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Abstract

Networked control systems are made up of several computer nodes communicating over a commu-
nication channel, cooperating to control a plant. The stability of the plant depends on the end to end
delay from sensor to the actuator. Although computational delays within the computer nodes can be
made bounded, delays through the communication network are generally unpredictable. A method which
aims to protect the stability of the plant under communication delays and data loss, Model Based Pre-
dictive Networked Control System (MBPNCS), has previously been proposed by the authors. This paper
aims to demonstrate the implementation of this type of networked control system on a non-real-time
communication network; Ethernet.

In this paper, we first briefly describe the MBPNCS method, then discuss the implementation, detailing
the properties of the operating system, communications and hardware, and later give the results on the
performance of the Model Based Predictive Networked Control System implementation controlling a DC
motor. 1

1 Introduction

A Networked Control System (NCS) is a feedback
control system where the control loop is closed over
a communication network consisting of actuators,
sensors and controllers, each of which are com-
puter nodes on the network. Actuators and sensors
generally also have some computational capability.
This distributed structure is advantageous because of
its inherent flexibility, reconfigurability and reduced
vulnerability to noise and calibration errors.

In a NCS, sensor nodes have the task of mea-
suring one or multiple plant outputs and transmit-
ting the measured values over the network. Actuator
nodes have the task of applying commanded values
received over the network to the plant by means of
suitable actuators. Controller nodes use the plant

outputs that they receive from sensor nodes to cal-
culate control outputs by a control algorithm and
send them to the actuator nodes to be applied to
the plant. The data that travels over the network is
encapsulated in packets.

The complexity of design and the communica-
tion delays are drawbacks of NCS’s. With the ad-
dition of a communication network in the feedback
control loop, the complexity of analysis and design
for a NCS increases because delay in the control loop
has to be accounted for. There are essentially three
kinds of delays in a NCS which are dependent on
the network scheduling policy and are generally not
constant or bounded in common network protocols:
Communication delay between the sensor node and
the controller node that has occurred during sam-
pling instant tk : τsc(tk), computation delay in the

1This work was supported in part by the Scientific and Technological Research Council of Turkey, project code 106E155.
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controller node that has occurred during sampling in-
stant tk : τc(tk), and communication delay between
the controller node and the actuator node that has
occurred during sampling instant tk : τca(tk). The
length of the transfer delay depends on network load,
priorities of the ongoing communications, electrical
disturbances and various other factors. Sensor and
actuator nodes also have some computational load
and therefore some delays that can be expressed re-
spectively as τs(tk) and τa(tk), but these delays can
be considered as fixed and the sensor node calcula-
tion delay can be included in τsc(tk) and the compu-
tation delay at the actuator node can be included in
τca(tk). The total delay from sensing to actuation is
the sum of the above delays:

τ(tk) = τsc(tk) + τc(tk) + τca(tk) (1)

The computational delay τc is variable, not only be-
cause of the time the control algorithm takes, but
because of the scheduling algorithm used [1].

2 Background

Digital control theory has developed over the years
mainly assuming fixed response time to the plant,
and mainly focused on the control algorithm whereas
real-time systems development has largely avoided
the functional requirements and concentrated on the
timing requirements for implementation. NCS can
be considered as a step in combining the two ap-
proaches, considering both the functional and timing
requirements of a control system. Several methods
have previously been proposed to improve stability of
NCS [1, 2, 3, 4]. Dead bands proposed by Otanez and
Moyne [5] aim to reduce the amount of communica-
tion by eliminating repetitive transmissions of similar
data, thus improving network conditions. A similar
idea is also considered in [6, 7, 8]. However the net-
work is assumed to be loss-less. Gain adaptation by
Mo-Yuen and Tipsuwan [9] and network observers by
Natori and Ohnishi [10] observe the condition of the
network and compensate for the effect of delay in the
control algorithm by adjusting the gain or adding a
negative feedback term. However they consider the
changes in network to be relatively slow or the net-
work delay times to be symmetric (sensor node to
controller node delay is same as controller node to
actuator node delay). Some a-priori knowledge of
the delay is assumed.

