
Simulink Target for Real Time Linux Extension:

Remote Control via Command Line and Web Interface

Daniel Schleicher

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

daniel.schleicher@jku.at

Klaus Oppermann

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

klaus.oppermann@jku.at

Bernhard G. Zagar

Institute for Measurement Technology

Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

bernhard.zagar@jku.at

Abstract

A commonly used hardware in–the–loop environment is the dSPACE1 system, whose strength is aimed
at high flexibility and processing speed, but involves rather costly hardware and software licence fees. In
our proposed paper we elaborate a scaleable hardware platform running a low–cost RTLinux open source
system of comparable processing speed.

There is a great variety of applications that need such rapid control prototyping systems. Especially
developers of electromechanical plants are using rapid control prototyping systems to tune less known
system parameters and controller settings. These needs are well covered by the software environment
MATLAB/Simulink and the ”Simulink Target for Real–Time Linux” (STRTL toolbox). STRTL was
developed within the Ph.D. thesis of R. M. Garcia [1] on which our system is based upon.

Because of a bug in the parameter exchange function of STRTL and the desire to control our Simulink
model via a website, we created an extension called strtl procctrl. This extension is a special driver that en-
ables the user to exchange the MATLAB/Simulink model parameters via the linux build in proc–filesystem
between the model and a website. Using this method it is quite easy to create a MATLAB/Simulink inde-
pendent user interface. This interface can either be a command line application or a website that accesses
the driver generated proc–file.

The paper is organised as follows:
First the requirement for this rapid control prototyping system and common drawbacks of the STRTL

toolbox are detailed. Secondly the strtl procctrl driver is discussed in detail. Finally we demonstrate the
usage of the driver by means of a small application. We conclude our paper with some remarks and the
reference to our website where this extension can be downloaded freely.

1www.dspace.de

1

1 Introduction

Nowadays rapid control prototyping gains more and
more importance in the industry. Usually such sys-
tems cost a big amount of money for hardware and li-
cence fees (e. g. dSPACE). Especially at universities,
where the money is scarce, rapid control prototyping
systems based on open source products are quite in-
teresting. Two well know products are RTAI–Lab2

and RTLinux3 used with STRTL.

At our institute we use RTLinux with STRTL
for MATLAB 6.5 because we are familiar with
MATLAB/Simulink and its RealTimeWorkshop en-
vironment [2]. Using this setup during the proto-
typing phase of an application is quite powerful and
leads to good solutions. But offering this solution
to the customer isn’t really possible, because they
would need an easy to use interface and wouldn’t
like to pay licence fees to Mathworks in general.

During the work with STRTL we identified an
error called ”broken pipe” while exchanging param-
eters from Simulink–model within external mode.
The development of the strtl procctrl driver was a
workaround for this identified problem, which en-
ables the exchange of parameter through the com-
mand line, respectively through a website. Espe-
cially the latter brings up an interface which is easy
to use and universally applicable.

Another way of exchanging parameters was de-
vised by A. Siro [3] who wrote the C–API. The
C–API is an application interface to access and
change the STRTL parameters. Unfortunately this
package wasn’t yet available during our own devel-
opment phase.

In comparison to the C–API our approach to use
a html–website allows quick creation of an user inter-
face. Maybe this two approaches would be combined
one day.

2 The strtl procctrl driver

2.1 Overview

The basic idea of the strtl procctrl driver is to use the
proc–filesystem of linux to change important settings
in the STRTL–model. Well edited information about
the proc–filesystem was found in [4].

FIGURE 1: Block diagram of an applica-
tion using the strtl procctrl driver

The block diagram 1 shows the functionality
of a STRTL–model using the strtl procctrl driver.
The two proc–files (floatarray_strtlread and
floatarray_strtlwrite) are used to communicate
with the STRTL–module which is running on the
embedded target system.

The data in the proc–file, written by the kernel
module, can be accessed by a webclient through an
webserver and two small C–programs, which are ex-
plained later in section 2.4.

While the MATLAB/Simulink blocks
proc_reader and proc_writer are updated con-
tinuously with every taken sample, the webclient
updates its data periodically on demand.

2.2 Driver source

The proc–files are created during the driver initial-
isation when procctrl_init() is executed. Each
proc–file represents one array that is directly ac-
cessed by MATLAB/Simulink through the driver.
The coherencies between the driver files and their
functions is pictured in fig. 2.

