
Providing Support for

Multimedia-Oriented Applications under Linux

Sebastian Schöning† Markus Müller‡

Saarland University, Faculty of Computer Science, Operating System Research
Chair of Professor Scheidig Building E1.1, P.O. Box 151150, D-66041 Saarbrücken

†schoening@cs.uni-saarland.de ‡muemar@studcs.uni-saarland.de

October 24, 2007

Abstract

Linux as a general-purpose operating system is designed to support the services required by most
generic applications. Today, there is a new generation of real-time applications that are interactive,
computation-intensive, and I/O-bound. In the past years, operating system research has addressed each
of these challenges in turn. Yet frequently, when an application requires the support of all three aspects
in unison, performance suffers. In particular, this is the case for multimedia-oriented applications. These
applications have to meet soft real-time requirements, demand for a high data throughput, and need to
interact with the user. Furthermore, they are constructed in a highly modular fashion with a multitude
of concurrent and interdependent activities.

The software market offers either dedicated multimedia applications or middleware solutions, each
addressing these issues at a high level: The solutions are built upon existing operating system interfaces
and they rather focus on the support for specific multimedia functionalities, such as decoders, instead of
providing an appropriate operation infrastructure for a wider range of applications within that area.

This paper targets the integration of multimedia-oriented applications from a new angle. We improve
the support for such applications by means of dedicated system services: Instead of the common process
model, our execution paradigm is based on the process network model. This model is an established
formalism in the field of embedded systems. We leverage the theoretic findings by implementing them
into a real operating system. Additionally, we contribute dedicated buffer management and scheduling
facilities by exploiting the advantages of the process network model. The implementation is realized both
as a kernel-space and a user-space solution. For the kernel-space solution, we extend the Linux kernel
and its system-call interface to use the full potential of kernel-internal features.

1 Introduction

The advancements of computer hardware have paved
the way for an ever-increasing demand on multime-
dia-oriented applications on desktop systems. Usu-
ally, such applications are executed on general-pur-
pose operating systems along with conventional in-
teractive applications. Multimedia-oriented appli-
cations make heavy demands on resources, require
soft real-time guarantees, and the support for user-
interaction, which is intrinsically non-deterministic.
These applications are highly modular and use spe-
cialized function libraries. Furthermore, such appli-
cations embody a multitude of concurrent and inter-
dependent activities that are realized in software as
well as in specialized hardware.

Figure 1 depicts such a situation. A simple au-
dio-video player stamps text messages into the video
output. The nodes in the graph represent individ-
ual actions, such as grabbing, splitting, and filter-
ing. The directed edges between nodes show the data
dependencies between these actions. For instance,
a frame of an audio-video stream is first grabbed
(grabber), then splitted into separate audio and video
frames (splitter), and the result is next processed by
audio and video decoders (decoder). Subtitles are
stamped into the decoded video frame (combiner),
and, eventually, audio and video data are output
to the appropriate devices (buffer). Subtitles are
fetched from an external source that may, for exam-
ple deliver textual input data, like stock exchange
notes. The output stages (audio buffer and video

1



buffer) are time-driven by means of some play-out
period, such as the frame rate of the display. The
processing functions are taken from multimedia li-
braries, such as the ffmpeg library [8] that is part of
the MPlayer project [14].

A/V File 
Grabber

Splitter
Audio 

Decoder
Audio 
Filter

Video 
Combiner

Audio 
Buffer

Video 
Buffer

Text File 
Grabber

Text 
Renderer

Video 
Decoder

FIGURE 1: Data flow in an audio-video
player with subtitle overlaying.

1.1 Our Approach

We claim that the combined execution of interac-
tive and multimedia-oriented processing is not suffi-
ciently supported in general-purpose operating sys-
tems (GPOS), like Linux. First, such operating sys-
tems provide means for generic classes of applica-
tions, which are not necessarily adequate for multi-
media-oriented applications. Second, the scheduling
on general-purpose operating systems was designed
to provide a high degree of fairness between com-
peting activities while maintaining a high utilization
of the overall system; real-time activities are feasi-
ble but these activities infringe the fairness criterion.
As a consequence, in systems with a mixed applica-
tion set either interactive applications are subject to
starvation or multimedia-oriented applications can-
not meet their quality-of-service requirements.

Our novel approach to this problem extends
an off-the-shelf general-purpose operating system to
support multimedia-oriented applications by means
of the following aspects:

• adoption of a process network model as the ex-
ecution model,

• provision of a buffer abstraction that allows
for a time-driven representation of memory ob-
jects,

• implementation of a methodology for applica-
tion-specific scheduling algorithms based on fi-
nite automata, and

• virtualization and dedication of hardware re-
sources to resolve critical concurrent accesses.