General predictive control methodology is rele-
vant to NCS’s [11, 12, 13] and Model predictive con-
trollers are used in similar scenarios as in [14, 15]
but they either do not take into account the synchro-
nization between the nodes or they are not set up to
be networked control systems, because they rely on

a direct link between the sensor node and controller
node. This means that both controller and sensor
tasks reside within the same node of the network
or they do not communicate at all over a network.
The reason is that if the sensor node to controller
node transmission fails then the basis for predictions
is lost. Also a-priori knowledge of the reference sig-
nal is assumed in the model predictive control. The
MBPNCS method proposed by the authors is cur-
rently being applied to this area to adapt it to net-
work control.

Addressing these problems, MBPNCS method
improves the performance of a basic NCS under vari-
able time delays and packet loss. Standard NCS
architecture is assumed and no direct links are re-
quired, therefore the method can be applied to ex-
isting NCS’s. A-priori knowledge of the reference sig-
nal is not assumed as this is not possible with most
systems.

3 Model Based Predictive Net-

worked Control Systems

MBPNCS improves the robustness and stability of
networked control systems to data loss by holding a
model of the plant within the controller and calculat-
ing the current and predicted control output to the
plant for several time steps into the future at every
sampling instant. All of these outputs are then sent
to the actuator node at once. If there was no data
loss in the controller to actuator link, the actuator
applies the first control output to the plant. In case
of data loss, a previously sent prediction is applied to
the plant at each successive sampling instant, hence
the name model based predictive networked control
system.

Sensor
Node

Controller
Node

Actuator
Node

Plant

Delay and data loss
Ethernet

x(t) u(t)

FIGURE 1: Model based predictive net-
worked control system

The MBPNCS control system is composed of five
parts: a communication network, where we assume
that packet loss and delay occurs completely ran-
domly (despite the fact that noise in networks is gen-
erally more correlated, a complete random behavior
was preferred for simulations for simplicity), one sen-
sor node, one controller node and one actuator node,
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and finally a model of the plant P̂ residing inside the
controller node.

The sensor node samples the plant states x(tk)
with period h and sends them to the controller at
every sampling instant tk. The rate terms of the con-
trol algorithm pertaining to the plant states are cal-
culated at the sensor node since continuity of plant
states cannot be assured at the controller node be-
cause of interruption of communication. The plant
states and the rate terms are encapsulated in a net-
work packet and sent to the controller node.

The controller node not only calculates the con-
trol output for the current plant state u(tk, 0) (no-
tation will be clarified shortly) using a control algo-
rithm, but also uses the plant states just received
x(tk), to initialize the internal model and through
an iterative process, generates a series of future con-
trol outputs, û(tk, i) and state estimates x̂(tk+i|tk)
where i; i = 1, 2, ..n is the index of control output
signal estimate that is expected to be applied at time
tk + ih in the future if communications were to fail.
If x(tk) was not available at the time of computation
because of data loss or communication delay, its es-
timate x̂(tk|tk−1) obtained using the model P̂ from
x(tk−1) or if that is not available, x̂(tk−1|.) from pre-
vious estimates. For this estimation to be valid, it
must be assumed that the previous control output
was transmitted properly and applied to the plant.
How this restriction can be relaxed will be addressed
shortly.

The fact that a state estimate has been used is
important along the control decision line. There-
fore this information is stored in a sensor flag (SF ),
which is set to high if current control output is
based on actual plant sates from the sensor node,
and low if state estimates were used. The control
outputs are collected in a control packet Pt(tk) con-
sisting of n + 1 control outputs and a sensor flag:
[u(tk, 0), û(tk, 1), · · · , û(tk, n), SF ].

The number of predictions n is chosen based on
factors such as the accuracy of the plant model P̂ ,
the packet size compared to the network bandwidth,
and available processing power.

Finally the actuator node receives packet Pt(tk)
and applies the control output u(tk) to the plant at
every sampling instant. If a new packet does not ar-
rive on time because of data loss or communication
delay, a predicted control output û(tk−i, i) received
previously is applied. This could cause the above
mentioned problem of predicted plant states deviat-
ing from the actual plant states since if a sensor to
controller communication loss also occurred simulta-
neously, the controller assumes that u(tk) was last
applied to the plant when calculating its state pre-
dictions. In our method, this is called the loss of

synchronization (slightly abusing the term), and our
method is designed so that the actuator node is re-
sponsible for coping with the situation.

