
Simulink Target for Real Time Linux Extension:

Hardware Control using a Wrapper for Comedi

Klaus Oppermann

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

klaus.oppermann@jku.at

Daniel Schleicher

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

daniel.schleicher@jku.at

Bernhard G. Zagar

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

bernhard.zagar@jku.at

Abstract

A commonly used hardware in–the–loop environment is the dSPACE1 system, whose strength is aimed
at high flexibility and processing speed, but involves rather costly hardware and software licence fees. In
our proposed paper we elaborate a scaleable hardware platform running a low–cost RTLinux open source
system of comparable processing speed.

There is a great variety of applications that need such rapid control prototyping systems. Especially
developers of electromechanical plants are using rapid control prototyping systems to tune less known
system parameters and controller settings. These needs are well covered by the software environment
MATLAB/Simulink and the ”Simulink Target for Real–Time Linux” (STRTL toolbox). STRTL was
developed within the Ph.D. thesis of R. M. Garcia [1] on which our system is based upon. Unfortunately
STRTL is no longer actively supported and provides only certain drivers for a limited set of hardware in
its initial design.

In our work we extended the driver concept of STRTL to the well known driver interface standard
comedi2. This enables the STRTL to use all the hardware supported by comedi.

In this proposed paper we show the applicability of our package to control an electric drive used in a
student lab course aimed at familiarising the students with controller systems.

The paper is organised as follows:
First the requirement for this rapid control prototyping system are detailed. Secondly the comedi–

STRTL driver is discussed in detail. Finally we demonstrate the successful application of this extension
by means of an electric drive controller. We conclude our paper with some remarks and the reference to
our website where this extension can be downloaded freely.

1www.dspace.de
2linux control and measurement device interface (www.comedi.org).

1

1 Introduction

Nowadays rapid control prototyping gains more and
more importance in the industry. Usually such sys-
tems cost a big amount of money for hardware and li-
cence fees (e. g. dSPACE). Especially at universities,
where the money is scarce, rapid control prototyping
systems based on open source products are quite
interesting. Two well known open source products
are RTAI–Lab3 and RTLinux4 used with STRTL [1].

At our institute we use RTLinux with STRTL
because we’re familiar with MATLAB/Simulink5

and its RealTimeWorkshop environment [3]. This
allows our students, who are already well trained
using MATLAB to learn theoretical knowledge by
making experiences with live applications. Therefore
we designed a student lab exercise for demonstration
purposes.

A problem of RTLinux with STRTL was the
insufficient support of data acquisition hardware.
Therefore the decision can be made to write a
STRTL–driver for each data acquisition card or to
implement a driver–interface like comedi6 in STRTL.
We decided to implement comedi in STRTL, for this
reason this paper describes the implementation of
the comedi–interface into STRTL.

2 The comedi–STRTL–driver

2.1 Overview

The idea of the comedi–STRTL driver is to combine
the advantages of the comedi driver interface with
the STRTL–Target for MATLAB. The advantages
of this driver interface are a wide range of supported
hardware and its standardized interface. From there
it is easy to write a comedi–driver, if there doesn’t
exist one for a special hardware. There is also a good
description ”Writing a comedi driver” [5]. Another
helpful source is the Goetz Report [2] which gives a
nice STRTL overview. Furthermore hardware which
is supported by comedi can also be used in STRTL
with the comedi–STRTL driver. In this sense the
comedi–STRTL driver is a very useful and flexible
AddOn for the STRTL–Target.

2.2 Including the driver into the

STRTL toolbox

To include the comedi–STRTL–driver into the
STRTL toolbox the STRTL–addon–package has to
be copied over the basic STRTL–toolbox. Men-
tion that STRTL–addon–package also includes the
procctrl–STRTL–interface written by D. Schle-
icher [4]. In order to guide this STRTL–modification
the most important steps to include the AddOn–
package will be repeated below. A running comedi–
interface and STRTL–system will be assumed.

1. Copy the files from the directory
\STRTL_M6.5\rtw\c\src\ of the downloaded
package into \rtw\c\src\.

2. Copy the files from the directory \rtlinux\ of
the AddOn–Package into \rtlinux\.

3. Adapt the file \rtlinux\rtlinux.tmf so that
the system automatically load the comedi–
driver (e. g. s526) for your own data acquisition
hardware. This is a example for the Sensoray
S526 card that we use. The rtlinux.tmf of
the AddOn–package is prepared for the Senso-
ray S526 card like you see it in the listing 1.