We call the implementation of our approach the
Component Extension (CE). We provide two imple-
mentation variants: a kernel-space extension for the
demonstration of the feasibility and efficiency of our
approach and a user-space variant for comparison
with conventional means. In this paper, we describe
the concepts underlying our approach and provides
a status quo on the development of the kernel-space
extension.

1.2 Document Structure

The remainder of this document is structured as fol-
lows: Section 2 covers conceptual details of our ap-
proach. In Section 3, implementation aspects are in-
troduced and discussed. In Section 4, we discuss the
related work. Section 5 concludes the document with
summarizing remarks and some words about current
and future work.

2 Concepts

This section introduces the concepts underlying the
Component Extension in a top-down fashion. We
first motivate the use of a different execution model.
Then, we introduce our notion of a multimedia-orien-
ted application, which is called application scena-
rio. Subsequently, we describe the details: com-
ponents (execution primitive), channels (communi-
cation means), buffers (memory objects), and the
application scheduling. We conclude the section with
discussing the problem of concurrent device accesses
with respect to timeliness and our approach to its
remedy.

2.1 Execution Model

General-purpose operating systems provide efficient
means for the execution of generic classes of appli-
cations, such as interactive applications. The gen-
eral notion of activity is based on the process con-
cept [20]. Processes incorporate internal parallelism
by threads. These operating systems provide means
to coordinate sets of processes and threads, yet the
overall structure of applications remains hidden from
the operating system itself: processes and threads
are organized in a “flat” manner (meaning as un-
structured pools) and the operating system is only
involved in considering dependencies among them
if the need for exchanging data or synchronization
evolves.

Multimedia-oriented applications execute a mul-
titude of concurrent and interdependent activities.
Consequently, their internal structure is frequently
complex. Therefore, the process model doesn’t seem

2



to be sufficient for such an application class because
structural knowledge that already exists is not ex-
ploited by the operating system. Therefore, we argue
for an adoption of the process network model [10]
as the basis for the representation of multimedia-
oriented applications.

2.1.1 Application Scenario

We define an application scenario, which represents a
multimedia application, as a directed acyclic graph
with components as nodes and channels as edges.
Components accommodate single functions that are
executed sequentially. These functions take and pro-
vide parameters of fixed sizes and amounts. Func-
tion parameters (such as video frames) are encapsu-
lated into buffers that are communicated via unidi-
rectional first-in, first-out channels between compo-
nents. The transmission semantics can be defined as
“block on empty input and unblock on output”: the
execution of a component is blocked if it reads from
an empty input channel; a write operation to an out-
put channel may unblock subsequent components.

The application scenario can be partitioned into
disjoint protection domains that correspond to dif-
ferent address spaces. The buffer handling facility of
the CE manages the allocation of memory for protec-
tion domains and transmission between protection
domains. Hence, conventional protections mecha-
nisms can also be utilized for multimedia-oriented
applications.

The discrimination between components versus
processes on the one hand and channels versus spe-
cific communication means on the other hand gives
rise to a transparent mapping between the appli-
cation layer and the operating system layer. De-
pending on the implementation, components can be
mapped to processes, threads, or to any other type
of activity that is provided by the system. Even
a hierarchical mapping of components to activities
of varying weights is conceivable, e.g. components
are mapped to coroutines, linear sequences of com-
ponents are mapped to threads, and protection do-
mains are mapped to processes. Similarly, channels
can be mapped to an appropriate communication
means, like the shared-memory facility, or even be
implemented anew.

2.1.2 Components

Components are characterized statically prior to
compile time by several parameters: Consumption
scores are assigned to input channels and produc-
tion scores are assigned to output channels. Input
scores specify for each input channel the amount of
input data that is needed in order to produce the

amount output data that is specified by the produc-
tion scores. Channels can be indicated as optional,
which is used for components that consume or pro-
duce interactive data that may or may not be avail-
able prior to or after component execution.

Source or sink components are characterized ei-
ther as active or passive. Active components are ac-
tivated externally, like a service routine that act on
behalf of an interrupt handler. Passive components
have to be activated by the CE, like a component
that grabs data from a file.

Application scenarios are specified prior to run-
time by the following attribute, which characterizes
the runtime behavior of an application scenario. For
each component, a tuple (L, P, F ) of positive real
numbers is given, with L specifying the lead time,
with P specifying the period, and with F specifying
the follow-up time. Periods represent time intervals
for the periodic activation of components; the lead
time represent the maximum time shift for an early
activation and the follow-up time represent the max-
imum time shift for the finishing. All periods of an
application scenario have to correspond with respect
to the consumption and production scores of all com-
ponents.