The synchronization or loss thereof is conveyed
to the actuator node using the SF flag in the con-
trol packet and the information of actual packet loss.
The actuator node has two modes, the synchronized
mode and the interrupted mode.
The synchronized mode indicates that the states of
the plant model are synchronized with the plant
states. If the actuator node receives a control packet
from the controller node when it is in the synchro-
nized mode then it applies the first control out-
put from that packet to the plant, which would be
u(tk, 0). If a transition of SF from high to low oc-
curs in consecutive control packets indicating that
the controller is not receiving actual plant states, but
there is no controller to actuator data loss, then the
actuator keeps applying the first control output from
the received packets u(tk+j , 0), since this does not
violate the assumption made by the controller that
these control outputs are being applied to the plant,
and the actuator node stays in synchronized mode.
If data is lost due to network delay or packet loss,
the actuator node enters the interrupted mode.
In the interrupted mode, the actuator applies û(tk, i)
of the last control packet received in synchronized
mode at every sampling instant tk+i, i = 1, 2, · · · , n
until the last sample is reached or communication
is restored. However, if the first control packet re-
ceived in this mode has a low SF indicating that
the controller is using state estimates based on the
wrong assumption of applied control signal, then the
packet is rejected. If the last prediction û(tk, n) is
reached without the communication being restored,
the output is kept constant at that value thereafter.
The actuator node enters synchronized mode when a
control packet with a high SF is received. This state
machine behavior is shown in Figure 2.

Synch.
Mode

Intr.
Mode

No packet on-time

Packet
with SF=1

Packet 
with SF=0

No packet
on-time

Packet 
with SF=0

Packet 
with SF=1

FIGURE 2: State transition diagram for
actuator modes

All computer nodes run periodic tasks as a com-
putational model. Packet loss between the sensor
node and the actuator node is compensated at the
controller node by prediction and packet loss between
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the controller node and the actuator node is com-
pensated at the actuator node by usage of the selec-
tion algorithm explained above and predicted control
outputs. Late arriving packets are discarded in this
work. A time synchronizing method is assumed to
be used among the computer nodes. This is not a
strong assumption because the network is generally
physically small and the amount of synchronization
accuracy is comparable to the sampling time.

4 Real-Time Linux implemen-

tation of MBPNCS

There are two aspects of the implementation;
(hard)real-time computing and soft real-time com-
munication. The timing requirements for com-
puting were realized by using a small Linux dis-
tribution with 2.4.20 series kernel using RT-Linux
patch V3.2-pre3. As run-time environment Clash
V1.2 file system based on compact flash sotage
medium(CF) [16] and Busybox V1.00 combined ex-
ecutive were used [17]. The whole system was de-
signed to run from RAM disk to minimize run-
time delays caused by disk access and eliminate the
burnout problem of the Flash media due to repet-
itive writes. The resulting RT Linux distribution
was named TuxSA and has been in service since
2003. Work is underway to upgrade to a more com-
mon distribution and new RT Linux version. As
a hardware platform, Advantech PCM3370 PC104
boards with NS Geode processor running at 300MHz
equipped with 128MB RAM and 64MB CF flash
disks were employed. For connecting sensors and
actuators Kontron ADIO 128 12 bit analog digital
and digital analog converter boards and MSI-P400
incremental encoder interface boards from Microsys-
tems Technology were used. Other electronic circuits
such as motor driver, and encoder adapter were also
built so that it is easier to identify their parameters
and incorporate them in the plant model. Although
the processor is not suitable for hard real-time pro-
cessing with low jitter, control loop times of 100µs
were accomplished with the overlaying Linux kernel
shut down. Details of how Real-Time Linux kernel
is accommodated and its relationship with the non-
real-time Linux kernel running atop is not discussed
here, but can be found in the literature such as in
[18].

Since the implementation runs in kernel space as
kernel modules, low level code was written to directly
access the sensor interface boards from scratch. This
has the benefit of removing extra layers of software
that can cause unpredictable delays, however at the
same time it makes hardware updates difficult to per-

form mainly because hardware access methods are
usually not disclosed by the manufacturers.

