UDP for Real-Time Linux

Andreas Platschek
Technische Universitat Wien
Karlsplatz 13, 1040 Wien, AUSTRIA
a.platschek@wavenet.at

Abstract

This work describes the integration of the hard real-time UDP/IP stack rtludp-0.1.1 into the Realtime
Ethernet Device Driver (REDD) of the free real-time Linux distribution RTLinux/GPL. The current
implementation of REDD misses a high-level communication protocol as it is present for non-real-time
TCP/IP. A high-level communication protocol is essential for high-level applications and middleware
(e.g. for using REDD for a publisher/subscriber protocol). This paper describes the design decisions in
integrating rtludp-0.1.1 into REDD, analyzes the impact of the layering of the communication protocol on
the bandwidth and the latency by means of benchmarks, and points out some ideas for future development.

1 Introduction

This paper illustrates why rtludp-0.1.1 was ported
to REDD, describes the most important design de-
cisions and analyzes the impact of a layered com-
munication protocol compared to RAW IP, on the
latency by means of simple latency and throughput
benchmarks.

In RTLinux/GPL have been several projects
with the aim to provide a simple Ethernet based
communication interface for distributed applications.
One of these projects is Realtime Ethernet Device
Drivers (REDD)[1, 2], which provides drivers for the
popular Realtek 8139 and the 3Com 3c59x ethernet
adapter, as well as a POSIX compliant Applica-
tion Programming Interface (based on read/write
but not the traditional socket API) and low level
communication protocols like the MAC and RAW
protocol has been included in RTLinux/GPL since
version 3.2-prel. The big handicap of REDD was a
missing high-level real-time suitable communication
protocol as it is present for non-real-time TCP/IP.
A high-level communication protocol is essential for
high-level applications and middleware (e.g. for us-
ing REDD for a publisher/subscriber protocol like
ORTE [3)).

rtludp-0.1.1 was developed as part of the
OCERA[4] project but never integrated into main-
stream RTLinux/GPL due to technical limitations
and driver problems. rtludp-0.1.1 included it’s own

set of drivers instead of utilizing the existing real-
time ethernet framework.

Since a real-time ethernet framework exists - which
lacks high-level communication protocols, it was a
obvious decision to port the UDP/IP(User Data-
gram Protocol/Internet Protocol) network stack -
implemented in rtludp-0.1.1 - to REDD, so that
both projects complement each other. The result
is rtlredd_udp, a hard realtime UDP/IP network
stack for RTLinux/GPL. It is already included in
rtlinuxgpl-3.2 an can be downloaded at www.rtlinux-
gpl.org.

The following section UDP for Realtime explains
why UDP fits better for realtime applications than
TCP, after that, the porting of rtludp-0.1.1’'s UDP
stack to REDD is explained in the section after it,
and the impact of layered protocols on the perfor-
mance is discussed along with a brief description
of the benchmarking methodology in Examples and
benchmarks. Finally a conclusion is built and some
ideas for future work are pointed up.

2 UDP for Real-Time

The User Datagram Protocol (UDP) is a connec-
tionless high-level communication protocol. It offers
better realtime characteristics than TCP, because
in contrast to TCP it employs no transparent re-
transmission or error correction mechanisms which
checks for every packet whether it has arrived in-

cluding proper sequence of packets. Nevertheless it
can be guaranteed, that no packets are lost in local
networks, provided point-to-point topology is in use.
For complex topologies end-to-end checks at the ap-
plication level, as with all UDP based services, is
required.

The key data for real-time communication sys-

tems, to allow predictability, are the worst case la-
tency (i.e. the time it takes in the worst case for a
packet to be sent), and the jitter (the deviation of
the best and the worst case). For some applications
these system parameters can be very tight. For ex-
ample, to control the rollers of a paper machine a
worst case latency of approximately 0.1ms to lms
and a jitter of 1us are required.
With UDP, this boundary data can be detected by
benchmarking very easily, with a round trip test.
With TCP it would be much more difficult to pre-
dict this basic data due to the unknown number
of timeouts and retransmissions. Though statistic
approaches have been presented and with appropri-
ate design restrictions distributed systems have been
successfully realized based on TCP [5]

3 rtlredd_udp

The porting effort for the existing rtludp can be sep-
arated in two main parts, assessment of existing code
and selection for reuse and redesign of the interfaces
needed for the specifics of REDD.