Component C1
1

2

3 2

(1)

Component C2

P

FIGURE 2: Fragment of an application
scenario consisting of a passive filter compo-
nent (C1) and an active sink component (C2).

Figure 2 depicts a fragment of an application scena-
rio that consists of two components. Component C1

embodies a filter function that requires three in-
put channels and a single output channel. The in-
put channels have consumption scores 2, 3, and 1,
the output channel has a production score 2. The
third input channel of component C1 is declared op-
tional. Component C2 contains an active sink func-
tion, i.e. some output device, that is activated peri-
odically with period p.

In Figure 3, the application scenario is shown
that corresponds to the example application from
Figure 1. Production and consumption scores that
equal 1 are omitted. Component C4 consumes 3
data units in order to produce 3 data units. Compo-
nents C5 and C8 are active sink components that are
activated externally with periods P5 and P8. Compo-
nent C7 has an optional input channel that delivers
interactive data.

3



(1)

Protection Domain 0

C1 C2 C3 C4

C7

C5

C8

C9 C10

C6

3 3

Protection Domain 1

FIGURE 3: The application scenario that
corresponds to the example in Figure 1.

2.1.3 Signal Handling

In order to handle events, such as an end-of-stream
event, we adopt the POSIX signal handling for the
Component Extension [20]. Our approach differs in
the following aspects: setup and delivery.

For any given component, signals and their re-
spective signal handler functions are set-up prior to
component compile time and may not be changed
later on. A number of application-specific signals
can be defined. A set of default signals is required to
be defined by the CE, such as the abort scenario
signal.

The signal delivery and the component execution
are synchronized. Whenever a component is about to
be executed, i.e. sufficient data has arrived, the sig-
nal handling is executed first, if signals are pending.
Then, the component control flow is continued where
it was stopped during the last execution. Hence, sig-
nals can be used to encode data-stream markers, such
as the end-of-stream marker. The misuse of net data
for that purpose is avoided and the component code
for data processing and stream control is strictly sep-
arated.

Signals can be delivered in broadcast mode or in
unicast mode. In broadcast mode, a signal is deliv-
ered to every component of the application scenario,
regardless of their connection to the sending compo-
nent. For the time being, the broadcast mode is re-
served for the set of default signals. In unicast mode,
signals are delivered with respect to the topology of
the scenario graph, i.e. from component to compo-
nent.

The application scenario defines for each compo-
nent which signals that are masked or unmasked for
reception, i.e. the delivery is disabled or enabled. By
default, all signals are masked except for unmaskable
signals that are required by the Component Exten-
sion.

2.2 Buffer Handling

General-purpose operating systems provide facilities
for memory management and communication that
can be considered simple and efficient. Yet for mul-
timedia-oriented applications, these means lack im-
portant features due to the following reasons:

1. Multimedia-oriented applications process time-
based data, which cannot be represented prop-
erly in conventional memory objects.

2. Usually, multimedia data has vast extents and
changes frequently. Hence, needless copying or
caching should be avoided. Conventional com-
munication is directed towards the transmis-
sion of small data quantities, for which copy-
ing and caching is of minor consequence. How-
ever, substantial overhead is introduced for
the transmission of multimedia data. Shared-
memory communication can be considered the
only exception, yet the available means support
a coarse granularity only and the management
of shared-memory regions is completely dele-
gated to the application.

3. Neither facility takes the internal structure of
multimedia-oriented applications into account.
For example, conventional memory allocation
schemes neglect processing paths that data
buffers undergo.

2.2.1 Buffer Abstraction

These issues have been addressed in the literature
in different contexts [2, 7, 12]. We adapt these ap-
proaches to our needs: we introduce buffers as the
sole abstraction of memory objects that is available
to components. We combine the management of
memory objects and their communication based on
the notion of buffers.

2.2.2 Buffer Operations

A set of operations is defined on buffers. Buffers
can be acquired (bacquire()) with respect to the
channel that will be used to transmit the buffer or
disposed (bdispose()). Buffers that are not sub-
ject to any communication can locally be allocated
(balloc()) and freed (bfree()).

Buffers can be copied (bcopy()) such that a
copy-on-demand mechanism is applied whenever a
buffer copy is overwritten. Based on this virtual-
copying mechanism, a buffer splitting operation
(bsplit()) and a buffer joining operation (bjoin())
are defined.