2www.rtai.org
3www.realtimelinuxfoundation.org

2

FIGURE 2: Connections between the files
and functions of the driver

The Simulink blocks of strtl procctrl lib.mdl can
be placed in the MATLAB/Simulink model with a
preferred channel index. The signal value of the
proc writer Simulink block is stored in the valwrite
array using the procctrl_write–function with
valwrite[index%ARRAYLEN]=value, where index is
the index parameter and value is the signal value.
To read the value of the array with the proc reader
block, we use the procctrl_read–function with
*value=valread[index%ARRAYLEN].
Using this functions, the STRTL–output block is
connected to the float array valwrite[ARRAYLEN]

which is updated each samplestep. That is why
the second array valread[ARRAYLEN] is needed for
the STRTL–input block, otherwise the value of the
STRTL–input block would be overwritten each sam-
plestep.

External programs have access to the arrays via
the get– and set–functions. Each proc–file has one
get– and set–function. The following source shows
how the valread–array is read by external programs
reading the proc–file via standard file–I/O functions.

...

// char pointer on the first

// valread value

p=(char*)&valread[0];

for(i=0;i<ARRAYLEN*sizeof(float);i++){

//print bytes

size+=sprintf(page+size,"%c",*p);

p++;

}

...

Because of the implementation of the proc–
files, the float value is transmitted bytewise using
a pointer (see fig. 3).

FIGURE 3: Using a char pointer on the
float array for the proc interface

These bytes have to be merged to a float value
again when an external program writes on the proc–
file. This is done in the set_strtlread function
shown below:

// startpointer

p=(char*) &valread[0];

for (i=0; i < count; i++){

//save user_buffer values

*p=user_buffer[i];

p++;// pointer inc

}

...

The functions set_strtlread and get_strtlread

belong to the proc–file floatarray strtlread. The
functions for the proc–file floatarray strtlwrite,
which is accessed by the functions set_strtlwrite

and get_strtlwrite, are working in the same man-
ner.

2.3 Including the driver into the

STRTL toolbox

To include the strtl procctrl driver into the STRTL
toolbox it’s only necessary to follow the guide-
line written by R. M. Garcia [1] (look at
README IOCard.txt contained by the STRTL
toolbox). Similar information about drivers for
STRTL can be found in [5]. Nevertheless we’ll repeat
the most important steps to include the strtl procctrl
driver. A running STRTL system will be assumed.

1. Copy the files procctrl.h and procctrl.c into
\rtw\c\src\.

2. Copy strtl procctrl.mdl, strtl in procctrl.m,
strtl in procctrl.tlc, strtl out procctrl.m and
strtl out procctrl.tlc into \rtlinux\.

3. Include the strtl procctrl.mdl blocks into
strtl lib.mdl.

3

4. Add the driver name in rtlinux.tmf (DAC =
procctrl.c)

5. Modify krnl main.c

• Add #include "procctrl.h"

• Add if (procctrl_init() == -ENODEV)

PRINT_W("\nprocctrl didn’t initialize\n");

in init_module(void)

• Add procctrl_close(); in cleanup_module(void)

Instead of doing all this changes by your-
self, it might be easier to download
the modified package from our website
(http://www.emt.uni-linz.ac.at/rtlinux/).

2.4 Driver interface via command line

To exchange parameters with a Simulink model us-
ing the strtl proccrtl driver we need to write at
/proc/strtl_procctrl/floatarray_strtlread or
read from
/proc/strtl_procctrl/floatarray_strtlwrite.

Due to minimize the processing time of the
driver, the output–function doesn’t make any con-
versation from hex to string or similar of the array.
The values are submitted directly as char and are
not converted to a string. Because of this manner,
reading the proc–file with cat <procfiletoread>

will only provide nonsense and should not be used.
Therefore some small C–programs which do the con-
versations in the userspace were written. These read
and write tools can be used to get understandable
results from the proc–file and are listed below:

• pr_fa . . . ProcRead FloatArray
./pr_fa <procfiletorread>

• pw_fa . . . ProcWrite FloatArray
./pw_fa <procfiletorwrite>

• pr_faind . . . ProcRead FloatArray on Index
./pr_faind <procfiletorread> <index>

• pw_faind . . . ProcWrite FloatArray on Index
./pw_faind <procfiletowrite> <index> <value>

The pw fa C–program is shown in the following list-
ing:

#include <stdio.h>

#include <string.h>

#include <malloc.h>

// look at procctrl.c

#define ARRAYLEN 64

int main(int argc, char** argv)

{

FILE* fp; char* arg; float* input=NULL;

int i,k,index,x; float res;

if (argc < 2) {

printf("pw_fa ProcWrite Floatarray!!\n");

printf("Usage: ./pw_fa <procfiletorwrite> \n");

printf("Usage: ./pw_fa /proc/procfile 3.4 7.3 \n");

return 0;

}

// determine nr of values

x = argc - 2;

input = (float*)malloc(x*sizeof(float));

for (k = 0; k < x; k++) { // parse input

sscanf(argv[2+k],"%f",&res);

input[k] = (float)res;

}

fp=fopen(argv[1],"w");

//transferring the data as float

fwrite(input,sizeof(float),x,fp); t

free(input);

fclose(fp);

return 0;

}

In the following an example for writing the values
(1.23,5.55,6.66) into
/proc/strtl_procctrl/floatarray_strtlread is
given.
The following line is typed on the console:

root#>./pr_fa /proc/strtl_procctrl/float...