...

load:

@modprobe kcomedilib

Comedi-Driver Load and Configuration

adapt these lines

@modprobe s526

@comedi_config /dev/comedi0 s526 0x6c0,0x5

#End of Comedi

@rtlinux start $(PROGRAM)_rtl.o

@./$(PROGRAM)

unload:

@echo "### Unloading modules from the kernel..."

@rtlinux stop $(PROGRAM)_rtl

#adapt this line

@rmmod s526

@rmmod comedi

@rmmod rtl

...

Listing 1: extract of rtlinux.tmf

When you copy this two directories the package is
completely installed on your system.

3www.rtai.org
4www.realtimelinuxfoundation.org
5www.mathworks.com
6comedi is an open source project from the authors David Schleef and Frank Mori Hess.

2

3 The comedi–STRTL–driver

The comedi–STRTL–driver is rather more a wrapper
than a real driver, because it provides the comedi in-
terface as a simulink block. The driver comprised
three different new main blocks for Simulink.

FIGURE 1: The parameters for comedi are
set in the Mask of the comedi–STRTL–driver
block.

These blocks are the:

output block (Comedi Out): writes the value to
a specified output channel.

input block (Comedi In): reads the value from a
specified input channel.

adjustment block (S526 Direction): defines a
group of channels to output or input.

The input and output blocks have the same body to
define them. By double clicking on the blocks, a ta-
ble opens, where the comedi options are defined (see
figure 1).
The comedi options are:

Sample time: defines the Sample time of the block,
must be the same or a multiple of the Sample
time of the model.

device: to select the acquisition device.

subdevice: to select the different functions of the
hardware (DIOs, AOs, Counter, . . .).

channel: to select the line or channel of the func-
tion.

The parameters in the mask are the same like the
parameters used by the C–functions of the standard

comedi–library. The input or output of the block
uses the value type depending on the hardware se-
lected by the comedi–parameters. Normally values
like the resolution of the channels (e. g. 16 bit ana-
log: −32768 . . . 32768) or the digital I/O state (0,
1) are used. That’s why it is recommended to use a
adaptation block based on the applied measurement
hardware.

The adjustment block defines a specified I/O–
channelgroup to output, when the input of the block
is defined to 1. Otherwise the I/O–channelgroup is
defined as an input if the input of the block is defined
to 0.

...

extern void comedi_strtl_write(int device_number,

int subdevice, int channel, real_T value)

{

/* Lock writing mutex. */

pthread_mutex_lock(&mutexcomedi_write);

dev=(char*) dev_sel(device_number);

device=comedi_open(dev);

val = value;

ret=comedi_data_write(device,subdevice,

channel,0,0,val);

ret=comedi_close(device);

/* Unlock writing mutex. */

pthread_mutex_unlock(&mutexcomedi_write);

} /* End of comedi_strtl_write(...) */

...

Listing 2: extract of the comedi_strtl.c

The secret behind these MATLAB–blocks is only
a call of the original comedi C–functions, as you can
see in Listing 2. This listing shows only the write–
function of the comedi wrapper. But the other func-
tions are similar to the write–function.

With the capabilities of this driver it is very easy
to use comedi with STRTL.

4 Demonstration application

To show the capabilities of our AddOn we use a stu-
dent lab exercise. Originally the students had to
build an analog controller for a DC–motor using a
tachometer (also a DC–Motor, but used in generator
mode) to measure the rotational speed.

This is a typical problem where mechanic, elec-
tronic and controlling are linked. Instead of build-
ing an analog controller we implement a digital con-
troller to control the rotational speed. The plant is
simulated in Simulink and adapted for STRTL. Us-
ing the strtl procctrl driver [4] the parameters can
be controlled by a small website. A block schematic
is shown in figure 2. The whole plant is shown in
figure 3.

3

FIGURE 2: Block schematic of the setup.

FIGURE 3: Instead of using an analog
controller, the motor is directly connected
via a power amplifier to the DAC and the
tachometer to the ADC.