Finally, buffers are transmitted by send and re-
ceive operations (bsend(), breceive()). The send

4



operation removes a buffer from the context of the
current component and reposits the buffer in the out-
put channel it was sent to. The receive operation
introduces a buffer into a component context. The
receive operation may block on empty input chan-
nels, the send operation does not block.

C1 C2 C3 C4

C7

C5

C8

C9 C10 C11

C6

3 3

(1)

(a)

(b)
(c)

(d)

(a)

(d)

(a)

(e)

FIGURE 4: Buffer operations that may
occur during the execution of the exam-
ple application scenario: (a) balloc(),
(b) bsend() and breceive(), (c) bcopy(),
(d) bdispose(), and (e) copying and disposal
for a buffer that crosses protection boundaries.

2.2.3 Buffer Parameters

During their life time, buffers are equipped with ad-
ditional informations. Upon creation, buffers are as-
signed a creation time tc.

A tuple (c, d, e) of positive real numbers with
0 < c < d ≤ e and tc ≤ c is assigned to a buffer. The
parameter c denotes the commencement time, d de-
notes the deadline, and e denotes the expiry time.
The commencement time represents the earliest in-
stant the buffer or its descendent is to be delivered
at the closest final sink, the deadline represents the
latest instant the buffer is to be delivered, and the
expiry time represents the instant the buffer com-
pletely loses its value for any further computation.
The tuple is derived from static scenario parameters
and can be constrained by components during run-
time.

A stream of multimedia data may contain data of
varying importance. For example, an MPEG video
stream contains so-called intra-frames (I-frames),
predicted frames (P-frames) and bi-predicted frames
(B-frames) [19]. I-frames constitute key frames that
should not be lost, whereas the loss of P-frames or B-
frames entails minor consequences only. Buffers are
assigned a persistence value v from the natural num-
bers that represents the importance of that buffer.
A persistence value v = 0 specifies that the buffer
may not be dropped and persistence values v > 0

specify that the buffer can be dropped if the need
occurs.

For example, interactive or hard real-time buffers
are assigned a persistence value v = 0, i.e. these buf-
fers will not be dropped at all. Contrariwise, multi-
media buffers can have assigned v > 0 values. A mul-
timedia buffer with vt = k and k > 0 that is dropped
at time t leads to the disposal of any subsequent
buffer with persistence value vt′ > k at any later
time (t′ > t).

2.2.4 Buffer Pooling

Since the application structure is statically defined,
memory requirements can be estimated prior to
scenario runtime. Then, buffer memory is allo-
cated to buffer pools that are assigned to process-
ing paths with respect to protection domains. Dur-
ing the scenario execution, buffers are acquired from
or disposed to the respective buffer pool. Thereby,
costly memory management operations (like expen-
sive page-table manipulations) can be avoided.

2.2.5 Example

In Figure 4, buffer operations are shown that can oc-
cur during the execution of the example application
scenario (cf. Figure 3). First, buffers are acquired
from the respective buffer pools (a). Then, buffers
are processed and communicated (b). Buffers are
copied (c) and, eventually, disposed (d), which re-
turns buffers into their pools. Since the scenario con-
sists of two protection domains, buffers are copied for
cross-domain communication (e).

2.3 Scheduling

The advent of parallel processors on the desktop
computer market fosters the emergence of multime-
dia applications with increasing complexity and pro-
cessing requirements. The operating system faces
two potentially opposing challenges: the utiliza-
tion of available hardware parallelism and processing
power versus the accommodation of all application
requirements (real-time versus best effort). The sys-
tem scheduler is assigned to fulfill both challenges at
once as effective as possible. Usually, for dynamic ac-
tivity sets a generic scheduling approach is applied.
The set is disjoint into activity classes that are sub-
ject to different scheduling strategies, such as the
static first-in, first-out strategy or the dynamic best-
effort strategy [3, 20].

In contrast to generic scheduling, we adopt an
application-dedicated scheduling approach. In our
context, the application structure and relevant appli-
cation parameters are known prior to runtime. In

5



combination with information about present hard-
ware resources, a dedicated scheduling is realized on
top of the scheduler that is provided by the system.

C1

C2

C3

A1 A2 A3

Component-Extension 
Scheduler

System Scheduler

other activities

activity queue 
“task queue”

CPUprocessor list CPU CPU

static priority class dynamic priority class

FIGURE 5: Integration of the CE schedul-
ing into Linux. Components are associated
with system activities like threads. The out-
come of CE scheduling is delegated to the sys-
tem scheduling.