MBPNCS method was implemented on the sen-
sor, controller and actuator nodes as simple RT-
Linux periodic tasks that run with a period of 1ms.
The code was simply copied over from the simula-
tion of the system in TrueTime as explained in Sec-
tion 5.1, with minor modifications such as placing in
empty periodic task shells and using the appropriate
hardware access and communication routines as de-
scribed above. There was no clock synchronization
used, mainly because the nodes were synchronized
at the initialization by the signal from the sensor
node and since the run-times were in the order of
several tens of minutes to a few hours, there was no
noticeable clock skew between the nodes. For actual
implementations that are required to run for indefi-
nite amounts of time, an active clock synchronization
method should be employed.

The second main component of the system is
communication. Although hard real-time commu-
nication is not required (and actually opposes the
purpose of the study), at least soft real-time net-
work communications is desired so that the actual
performance can be degraded in a controlled man-
ner for experiments. Since no acknowledge or auto-
matic resend is used in MBPNCS, user datagramm
protocol (UDP) was used. To allow for soft real-
time performance, real-time socket package for RT
Linux patched kernel, rtsock was used. Since this
package is not well supported, incorporating it has
been problematic. Another option is to use the non-
real-time sockets provided by Linux, and a real-time
FIFO buffer between them. To connect the nodes
together a closed network segment was built using
a hub which is non-switching to allow for collisions.
Since there is no other traffic on the network and the
existing traffic is phased suitably, the actual rate of
collisions is negligible. Packet loss was accomplished
by a pseudorandom routine rejecting packages, as ex-
plained in Section 5.3. In an actual implementation,
the hub can be replaced with a switching one to im-
prove performance.

Finally, a word about storing the data generated
by experiments should be said. Since the TuxSA dis-
tribution is completely RAM disk based, there are a
few options. One of them is to re-mount the boot CF
disk, and write the data on a suitable folder there
to be manually retrieved later. Another method is
to NFS mount a partition on a server to store data
there. However, since NFS support was not avail-
able in TuxSA distribution, this was not possible.
Also possible is to record the data on a file on RAM
disk, and retrieve it after stopping the simulations.
This was the preferred method for this study.
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5 Results

The MBPNCS method was tested using computer
simulations using the TrueTime toolbox of Mat-
lab [19, 20] and experiments were performed with
industrial computers and Ethernet communication
network.

5.1 Simulation Environment

TrueTime toolbox is designed to simulate real-time
computer networks at a low level of abstraction
where it simulates computer systems at instruction
execution level and communication network at data
transport level. Therefore, we can say our results
are close to actual implementation. Implementation
of the hardware is detailed in Section 4.

A DC servo motor described by the following
transfer function is used as the system plant [21]:

G(s) =
1000

s(s + 1)
(2)

A PD controller is implemented according to the fol-
lowing equations;

KP (tk) = K(r(tk) − y(tk)) (3)

KD(tk) = αdKD(tk −1)+βd(y(tk −1)−y(tk)) (4)

αd =
Td

Nh + Td

(5)

βd =
NKTd

Nh + Td

(6)

u(tk) = KP (tk) + KD(tk) (7)

where r(tk), y(tk), u(tk) are reference, plant output,
control output and KP (tk), KD(tk) are proportional
and derivative components of control output, K is
the proportional gain and tk, is the sampling instant,
N , Nh, αd and βd are constants. The value y(tk) is
obtained by H ∗ x(tk) where H is the output ma-
trix of the plant and x(tk) are the plant states at
time tk. The performance of MBPNCS method is
compared with a basic Networked Control System
(bNCS) where only the sensor node runs a periodic
task and the controller and actuator nodes run event
driven tasks that function only when they receive a
message from the network to calculate control out-
put and apply it to the plant respectively. As per-
formance metric the root mean square of the error
between the reference and plant output is used.

5.2 Simulation Results

The sampling time of the system is 0.001s, and there
is a phase delay of 0.0001s between sensor, controller

and actuator node periods to ensure that the net-
work has time to deliver the data packets between the
nodes. Such a phasing was not used for the exper-
iments. Simulations are made with a perfect model
of the plant to prove that the concept is functional.
Further simulations examining imperfect models will
be performed in the future.

Under ideal network condition of no packet loss
both the MBPNCS and bNCS display identical re-
sults, Figures 3 and 4.

