential solution as well. A
user can be assigned with a certain virtual interface
and limited to only use its own interface by speci-
fying the interface’s access rights. His available ad-
dress is configured with its interface. However, lim-
iting user’s access rights to network interface devices
cannot avoid modifications in the kernel.

In our work, we make a very direct design, with
adding user-address correspondence check into the
kernel’s socket API library. Our work references the
code of User-Level Networking (ULN) [10], which is a
user-address management system for local area net-
works with addresses assigned via DHCP. However,
UOA is quite more flexible than ULN. It can man-
date user-oriented address usage either for simple
LAN or multi-homed networks, with either dynamic
or manually configurations. With the kernel modi-
fications, we can completely satisfy the DAC, SAC
and SC constraints.

4 Design and Implementation

Actually we just change the address assignment in
the operating system kernel, but keep unchanged

that all the addresses are configured to be attached
with a certain interfaces. Therefore, we don’t re-
write the whole protocol stack but extend it with
new data structure for storing the user-address cor-
respondence relationship, and new or modified func-
tions to enable the availability check when user pro-
cesses employ socket API. Both IPv4 and IPv6 are
involved. For an overview, we list the major changed
into the Table 1 and Table 2. All the changes are in-
cluded in the Linux source code tree under the /net
subdirectory.

An alternative view of the design separates the
modifications into three major categories: socket-
user interface (API), socket-protocol interface and
administrative tools.

4.1 Socket API modification

The basic question for the user interface modifica-
tion is: where to make the change? As we have
ever defined in Section 3, the modifications must
not be aware by ever-existing applications. On the
other hand, we don’t like the modifications are im-
plemented in many places. Therefore, we choose the
socket API which every network application will call
as the key point of the modifications.

TCP: Client

FIGURE 1:
the checks.

TCP connect() and bind() do

4cf. Netfilter core team, iptables project, http://www.netfilter.org/projects/iptables/

Table 1: Added Source Code Files

IPv4 src IPv6 src Role

ipv4/uoa_data.c
ipv4/uoa_ioctl.c
ipv4/uoa_check.c

ipv6/uoab_data.c
ipv6/uoab_ioctl.c
ipv6/uoab_check.c

Data structure for user-address association
ioctl interface
Check the association data structure to get address availability

for a user. Function is called by the system calls of socket API.

Table 2: Modified Source Code Files

IPv4 src IPv6 src

Involved changes

ipv4/af_inet.c ipv6/af_inet6.c
— ipv6/autoconf.c
ipv4/devinet.c —
ipv4/inet_connection_sock
ipv4/inet_hashtable.c
ipv4/raw.c
ipv4/tcp_ipvé.c
ipv4/udp.c

ipv6/raw.c
ipv6/tcp_ipv6.c
ipv6/udp6.c

ipv6/inet6_connection_sock
ipv6/inet6_hashtable.c

Common system call modifications

for IP protocols

Auto-configured address selection in IPv6
ioctl interface implementation

TCP selects socket to accept packet
Conflict detection for bind ()

Raw socket related modifications

TCP related modifications

UDP related modifications

UDP: Sarver

UDFP: Client

oA
ehecking

FIGURE 2:
the checks.

UDP sendto() and bind() do

Availability checking As is shown in Fig. 1,
the checking code is embedded into connect() for
TCP clients, and at bind() for TCP servers. This
design can surely block the whole process of TCP
connection, and accordingly the DAC and SAC con-
straints are satisfied. On the other hand, source ad-
dress auto-selection is done when calling connect ()
or bind () without specifying a certain address [13],
so this method can also solve SC problem as well.

For UDP (Fig. ?7), however, there is some-
thing different. Without a connection, address for
either source or destination may various packet from
packet. Therefore we must do the check where the
packet is to be sent, i.e. in the sendto() system
call. To ensure both DAC and SAC, we need to do
a check at UDP bind() as well. Principle for raw
socket modification is as same as in UDP.