2.3.1 System Integration

The integration of the CE scheduler into a general-
purpose operating system, like Linux, is depicted in
Figure 5. The components of an application scena-
rio are associated with appropriate system activi-
ties (e.g. threads). The CE scheduler assigns mul-
timedia activities to a static priority class (e.g. the
FIFO class) and interactive activities to a dynamic
activity class (like the best-effort class). Static prior-
ity classes are not subject to reordering by the sys-
tem scheduler and are preferred to dynamic prior-
ity classes [3]. Hence, the priority assignments for
multimedia components, given by the CE scheduler,
are enforced by default. Furthermore, the CE sched-
uler sets component-to-processor affinities that are
respected by the system scheduler. Interactive com-
ponents share their processing time with other best-
effort applications. The CE scheduler implements
constraints on the processor utilization of multime-
dia components to prevent interactive activities from
starvation.

2.4 Application-Dedicated Schedul-
ing

Our approach to an application-dedicated scheduling
is realized by means of timed automata. A timed au-
tomaton is a finite automaton that is augmented with
clocks assigned to states [4]. Time is only allowed to
pass in states as long as clock invariants hold, which
are imposed on states.

Transitions, which lead to state changes, are
guarded by clock constraints and are labeled by
actions. Transitions may induce resets on certain
clocks.

Actions are differentiated into full actions and
half actions. Full actions can be executed immedi-
ately, whereas half actions need to be paired in or-
der to compose a full action. Half actions represent
communication events, which are indicated by the
symbols “?” for inquiring half actions and “!” for
asserting half actions.

Parallelism is expressed by networks of timed au-
tomata. Timed automata are a common model that
is used in the field of embedded systems to model
and verify hard real-time systems [4].

We use a network of timed automata that is
called the scheduler automaton to represent the over-
all state of the application scenario. Any automaton
of the network either corresponds to a component, to
a hardware resource (i.e. a processor), or to the en-
tire application scenario. Automata that represent
hardware resources are used to model resource al-
locations. Automata that represent the application
scenario are used to implement global constraints.

Transitions can be taken explicitly or implicitly.
An explicit transition is taken whenever a running
component issues a system call that is related to the
CE. An implicit transition is taken whenever a clock
invariant is violated and the CE has induce a schedul-
ing decision.

constructed

exited

ready

running blocked

c=F/signal8

dispatch

exit

main/c:=0

c<=F

L<=c<=F

?breceive7

signal

c:=0

L<=c<=F

c=F/signal8

FIGURE 6: Simplified timed automaton
that models the component behavior of com-
ponent C8 from the example application sce-
nario.

In Figure 6, a timed automaton is depicted that rep-
resents component C8 from the example application

6



scenario (cf. Figure 3). Upon the entry of the main
function of component C8, a transition from state
constructed to state ready is made and the clock c
is set to zero. The clock invariant for state ready
ascertains that time never elapses over the follow-up
time F that was defined the component. If clock c
equals the follow-up time, a implicit transition is trig-
gered, a signal is issued, and the clock is reset.

When component C8 is allocated to a proces-
sor, transition ?dispatch0 is taken. By definition, a
transition !dispatch0 has to be active in any other
automaton (i.e. it can be taken) before component C8

can reach state running. Whenever the component
issues a breceive() system call and no input data is
available, transition breceive7 to state blocked is
taken. As soon as a transition in component C7 be-
comes active that is labeled !bsend7, component C8

can transition into state ready.
A scheduling facility is established that executes

the scheduler automaton during the runtime of the
application. Scheduling decision are made, whenever
several transitions become active. The scheduling fa-
cility provides all available timing information about
the application scenario to the scheduling automa-
ton, which in turn facilitates this information with
respect the scheduling strategy that the automaton
models.

The scheduler automaton is provided externally
as part of the application. Thus, we enable the appli-
cation developer to tailor the scheduling strategy for
the application in question. Additionally, we provide
a way to construct a heuristic scheduling automa-
ton that delivers sufficient results in the general case,
which is not discussed here.

Sink 1
x

Sink 2

Hardware 
Device

y

Sink 1
x

Sink 2
Hardware 

Device

y

Hardware 
Device

Concurrent device accesses Dedication of hardware

FIGURE 7: Illustration of the problem of
concurrent device accesses by two independent
components that reflect on the same physical
hardware (left hand-side). The problem can
be solved by resource dedication (right hand-
side).