3.1 Porting rtludp-0.1.1 to REDD

application

@ﬁ@@@

POSIX open/read/wrlte/close interface POSIX socket API

15 5 3
SJeke

rtl_redd.o

F------ Bl
rt_3c59%.0 : rti_loopback.o :

Architecture of REDD

figure 1:

Before the actual work could be started, the rtludp-
0.1.1 code had to be analyzed and it had to be figured

out which part of rtludp-0.1.1 should be reused, and
which part had to be replaced by the calls to the
REDD API.

Basically the porting from rtludp-0.1.1 to
rtl_.redd_udp meant nothing more than replacing
the low-level interface to the drivers of rtludp-0.1.1
by the calls of the REDD API. Of course this does
imply evaluating the differences in semantics for the
conceptually analogous calls.

So a big part of rtludp-0.1.1 stayed untouched in
rtl_.redd_udp. This part was mainly the socket in-
terface, which can be found in udp.c, and the as-
sembling of the IP- and UDP-Header. As could be
expected - pure data manipulation routines could be
migrated without much efforts. The resulting archi-
tecture of REDD is pictured in figure 1.

Following the UNIX rules of "make it work then
fast”, after rtl.redd-udp was working, some opti-
mizations have been carried out. One big improve-
ment from rtludp-0.1.1 to rtl.redd_udp was that the
pthread_poller which was a periodic task which was
polling for messages that should be sent or have been
received could be eliminated and replaced by a hard-
ware interrupt service routine, leading to hardware
bound latency on packet receive - for packet sending
a trigger mechanism has been added - allowing to
schedule send operations asynchronously.

With the removal of the message queue included
in rtlupd-0.1.1 one Level of buffering was removed.
This is not only an architectural and thus mainte-
nance simplification but also a performance gain, as
memory related (cache/TLB etc.) operations are the
prime source of jitter in RTLinux/GPL.

3.2 The proc Interface

rtl.redd_udp uses the proc interface for two pur-
poses: to read back the current configuration of
rtl_redd_udp and to add new entries into the ARP-
table. This conceptually follows the rule of only
implementing in RT-context what actually is RT
sensitive and leaving non-RT configuration opera-
tions in non-RT Linux user-space context - with the
/proc interface being the simplest sharable data be-
tween user-space and kernel-space (which includes
RTLinux/GPL threads) this was the option of choice.
The corresponding proc-entry can be found in
/proc/redd udp, and contains the current IP ad-
dress of the node, the entries in the ARP-table and
a list of the currently opened ports.

rtludp-0.1.1 employs a dynamic ARP-table as
used in normal ethernet. This works fine for non-RT
applications, but every dynamic part in a real-time
system makes it harder to evaluate the systems per-
formance, especially under load conditions, static

resources thus are preferred. It is also a fact that a
domain in a real-time system usually consists of a
static number of nodes, and so a static ARP-table
is used in rtl_redd_udp to resolve the MAC addresses.

While runtime reconfiguration might be neces-
sary, this is considered a non-real-time mode of op-
eration, no temporal guarantees are given during
changes in the configuration space of rtl_redd_udp

The ARP-table can either be configured
via a configuration file (by default located in
/etc/redd/ARP-table.conf) or via the proc-write
interface. The configuration file is parsed when the
module is loaded. The proc-write interface can be
used to add entries to the ARP-table, until a socket
is opened (i.e. an application (active rt-thread has
been loaded).

4 Examples and Benchmarks

During development, some simple exam-
ples have been written. If you down-
load rtlinux-3.2 you can find them in

rtlinux-3.2/drivers/redd/examples. These ex-
amples can basically be used as templates for appli-
cations, among the examples there are some simple
tests to measure the round-trip time and the band-
width. At the current state of development, the
round-trip test works fine, but there are some trou-
bles with the bandwidth, test, so in the following
only the round-trip test is discussed.

The output of this test is compared to the out-

put of the raw protocol included in REDD, to allow
direct comparison of the impact that a layered pro-
tocol could have. (figure 2) in the following. The
results shown in this paper were carried out with
two 100Mbit rtl8139 ethernet adapters, connected
via a cross-over cable. Systems used were COTS
PCs, NN 1.6GHz AMD Athlon systems with 256 MB
RAM and running from NN IDE disks.
It should be noted that while results are hardware
dependent, the relation between UDP and RAW
connection is expected not to change with different
hardware setups.