...array_strtlread 1.23 5.55 6.66

Looking at the listing above, it is quite easy to
transfer data to the proc–file, since standard file–
I/O functions are used. The main part is parsing
the command line parameters.

2.5 Driver interface via website

To control the model via website we only need to ex-
ecute our programs to write on the proc–files. There-
fore we’ve to take care that our programs and files
have the correct permissions to be assure the usabil-
ity via the webserver.

The following source is an extract of such a web-
site, where a float number (pr2) is written on in-
dex 2. When the page is loaded the first time, pr2 is
initialised with 0. After changing this parameter the
system()–function is executed with the appropriate
options.

The usage of the PHP internal write–functions
doesn’t work because of the PHP automatic typecas-
tig. An other way would be the usage of cgi–scipts,
where the c–write functions can be directly imple-
mented.

<?php // set global variables

// files

$pf_read=’/proc/strtl_procctrl/floatarray_strtlread’;

$pf_write=’/proc/strtl_procctrl/floatarray_strtlwrite’;

// commands

$pw_faind=’./c-files/pw_faind’;

?>

<form name="number" method="GET" action="index.html">

(pr2) A:

<input type="text" name="pr2" value="

<?php

4

if(isset($_GET[pr2])){

echo "$_GET[pr2]";

}else{

echo "0"; // default value

}

?>"

action="index.html">

<?php

if (isset($_GET[pr2])){

system($pw_faind.’ ’.$pf_read.’ 2

’.$_GET[pr2] , $ret);

}

?>

</form>

Of course, for the real homepage source, this code
will be formatted to use only two lines. A demon-
stration will be shown in the following chapter.

3 Demonstration application

To demonstrate the capabilities of our extensions we
build a small calculator application. Fig. 4 shows
the MATLAB/Simulink model. Instead of constant
blocks the proc reader block is used. Instead of a
display block the proc writer block is used.

FIGURE 4: MATLAB/Simulink model us-
ing the strtl procctrl driver for a simple calcu-
lation

FIGURE 5: The values for the calculation
are inserted via html form

5

Mention that the calculation is done in real
time each sample, the parameter exchange does not.
Fig. 4 shows the web interface which uses the PHP
code snipplets shown in section. 2.5. The autore-
freshbox is updated by the webbrowser continuously.

4 Conclusions

In this paper a remote control for STRTL was pre-
sented, that was demonstrated to work nicely with a
small MATLAB/Simulink model. It enables a quick
communication with the kernel module completely
independent from MATLAB/Simulink.

MATLAB/Simulink is only used during the rapid
control prototyping phase of the project while the
website provides the user interface which is shipped
out to the customer when the product is ready.

Of course a website is not mandatoryly needed,
because the proc–files can also be read and written
by a simple C–program. The appearance of the user
interface is still very flexible which is a result of the
usage of the proc–filesystem. This enables the devel-
oper to create his own userinterface using standard
file–I/O functions.

The final simple and easy to understand
Simulink model demonstrates nicely the capabilities
of RTLinux, STRTL and our remote control exten-

sion. A much more practical demonstration is given
in [6], where we combined this approach with a stu-
dent lab exercise.
Finally, the strtl procctrl driver can be downloaded
from http://www.emt.uni-linz.ac.at/rtlinux/.

References

[1] R. M. Garcia: Hard Real–Time Control Using
Simulink Target for Real–Time Linux , Glasgow,
Caledonian University, IJCA Vol. 11 No. 2, 2004.

[2] The MathWorks, Inc., Real–Time Workshop
User’s Guide for use with SIMULINK , 1999.

[3] A. Siro, I. Diaz: Introducing the C–API Simulink
Target for RT–Linux , 2005.

[4] J. Quade, E. K. Kunst: Linux–Treiber entwick-
eln, dpunk.verlag, 2004.

[5] S. Goetz: Development of Real Time Systems us-
ing Simulink–RTW and RTLinux , 2005.

[6] K. Oppermann, D. Schleicher, B. G. Zagar:
Simulink Target for Real Time Linux Extension:
Hardware Control using a Wrapper for Comedi ,
2007.

6