2.5 Dedication & Virtualization

General-purpose operating systems do not provide
means for scheduling of accesses to hardware devices,

e.g. some physical input/output device. Instead,
concurrent accesses to a single hardware resource are
ordered indirectly according to the outcome of the
process scheduling, unless the resource itself doesn’t
establish some access reordering. Neither the fairness
for interactive applications nor the quality-of-service
for multimedia-oriented applications can be guaran-
teed in general if concurrent accesses of both kinds of
applications occur. The dedication of hardware re-
sources solves that problem, yet this solution entails
additional hardware costs.

Some hardware resources cannot be dedicated
since multimedia-oriented and interactive applica-
tions need to access these resources concurrently. For
example, a frame-buffer device that is connected to
some video adapter is used to visualize application
output, which is generated by both kinds of appli-
cations. For such so-called critical resources another
solution has to be found.

Sink 
Component

Sink 
Component

Virtual 
Hardware 

Device

x

y

Hardware 
Device

Virtual 
Hardware 

Device

Monitor

FIGURE 8: Virtualization solves the prob-
lem of concurrent devices accesses. Compo-
nents access virtual instances of the physical
device. A monitoring instance controls the
physical device and enforces a static access or-
dering similarly to static priority schemes used
for processor scheduling.

Consequentially, we devise a virtualization approach
for critical resources: virtual resources are dedicated
to applications instead of physical resources [15].
The control of the physical resource is maintained
by some coordinating instance, the so-called monitor,
which provides the virtual resources and which can
also establish some scheduling of resource accesses.
Each critical resource has to be virtualized individu-
ally. The virtualization solves the concurrency prob-
lem, yet it does not come without additional costs
(processing time and memory), which may account
negatively for the overall system performance.

3 Implementation

The implementation of the Component Extension is
provided in two variants: as a kernel extension and as
a user-space library. The kernel extension facilitates

7



the full potential of kernel capabilities, whereas the
user-space library bases solely on conventional user-
space means. The user-space library serves as a base
for comparison, since scenarios based on that imple-
mentation can be regarded as conventional multime-
dia-oriented applications. Both implementations are
based on a standard Linux kernel.

The subsequent section gives an overview of the
implementation of the kernel extension at the present
moment.

3.1 Kernel Extension

The kernel extension provides Component Exten-
sion services by means of additional Linux system
calls. For the time being, system calls are de-
fined for registration (register scenario()), setup
(setup scenario()) and start (start scenario())
of scenarios as well as communication between
components using user-space buffers (bacquire(),
bdispose(), bsend(), breceive()).

The extension comes as a kernel patch and a set
of kernel modules. The patch extends the system
call interface and exports kernel symbols which are
not exported in the default kernel code but needed
by the kernel modules.

The kernel modules contain the actual imple-
mentation of the Component Extension. These mod-
ules register kernel functions that relate to Com-
ponent Extension system calls. System calls are
forwarded to these functions, whenever they occur.
Currently, four modules are defined:

• the module ce core defines code and data
structures that are needed for registration and
setup of scenarios,

• the module ce mem contains code and data
structures needed for the buffer management,

• the module ce com contains code for the com-
munication of buffers,

• the module ce sched contains the scheduling
framework and the default scheduler.

The Linux kernel extension of the CE is based on
kernel version 2.6.22.

3.1.1 Kernel Integration

The kernel integration is depicted in Figure 9. Ser-
vice requests reach the kernel extension via sys-
tem calls and are first handled by the scheduling
framework. It decides whether the request can be
fulfilled immediately (e.g. by the communication-
and buffer-management) or if rescheduling is needed.
The scheduling framework and the actual scheduler

use the information in the scenario description and
scheduler automaton. In addition, kernel timers in-
form the scheduling framework about the begin of
new periods of components.

Framework
Scheduling

Buffer−Management
&
Communication−

Kernel TimersScheduler

Scenario
Description

Automaton

System Calls

Kernel Space

User Space

Kernel Extension

Buffer RegionComponents

FIGURE 9: A schematic view on the inter-
nal structure of the kernel extension.

3.1.2 Scenario Setup

Similar to the Linux kernel, which provides the
task struct data structure to describe schedu-
lable objects, the kernel extension provides
data structures for scenarios (scenario struct),
components (component struct) and channels
(channel struct). The component struct data
structure is of particular interest since it contains
information about the mapping of components to
Linux task, i.e. it contains a pointer to the corre-
sponding task struct.

The setup of a scenario is done in two steps:
First, the application scenario must be registered.
Thereby, the kernel assigns an unique identifier to the
scenario and each component and channel, which is
similar to the process identifier (PID) used for Linux
tasks and POSIX processes [20].

In the second step the kernel creates a new Linux
task for each component in the scenario and ensures
that all of these tasks share the same virtual address
space. As with POSIX threads, each component gets
its own private stack segment.