FIGURE 3: Basic NCS, ideal conditions
RMS error: 0.2324

FIGURE 4: MBPNCS, ideal conditions
RMS error: 0.23252

As packet loss increases, degradation in perfor-
mance is observable with the increasing RMS errors.
However the reason for the degradation in control
quality is different in both systems. The cause of
increased RMS error in the bNCS is loss of stability
because of increasing loop delay. The bNCS system
becomes unstable after around 20% of packets lost
or delayed(Figs 5 and 6). On the other hand the
increase in RMS of the MBPNCS is because even if
packets are late, a calculated control output is ap-
plied to the plant. However after the calculation of
this control output the reference may have changed.
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Therefore the plant is controlled towards an old ref-
erence. The retardation of the reference can be seen
clearly on Figure 8 where the reference and plant
output are shown together with the control output
signal estimate i(offset by -4 for clarity) used from
the control packet. It can be seen that the plant is
able to catch the reference once the actuator reenters
a synchronized mode and the actuator node does not
have to remain in synchronized mode to be able to go
to the reference. Note that our system does not have
a-priori knowledge of the reference signal in contrast
to other research such as in [15]. MBPNCS remains
stable, even for extreme rates of packet loss such as
90% (Fig. 8).

FIGURE 5: Basic NCS %20 packet loss
RMS error: 0.66509

FIGURE 6: Basic NCS %30 packet loss
RMS error: 1.023

FIGURE 7: MBPNCS %50 packet loss
RMS error: 0.22644

FIGURE 8: MBPNCS %90 packet loss
RMS error: 0.65153

The performance of MBPNCS under sensor noise
has been investigated in [22] and the effect of jitter
in the system is analyzed in [23].

5.3 Experiment Results

A physical setup comprising of three computers, a
dedicated Ethernet network, and a DC motor with
encoder and drive electronics was prepared for exper-
iments as explained in Section 4. The sampling time
was set at 1ms. Again speed control of DC motor
using PID method was targeted. Motor parameters
were measured and used as plant model.

Since Ethernet is stochastic, controlled amounts
of delay and data loss on the network were imple-
mented by randomly accepting or rejecting incoming
data packets on the computer nodes at a specified
rate.

Tests performed on the experimental platform
are similar to those for the simulations. The first
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test was for a practically no data loss or delay sce-
nario of 0.33% for MBPNCS, to see performance un-
der ideal conditions. The small amount of data loss is
caused by the Ethernet hub. The results are given in
Figure 9. The reference, plant output and number
of consecutively missed packets can be seen in the
figure. The number of consecutively missed packets
has been offset to avoid cluttering. It can be seen
that the system can control the speed with little er-
ror. The noise at the 50rad/s reference level is also
present if a completely centralized conventional con-
troller is used and is believed to happen because of
sensor noise which is not filtered.

FIGURE 9: MBPNCS experiment with
0.33% packet loss

FIGURE 10: MBPNCS experiment with
70% packet loss

As data delay and loss rate over the network is in-
creased, the MBPNCS method holds up well. As an
intermediate value, Figure 10 shows the case where
70% of the packets are discarded for being late or
dropped. Here, we assume a more realistic scenario
where the network is completely down for the given
rate, and functioning for the rest.

Finally, if the data delay and loss rate is in-
creased further, system becomes unstable, as shown
in Figure 11, at around 98% of the packets being de-
layed or lost. Performance begins to degrade around
90%, and deteriorates steadily.

FIGURE 11: MBPNCS experiment with
98% packet loss

As a comparison, we also tested the case where
the network is not completely down, but sensor to
controller node packets and controller to actuator
node packets are delayed or lost without any correla-
tion. The result of that case can be seen in Figure 12
with performance similar to the case in Fig. 10
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FIGURE 12: MBPNCS experiment with
70% packet loss (packet loss not correlated).

These results show that the performance in sim-
ulations and experiments are similar.

6 Conclusion

In this work, the implementation of model based pre-
dictive network control system method (MBPNCS)
using Ethernet as a non real-time network is pre-
sented. Real-Time Linux is used to guarantee real-
time performance of the computer nodes.

The method is applied both to a DC servo mo-
tor simulation and and experimental setup with real-
time computers, to examine various aspects of the
MBPNCS method. It has been observed that the
method is robust against network packet loss. The
destabilizing effect of packet loss is reduced to unre-
sponsiveness to the reference command which is an
inevitable consequence of communication loss.

An improved version of the implementation that
incorporates more powerful computer nodes is now
under construction to apply MBPNCS method to the
inverted pendulum problem.
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