In the following sections the mathematical model
of the plant and the implementation is performed.
Furthermore the simulation is compared with real
measurements acquired with the STRTL–model.

4.1 Mathematical model of the motor

Since the mechanical time constant is much bigger,
than the electrical, we approximate the motor by a
first order system

G(s) =
V

1 + as
=

n(s)

u(s) .

(1)

The tachometer can be approximated by

uA = k · n. (2)

If we measure uA and the rotational speed with a
light barrier, we can determine the tachometer con-
stant k with k = 1000/2.45 V/min.
A simple PI–controller with a saturated integrator
part in the form of

R(s) = kp + ki

1

s
(3)

is used to regular the system. These equations are
implemented in the Simulink–model.

4.2 Implementation

As shown in figure 6 the implementation of the
controller is quite simple. With the known plant
constants the simulation should represent the real
plant.
Using the simulation the parameters of the PI–
controller can be adjusted without any damage of
the real system. Nevertheless the parameter should
be setup rather conservative to mind possible non-
linearities which are not in the model of the plant.

To adapt the simulation model the constants are
replaced by blocks of the strtl procctrl driver and
the plant is replaced by the comedi input and output
blocks. The result is shown in figure 7. Comparing
figure 6 and 7 we’ll recognise just a few changes be-
tween the two models.

Additional to the External Mode in Simulink we
can now control the model through the website (see
figure 4).
One of the biggest advantage of the strtl procctrl
driver is to have an interface which is independent
of MATLAB/Simulink.

4

FIGURE 4: The website is used to change
controller parameters an the rotation speed.

Since we have the problem of the broken pipe
when we change a parameter in Simulink during the
External mode, we use the website to change the val-
ues of the rated speed.
The rate to read values from the Simulink model de-
pends on the webserver and the implementation of
the website. In this case we only update one single
value each half second and do not use graphs like
Simulink does it.
Using the SaveToWorkspace–Block in Simulink we
can save the rotation speed progression and compare
it with the simulation. The comparison is shown in

figure 5. We can see that the designed controller
works fine on the real plant.

0 2 4 6 8 10
−500

0

500

1000

1500

2000

2500

3000
Stepresponse Real System

time (seconds)

n
in

 r
pm

revolution set
revolution measured
revolution simulated

FIGURE 5: The measured data fits very
good with the simulated data.

5 Conclusions

In this paper a comedi–driver–AddOn for STRTL
was presented with a small student lab exercise.
Using the comedi–STRTL driver we are able to use
comedi featured devices in our Simulink–model. The
blocks are easy to use and their usage is quite similar
to the C–functions of comedi. With this extension
STRTL features the same hardware like comedi.
For a better and stable communication with the
embedded system we use the proctrl–driver [4].
MATLAB/Simulink is only used during the rapid
control prototyping phase of the project while the
Website is used as the user interface which is shipped
out to the customer when the product is ready.
The final demonstration with the student lab ex-
ercise shows the capabilities of RTLinux, STRTL
and the AddOn presented in the paper. Finally, the
comedi–STRTL and strtl procctrl driver [4] can be
downloaded from
http://www.emt.uni-linz.ac.at/rtlinux/ as
one complete package.

The latest source files for comedi are available at
the web page http://www.comedi.org.

5

FIGURE 6: Having all the parameters of
the plant, it can easy be simulated in Simulink.

FIGURE 7: The adaptation for the usage
with STRTL only needs a few changes (com-
pare with figure 6).

References

[1] R. M. Garcia: Hard Real–Time Control Using
Simulink Target for Real–Time Linux , Glasgow,
Caledonian University, IJCA Vol.11 No.2, 2004.

[2] S. Goetz: Development of Real Time Systems us-
ing Simulink–RTW and RTLinux ,2005.

[3] MathWorks Inc., Real-Time Workshop User’s
Guide, for use with SIMULINK , 1999.

[4] Daniel Schleicher, Simulink Target for Real Time
Linux Extension: Remote Control via Command
Line and Web Interface, 2007.

[5] David Schleef & Frank Mori Hess,
Comedi ”Writing a Comedi driver”
http://www.comedi.org/doc/x1394.html.

6