3.1.3 Buffer Handling

Buffers are blocks of contiguous virtual memory in
user space. They are located in an additional mem-
ory segment (called region in the kernel terminology)
and are accessible to the user (cf. Figure 10). Due to
the introduction of a new memory segment, buffers
cannot interfere with other user-space memory. Fur-
thermore, this region is marked as locked such that
memory from that region cannot be swapped out.

To acquire a buffer (cf. Section 2.2.2), a compo-
nent must issue the appropriate system call to re-

8



ceive a pointer to a free memory area in the user-
space buffer memory area. Further communication
between components is then accomplished by ad-
ditional system calls that simply exchange pointers
(e.g. the operations breceive() and bsend()). The
kernel extension has to keep track of which buffers
of a scenario are used and which are currently free.

Channel
Descriptors Descriptors

Buffer

Linux Tasks

Scenario
Description

Code
Component Component

Code

Process in User Space / Virtual Address Space

Kernel Space

SysCall Interface

Buffer Region

Kernel Extension

FIGURE 10: Mapping of application sce-
narios into kernel objects. Components of a
scenario are mapped to Linux tasks that share
the same virtual address space. Exchange of
data between logically connected components is
achieved by system calls that take or return
pointers to buffers in user space.

3.1.4 Scheduling

The scheduler is integrated into the general schedul-
ing subsystem of the Linux kernel. Multimedia com-
ponents are assigned to the SCHED FIFO static prior-
ity class while interactive components are assigned
to the general dynamic priority class SCHED OTHER.
Since static priority tasks are always preferred to nor-
mal dynamic priority tasks it is ensured that mul-
timedia components are executed with the highest
priority.

In Linux, each processor in the system has its
own runqueues for all available scheduling classes.
Thus, enforcing the requested processor affinity of
components can easily be accomplished by assign-
ing a task to the appropriate FIFO runqueue of the
target processor. The bit mask cpus allowed in the
task struct data structure is set such that each task
is executable only on the processor(s) that it was as-
signed to. Hence, task migration between processors
is avoided, which would otherwise be conducted by

the runqueue-balancing mechanism on behalf of the
kernel scheduling.

Since the kernel extension has information about
the structure of the scenario and is provided a sched-
uler automaton, the scheduler can avoid unnecessary
blocking of components and can meet real time re-
quirements more easily.

Periods are enforced by use of kernel timers.
Each time a new period of one of the components
starts, the scheduler is activated and gets the chance
to reassign runnable components to the CPUs in the
system.

3.1.5 Summary

The migration of the Component Extension into ker-
nel space allows us to exhaust the full potential of
kernel-internal features. Even though we discussed
the use of conventional kernel means, like Linux
tasks as execution primitive, we point out that our
approach can be augmented to accommodate other
Linux extensions that provide improved real-time ca-
pabilities, such as the Real-Time Application Inter-
face [6].

The kernel-based implementation of the Compo-
nent Extension is still in an ongoing project. Among
our first, very promising results, we accomplished the
integration of essential primitives into the Linux ker-
nel in order to support simple application scenarios.
We plan to provide a first fully-functional version by
the end of this year.

4 Related Work

The process network model is common for modeling
embedded system applications. Since the original
work of Kahn [10], several variants have been de-
vised, such as synchronous data-flow networks [11],
which are the basis for the work described in this
paper.

In the field of networked systems, a stream-
oriented buffer management was first introduced by
Druschel [7] to facilitate an efficient data-transfer
mechanism between protection domains for high
throughputs. In field of operating system research,
early works of Ritchie [16] addressed the optimiza-
tion of data routing and processing through the net-
work stack of UNIX operating systems. This work
was adopted for Linux in the LiS project [2] and the
KStreams project [12]. All these works are rather
related to network issues, even though the findings
are also relevant to a wider scope.

Several multimedia frameworks and multimedia
middleware variants are available that are based on

9



data-flow representations. Among the most promi-
nent are the Network Multimedia Middleware [13]
and the GStreamer framework [9]. Both projects fo-
cus on the provision of ways to easily enable pro-
grammers to develop codecs, filters or other compo-
nents for local or distributed applications. Hence,
binding mechanisms, QoS arbitration and adaption,
and portability issues are profoundly addressed in
these works, yet operating system issues, which are
discussed in this paper, are only narrowly considered.

In the field of formal verification, timed au-
tomata are an established formalism to model soft-
ware and hardware systems [4]. Among others, Al-
tisen, et. al, [1] and Combaz, et. al., [5] proposed
methodologies for the combination of system model-
ing and system scheduling.