The round-trip test sends a packet from one node
to another node, which sends the packet back un-
modified except for exchange of the header informa-
tion. The time this procedure takes is measured rep-
resenting the lower bounds of achievable communica-
tion time for a given packet size. The measurement
is carried out several times and the best-, worst- and
average- case are evaluated. Then the packet size
is increased and the measurements are performed

with the new packet size. Tests showed that re-
sults are reasonably stable with 100 packets. The pa-
rameters (MAX_SIZE, MIN_SIZE, STEP_SIZE and
NUM_MEASUREMENTS) for the round-trip test
can be chosen by the user. The result of the round-
trip test for rtl_redd_udp is shown in figure3 with
best-, worst- and average-case printed against the
packet size - this test run is with 100 measurements.

256000

Ybench_prote_nac_data’ using 1:2 ——
*bench_proto_nac_data” using 1:3 ——
*bench_proto_mac_data’ using 134 ——

200008 -

150808 [

100000 -

He8ae

a 288 88 688 888 1808 1288 1408 1688

figure 2: Round-Trip Time RAW protocol

If we compare the Round-Trip Time of the
raw protocol in figure 2 to the Round-Trip time
of rtl.redd_udp in figure 3, we can see that the
worst case time stays roughly the same (starting
with about 50us at a packet size of 50Byte up to
about 200us at a packet size of 1500Byte), but min-
imum and average values are a little bit higher in
rtl_redd_udp. This is due to the increased code size
for processing packets resulting in higher cache re-
lated delays and in the overhead due to greater func-
tion call depth, though the overall impact is negli-
gible with respect to determinism of communication
properties.

250000 ; T

T T T T
‘opentech_udp_roundtrip' using 1:2 ——
‘opentech_udp_roundtrip' using 1:3
‘opentech_udp_roundtrip' using 1:4 ——

200000 B

150000

100000

50000 | #

0 I 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

figure 3: Round-Trip Time UDP protocol

The bandwidth test does almost the same as the
round trip test, but instead of sending one packet,
a number of packets is sent, and the time, until

all the packets are received is measured. While the
round trip test is dominated by the ethernet inter-
faces themselves and the CPU side processing can
be considered uncritical, the bandwidth tests will be
influenced by the CPU and memory subsystem per-
formance especially for large packet sizes.

These tests currently have not been run on suf-
ficiently different platforms to draw significant con-
clusions regarding the performance impact of the in-
dividual hardware components.

5 Conclusion and Future Work

At this point of development, rtl_redd_udp supports
a basic function set to use the standard socket API
in real-time applications. This makes the use of the
communication via ethernet in real-time context a
lot easier, and the application programmer is able to
use the POSIX socket API as he is used to in non
real-time context.

At the same time initial benchmarks show that the
impact on determinism is negligible justifying the
use of a high-level protocol in real-time context.

For the future it will be necessary to implement
multi NIC support, find the reason for the spikes in
the worst case and do some optimizations. There are
also some restrictions in rtl_redd_udp that should be
eliminated. One example is the number of ports used
at a time. During test phase this number has been

increased up to 40 without any problems. However,
to keep the system deterministic, we will follow the
concept of static resources, whenever this is possible.

Migration to RTLinux/GPL-4.0 (based on the
XtratuM nanokernel) is one of the near future chal-
lenges for rtl_redd_udp.

References

[1] F. Bruckner, RTLinux Ethernet Device Drivers,
Proceedings of the Eighth Real-Time Linux Work-
shop, pages125-127, 2006

[2] Sourceforge, REDD: RTLinux Ethernet Device
Drivers, 2006, http://redd.sourceforge.net/

[3] Jan Krakora, Pavel Pisa, Frantisek Vacek,
Zdenek Sebek, Petr Smolik and Zdenek Han-
zalek, Deliverable D7./ Communication compo-
nents V2, OCERA Consortium, February 2004,
http://www.ocera.org

[4] , A. Crespo and I. Ripoll,
Paper, OCERA Consortium,
http://www.ocera.org

OCERA White
April 2003,

[5] , G. Alt, W. Lages, Networked Robot Control
with Delay Compensation Federal University of
Rio Grande do Sul, Institute of Informatics, Nov
2003