Data structure of user address association
The user address association is stored in a linked
table. For IPv4 and IPv6, the linked table is almost
same. For example, each item in the linked table
for IPv4 user-address association has the structure
in Fig. 3.

/include/net/uca data.h:
struct ip4_token
{
struct list head list data;
struct in_addr address;
uid t user_id;

b
FIGURE 3: Data structure for the linked

table of IPv4 user-address association

A group of functions are defined in
net/ipv4/uoa_data.c and net/ipv6/uoa_data.c
to manipulate the data structure with insert, up-
date, delete and retrieval. These functions will be

called by system tools dedicatedly defined for the
user-address association administration.

Communication with kernel mode The user-
address association is maintained in the kernel, and
therefore it must have an interface for the user modo
to communicate with kernel in order to have accesses
to the data structure. Two typical ways are avail-
able for this communication: ioctl and the /proc
file system.

In our implementation, we add 5 new ioctl com-
mand descriptors into the system, as is depicted in
Fig. 4. Indeed, these ioctl commands correspond to
the data structure manipulation functions in the ker-
nel. The user mode communicates with those func-
tions via the ioctl commands. IPv6 case is quite
similar and we omit the duplicated discussion.

/include/linux/sockios.h:
#define SIOCAUOAMAP 0x89b0
/* Add a UOA mapping */
#define SIOCDUOAMAP 0x89bl
/* Delete a UOA mapping */
#define SIOCCUOAMAP 0x89b2
/* Check a UOA mapping */
#define SIOCUOADUSR 0x89b3
/* Delete all UOA mapping of a user */
$#define SIOCUOADADDR 0x89b4
/* Delete all UOA mapping of an address */

/include/net/uca_data.h:
struct in_ifreq uoa {
struct in_addr ifr4_addr;

uid_t ifr4_owner;

}:

FIGURE 4: doctl commands for kernel
communication, and their common toctl re-
quest structure.

On the other hand, two files in the /proc filesys-
tem, /proc/uoa and /proc/uoca6 are available for
administrator’s convenience of reading current state
of the associations for IPv4 and IPv6, respectively.
Some typical line in /proc/uoa may look like as be-
low, where the first field is the UID and the second
is associated address:

1000: 166.111.203.101
1001: 166.111.203.102

With these user-address association data struc-
ture retrieval facilities, a series of UOA check func-
tions are defined. TCP/UDP/raw socket system
calls will call those check functions in order to check
the address availability for any user processes. Due
to the limit of page room, we have to remain the deep
details of implementation within the source code.

4.2 Socket-protocol interaction modi-
fication

Basically, the socket API is modified with the checks
for address availability and it’s almost enough for
our purpose. Only one big issue needs some change
on lower level of the protocol stack — the support
to ADDR_ANY. Traditionally, the ADDR,_ANY rep-
resents any address assigned to the host, but now
we need it to be associated with a certain user. We
cannot limit each user have only one available ad-
dress and make ADDR_ANY equivalent to the user’s
unique address, because a user at least should have
access to localhost and one of the global addresses.
In cases that multihoming or multicast are enabled,
user having multiple addresses is a mandatory re-
quirement for the networking facilities.

Because the user-address association linked ta-
ble contains only the information of user-address
relationship but ADDR_ANY actually involves the
socket-address relationship, a socket’s associated ad-
dresses are not possible to be known unless we know
to what user the socket belongs. On the other hand,
the wildcard ADDR_ANY is resolved when the the
network protocol stack dispatches packets to sockets,
and therefore it is necessary to change the semantics
of ADDR_ANY there.