The separation of multimedia and interactive
parts of a computer system is a central idea of the
TwinUx project [17]. Hardware resources, such as
framebuffer devices, are virtualized and then ded-
icated to either interactive or multimedia-oriented
applications. Monitors control physical devices and
solve critical concurrent accesses to hardware de-
vices. The feasibility of the concept was shown by
Schöning [17] and Simon [18]; Rauch [15] realized
the virtualization of memory-based devices, such as
framebuffers.

5 Conclusion and Status Quo

In this publication, we give an overview of the con-
cepts that form the basis for the Component Exten-
sion. Furthermore, the status quo of the implemen-
tation is described. Currently, a user-level imple-
mentation of the Component Extension is available,
which allows for the execution of applications sce-
narios, as discussed above. For that version, both
the user-space implementation of CE concepts and
the adaption of conventional means are provided.
The ongoing work encompasses the integration of the
Component Extension into a standard Linux kernel
to facilitate the full potential of kernel-internal fea-
tures. Benchmarks will be provided as soon as the
kernel-based version of the Component Extension is
completed.

References

[1] Karine Altisen, Gregor Gößler, Amir Pnueli,
Joseph Sifakis, Stavros Tripakis, and Sergio
Yovine. A Framework for Scheduler Synthesis.
In IEEE Real-Time Systems Symposium, vol-
ume 20, pages 154–163, 1999.

[2] Fransisco Ballesteros, Dennis Froschauer, and
David Grothe. The Cutting Edge: LiS: Linux
STREAMS. Linux Journal, (61):14, 1999.

[3] Daniel P. Bovet and Marco Cesati. Understand-
ing the LINUX Kernel. O’Reilly Media, 3rd edi-
tion, November 2005.

[4] Howard Bowman and Rodolfo Gomez. Concur-
rency Theory: Calculi an Automata for Mod-
elling Untimed and Timed Concurrent Systems.
Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[5] Jacques Combaz, Jean-Claude Fernandez,
Thierry Lepley, and Joseph Sifakis. QoS Con-
trol for Optimality and Safety. In EMSOFT’05:
Proceedings of the 5th ACM International Con-
ference on Embedded Software, pages 90–99,
New York, NY, USA, 2005. ACM Press.

[6] DIAPM. RTAI—the Real-Time Application In-
terface for Linux. https://www.rtai.org/.

[7] Peter Druschel. Operating System Support for
High-Speed Communication. Communications
of the ACM, 39(9):41–51, September 1996.

[8] FFMPEG Codec Library. http://ffmpeg.
mplayerhq.hu/.

[9] GStreamer Open-Source Multimedia Frame-
work. gstreamer.freedesktop.org.

[10] Gilles Kahn. The Semantics of Simple Language
for Parallel Programming. In IFIP Congress,
pages 471–475, 1974.

[11] Bart Kienhuis and Ed F. Deprettere. Model-
ing Stream-Based Applications Using the SBF
Model of Computation. J. VLSI Signal Process-
ing Systems, 34(3):291–300, 2003.

[12] Jiantao Kong and Karsten Schwan. Kstreams:
Kernel Support for Efficient Data Streaming in
Proxy Servers. In NOSSDAV ’05: Proceed-
ings of the International Workshop on Network
and Operating Systems Support for Digital Au-
dio and Video, pages 159–164, New York, NY,
USA, 2005. ACM Press.

[13] Marco Lohse. Network-Integrated Multimedia
Middleware, Services, and Applications. PhD
thesis, Department of Computer Science, Saar-
land University, Germany, June 2005.

[14] MPlayer. http://www.mplayerhq.hu.

[15] Bernd Rauch. Virtualization of Memory-based
Devices. Diploma Thesis, Saarland University,
June 2006.

10



[16] Dennis M. Ritchie. A Stream Input-Output Sys-
tem. Technical report, AT&T Bell Laboratories,
1984.

[17] Sebastian Schöning. TwinUx@SB – eine Platt-
form zur Integration multimedialer und inter-
aktiver Verarbeitung. Diploma thesis, Saarland
University, 2003.

[18] Jens Simon. TwinUx@SB – Eine experimentel-

le Implementierung von Koordinator und Mul-
timedia-Anteil. Diploma Thesis, Saarland Uni-
versity, 2004.

[19] Ralf Steinmetz. Multimedia-Technologie –
Grundlagen, Komponenten und Systeme.
Springer-Verlag, 2nd edition, 1999.

[20] The OpenGroup. Single UNIX Specification
Version 3, 2004.

11