Data structure for socket-user association In
order to tell the system which UID is attached to
a socket, we add a data structure to the system in
a seemly inverse but equivalent way — the user-
socket association linked table. Each entry in the
linked table contains an user ID and a pointer to the
inet_sock structure, as is shown in Fig. 5. After a
socket is created, the pointer is well defined.

include/net/ucax.h:
struct sock4_token
{
struct list head list data:;
struct inet sock * isk;
uid_t user_id;

}:

FIGURE 5: Socket-user association
Socket-user association table manipulation
The creation of new entry into the socket-user linked
table is implemented as insert_sock4_token and
insert_sock6_token for IPv4 and IPv6, respec-
tively. They are embedded into the inet_creat ()
system call in the source file net/ipv4/af_inet.c
and the inet6_create in net/ipv6/af_inet6.c.

For the table entry delete operation,
delete_sock4 by_sock should be called in
inet_sock destruct() in order to prevent mem-
ory leaks.

Checking of address availability at packet dis-
patching When the transport protocol dispatches
a packet to socket, it firstly finding in its own pro-
tocol socket list in order to get the port-matched
socket. For raw socket, the operation ends up as
soon as one matched socket is found; but for TCP
and UDP, because a packet may have wildcards for
source and/or destination addresses and/or ports,
and the matched socket with least wildcards will win
the patching. In the UOA enabled system, the wild-
card semantics has changed, while we can just add
our code for address availability checking to indicate
whether the candidate socket’s owner can use the
address bound with the socket or not.

Address conflict detection in bind() In the
legacy operating system, once a socket tries to bind
with a port, it will detect whether the port of that
address has been occupied by another socket. For
ADDR_ANY, however, any duplicated employment
of an ever-occupied port is not allowed. Now the
semantics of ADDR_ANY has changed. It doesn’t
mean any address associated with the host but with
a certain user. Accordingly the conflict detection be-
haviour should be changed as well.

For IPv4 TCP, the conflict detection is executed
by inet_csk_bind conflict(), while for UDP it
is executed by ipv4_rcv_saddr_equal(), and for
raw socket the conflict detection is not done at
all. For IPv6 however, the conflict detection is per-
formed by ipv6_rcv_saddr_equal() uniformly for
both TCP and UDP. Therefore the conflict detec-
tion code should be inserted into these functions.

It is necessary to have a view on the code for the
conflict checking. Fig. 6 shows the case for IPv4. In
legacy system, the word “conflict” means two sockets
have same address to be bound or one of them holds
the address wildcard. Now, one socket holds an wild-
card but another still can has an wildcard because
the wildcard ADDR_ANY becomes user-associated.
The code helps us to understand the “bind conflict”
in a UOA-enabled system, i.e. bind conflict happens
when either 1) two sockets try to bind same specific
address, or 2) both belong to a same user and both
try to bind with wildcard address, or 3) one of them
holds an wildcard and the holder is associated with
the other socket’s address.

fnet/ipvd/ucax.c:

int check_addr conflict uoca(struct inet_sock *iskl ,
struct inet_sock *isk2)
{
uid t uidl, uid2;
if (iskl->rcv_saddr && isk2->rcv_saddr)
return (iskl->rcv_saddr == isk2 ->recv_saddr);
if (!iskl->rcv_saddr && isk2->rcv_saddr)
{
struct in_addr tempaddr;
tempaddr.s_addr=isk2->rcv_saddr:
return (check sock _with addr(iskl, &tempaddr));
}
if (!isk2->rcv_saddr && iskl->rcv_saddr)
{
struct in addr tempaddr;
tempaddr.s_addr=iskl->rcv_saddr;
return (check_ sock with addr(isk2, &tempaddr}) ;
}
uidl = find sock4_token uidbysock(iskl):
uid2 = find sockd_token uidbysock(isk2);
if (uidl == 0 || uid2 == 0) return 1;
return check 2user share(uidl, uid2);

FIGURE 6:
bind (IPv4)

For IPv6, the things are a little complicated. The
key point is, for IPv4-mapped IPv6 address type, the
IPv6 detection function must call that one defined for
IPv4.

After changing the semantics of ADDR,_ANY, it
is not necessary any more to mandate that only root
is privileged to use a port number below 1024.

Conflict checking for socket

4.3 Administrative tools

Well, all the system is almost done but we still
need some tools to manage the user-address associ-
ation. For administrative tools are defined: uoamap,
uoamap6, uoatool and uoaauto.

The first two calls ioctl commands to add,
change, delete, check or find associated user for a cer-
tain address. uoatool is an encapsulation for both
uoamap and uoamap6 to make the administration eas-
ier and simultaneously support IPv4 and IPv6.

uoaauto then reads the configuration file
/etc/uoalist and invokes uoatool automatically to
instantiate the configuration. An /etc/uoalist file
maybe looks like that:

166.111.132.202 uoa
2001:da8:200:9002:250:4ff:£fe98:6291 uoa
166.111.132.201 uoatest

5 Experiment

Here we briefly introduce some results from our ex-
periment on the UOA-enabled Linux kernel. The en-
vironment for the test is a Linux computer patched

with UOA codes. The kernel version is 2.6.20.4. Two
users, uoa (uid = 1000) and uoatest (uid = 1001)
have been established on the host. The system has
the file /etc/uoalist just like the sample shown at
the end of Section 4.

With uoaauto tool, the system has all the user-
address association configured.

root@nmstest:/home/uoa/bin# uoaauto

Then we can observe the results by check the files
in /proc:

root@nmstest:/home/uoa/bin# cat /proc/uoa
1001 : 166.111.132.201
1000 : 166.111.132.202

root@nmstest:/home/uoa/bin# cat /proc/uoab
1001 :
1000 :

Current the user uoa can have the access to any
other site, e.g.

uoa@nmstest:~$ ping 59.66.122.66

PING 59.66.122.66 (59.66.122.66) 56(84) \
bytes of data.

64 bytes from 59.66.122.66: icmp_seq=1 \
tt1=60 time=1.04 ms

64 bytes from 59.66.122.66: icmp_seq=2 \
tt1=60 time=0.435 ms

64 bytes from 59.66.122.66: icmp_seq=3 \
tt1=60 time=0.422 ms

--- 59.66.122.66 ping statistics —-—-—
3 packets transmitted, 3 received, 0% \
packet loss, time 1999ms

Now we delete the address association for uoa
but keep that for uoatest unchanged, and then we’ll
see that the network is not accessible for the certain
user.

root@nmstest:/home/uoa/bin# uoatool \
166.111.132.202 uoa del
Delete success.
Totally 1 of mappings between address \
166.111.132.202 of user uoa(uid=1000) \
deleted.

uoa@nmstest:~$ ping 59.66.122.66
connect: Resource temporarily unavailable

Due to the limited room of the paper, fur-
ther experiments for TCP/UDP communications are
omitted. Generally, applications can be running
over UOA-enabled system without perceivable per-
formance degradation.

6 Discussions

Somethings are still in open debate. An interest-
ing problem of the implementation level is: can one
transport layer protocol bypass the UOA checking
mechanism? In practice, the possibility is very small,
because almost all present applications are running
over TCP/IP sockets. However, it is definitely pos-
sible in theory. The current implementation cannot
prevent address misuse with an alien or new trans-
port layer protocol, such as SCTP [7].

Another interested debate is of the architectural
design. Considering that every user has its own ad-
dress(es), it is reasonable to thinking of giving ev-
ery user a route table. Sometimes it is necessary,
esp. when user address does not only play the role of
identifier for peer entity but also locator for routing,

2001 :0da8:0200:9002:3blc:0000:0000:7305 ¢-- in the NIRA architecture [15]. However, user-
2001:0da8:0200:9002:3b1c:0000:0000:7309 oriented routing table may signiﬁcantly increase the

overhead of the system. One can have a doubt: if
routing is also isolated for users, why not all the re-
sources? Then the UOA would become to another
virtual machine approach at all.

7 Conclusions

The innovation in computing model is calling the
change of addressing model for networking. In this
paper, we’ve comprehensively discussed the issue re-
lated to the addressing model for future Internet and
future operating system, from the motivation, re-
quirements to the details of the design and imple-
mentation of the user-oriented addressing model.

Experiments have shown that UOA can provide
a granular isolation for user networking context with
neither significant overhead nor application adop-
tion. Ever-exiting applications can well run in a
UOA-enabled operating system without any trou-
ble. This makes the UOA design and implementa-
tion very attractive to both networking and operat-
ing system community.

For the computing in real-time systems, UOA
provides a new way to achieve differentiated service
oriented to users or, more precisely, to certain pro-
cesses or threads which are identified with user IDs.
The future work of this paper will involve this area,
and combining user-oriented quality of service con-
trol with the UOA architecture.

References
[1] T. Anderson, L. Peterson, S. Shenker, and

J. Turner. Overcoming the internet impasse
through virtualization. Technical Report GENI

Design Document GDD-05-01, GENI Planning
Group, Apr. 2005.

B. Carpenter, J. Crowcroft, and Y. Rekhter.
IPv4 Address Behaviour Today. RFC 2101 (In-
formational), Feb. 1997.

S. Deering and R. Hinden. Internet Protocol,
Version 6 (IPv6) Specification. RFC 2460 (Draft
Standard), Dec. 1998.

R. Draves. Default Address Selection for Inter-
net Protocol version 6 (IPv6). RFC 3484 (Pro-
posed Standard), Feb. 2003.

D. Farinacci, V. Fuller, D. Oran, and D. Mayer.
Locator/ID Separation Protocol (LISP). draft-
farinacci-lisp-03.txt (work in progress), Aug.
2007.

R. Hinden and S. Deering. IP Version 6 Address-
ing Architecture. RFC 4291 (Draft Standard),
Feb. 2006.

L. Ong and J. Yoakum. An Introduction to the
Stream Control Transmission Protocol (SCTP).
RFC 3286 (Informational), May 2002.

L. Peterson, T. Anderson, D. Culler, and
T. Roscoe. A Blueprint for Introducing Dis-
ruptive Technology into the Internet. In Pro-
ceedings of the 1st Workshop on Hot Topics in
Networks (HotNets—I), Princeton, New Jersey,
October 2002.

L. Peterson, S. Muir, T. Roscoe, and A. Klinga-
man. PlanetLab Architecture: An Overview.
Technical Report PDN-06-031, PlanetLab Con-
sortium, May 2006.

[10]

[16]

A. Pira, E. Tassi, and R. Davoli. User level
networking-personal ip: assigning each user
his/her own ip addresses in multiuser operat-
ing systems. In ICN’04: Proceedings of the 3rd
International Conference on Networking, Feb 29
- Mar 4 2004.

J. Postel. Internet Protocol. RFC 791 (Stan-
dard), Sept. 1981. Updated by RFC 1349.

A. C. Snoeren, D. G. Andersen, and H. Balakr-
ishnan. Fine-grained failover using connection
migration. In USITS’01: Proceedings of the 3rd
conference on USENIX Symposium on Internet
Technologies and Systems, pages 19-19, Berke-
ley, CA, USA, 2001. USENIX Association.

W. R. Stevens. UNIX Network Programming:
Networking APIs: Sockets and XTI. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1997.

F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode.
Migratory tcp: Connection migration for service
continuity in the internet. icdcs, 00:469, 2002.

X. Yang. Nira: a new internet routing architec-
ture. In FDNA ’03: Proceedings of the ACM
SIGCOMM workshop on Future directions in
network architecture, pages 301-312, New York,
NY, USA, 2003. ACM Press.

D. Zhou, T. Li, M. Chen, and X. Li. Op-
erating system modifications for user-oriented
addressing model. In Proceedings of 8th Real-
time Linuz Workshop (RTLWS 2006), Lanzhou,
China, 2006.

