
Bounding Disk I/O Response Time for Real-Time Systems

V. Brocal, M. Masmano, I. Ripoll, and A. Crespo
Industrial Informatics and Real-Time Systems Group

Universidad Politecnica de Valencia
Cami de Vera s/n, Valencia (Spain)

{vibrotor, mmasmano, iripoll, acrespo}@ai2.upv.es

Abstract

Real-time I/O scheduling, specifically disk scheduling, has frequently received far less attention than
other aspects of real-time theory.

Nevertheless, several proposals have addressed this area meaning to merge the real-time CPU schedul-
ing along with traditional I/O scheduling to provide real-time disk response. These proposals are all based
on simplistic and unrealistic disk models that only consider mechanical parameters, leaving apart capa-
bilities such as prefetching or write-caching.

In our opinion, real-time I/O scheduling algorithms should take advantage of these additional mech-
anisms to increase sensitively I/O performance.

In this paper, we present our first approach to a new model of a modern hard-disk (taken advantage
of its features, specifically, its capability to identify streaming access patterns and prefetching a number
of sectors belonging this stream).

Besides, we also describe how we have implemented our experiments in RTLinux.

1 Introduction

In the past, most efforts in the real-time theory have
been devoted to CPU and network scheduling, which
are essential for a large range of application involving
real-time constraints. Nonetheless, with the emer-
gence of new, more complex soft real-time applica-
tions which demand more system features such as
I/O scheduling are being required to provide such
systems with persistent mass storage capabilities.

Within this category, disk media has shown to be
a reliable and cost-effective choice, though tradition-
ally disk I/O has been considered as undeterminis-
tic. To cope with this unwanted undeterministic be-
haviour, several I/O scheduling algorithms have been
proposed.

The schedulers proposed in [8] and [10] use the
proximity of deadlines along with the seek distance
between requests to establish the scheduling plan. In
[3] an algorithm which is aware of the disk response
time is presented along with others that follow the
earliest deadline approach. More recent proposals,
[7] and [1], take advantage of more realistic disk mod-
els to choose schedule order.

Nevertheless, most of these algorithms do not

consider disk response time, or use simplistic models
which over-estimates the time needed to serve each
I/O request.

As shown in [9], a more complicated disk model,
which includes the read-ahead feature, can bring us
a more accurate service time estimation. In this pa-
per, we follow this approach to provide a suitable
disk model for real-time I/O cost.

The remainder of this paper is organised as fol-
lows: in the next section we propose a new model of
hard-disk drive. In section 3, the environment and
the loads that are being applied to test the model
are described. The test scenarios and their results
are shown in section 4. To wrap up, the advantages
and drawbacks of the model are discussed in the con-
clusions section.

2 Disk I/O response time
model

2.1 Response time model

The proposed model is the union of a mechanical
model, as suggested in [4], and a linear time function

1

that models behaviour of the disk cache. At first in-
stance the model checks for the availability of the re-
quested blocks in the cache, and when not available,
the mechanical model is used. Then, the response
time Tri

(si, li) of an I/O request Pi = (si, li), being
si and li the first sector to transfer and the length of
the resquested block respectively, is expressed as:

Tr (s, l) =

{

Tovh + C (l) l ≤ Cn (s)
Tovh + C (l − Cn (s)) +
+M (s + Cn (s) , l − Cn (s)) l > Cn (s)

(1)

Where:

Tovh ≡ Controller overhead.

Command processing time for each I/O re-
quest. In modern devices is almost nonexis-
tent.

Cn(s) ≡ Number of cached sectors starting from s.

As will be seen in section 2.2, Cn(s) depends
on the sequence of requests and issue instant,
and the belonging of s to a data stream. This
model does not provide means to estimate ana-
lytically this value. However, there is no prob-
lem to obtain it empirically, since all the re-
quired information is available.

C(l) ≡ Cache transfer time for a block of l sectors.

Cache access response time. Even when a par-
tial hit occurs, this term has a significant im-
pact on the overall response time, since rep-
resents an access to a semiconductor memory,
which is strongly faster than a physical access
to a mechanical medium. A linear behaviour is
expected:

C (l) = l Cr + Covh (2)

Where Cr is the transfer rate (sectors/time)
and Covh is the access overhead to the cache
memory.

M(s, l) ≡ Required time to access the physical media
to transfer a data block of length l starting at
sector s.

M(s, l) represents the physical operations
needed to access the magnetic medium1. These
three operation correspond each one with a
term of equation 3, as explained below:

M (s, l) = Tseek (s) + Trot + Ttrans (s, l) (3)

s

Seek time. Tseek(s) Time needed to posi-
tion the head arm in the cylinder Fc(s) which
the sector s belongs to. The current head arm
position Mc should be known since seek time
is a function of distance:

Tseek(s) = seek (|Fc(s) − Mc|)

Being Pi−1 the previous request, Mc can be
calculated as Mc = Fc(si−1 + li−1). It could be
thought that read-ahead operations may med-
dle this value, however, constraints imposed to
these operations (see section 2.2) prevent such
interferences. [9] and [4] agree to define seek(d)
function as:

seek (d) =

{

a1

√
d + b1 if d < c

a2 d + b2 if d ≥ c

Where a1, b1, a2, b2 and c are model parame-
ters.

Latency. Trot Once the head arm is in the
correct cylinder, the drive must wait until sec-
tor s has rotated under the head. As the rota-
tion position of the platter is unknown at the
beginning of each request, the total rotation
time is used as upper bound.

Transfer time. Ttrans Time that takes
transferring l sectors from the magnetic sur-
face. Modern disks are formatted using zbr, so
inner tracks have less sectors than outer ones.
Then, the transfer time depends on the number
of sectors of each track Fn(s):

Ttrans (s, l) =
Trot + Tskew

Fn(s)
l + Tskew

The Tskew in the second coefficient covers the
transfers involving the last sector of a track and
the first of next track. Tskew is the fraction
of rotation time needed to perform a head or
cylinder skew.

2.2 Cache operation model

Along with the response time model, a cache opera-
tion model is needed to establish the read-ahead op-
eration behaviour. Pending questions such as calcu-
lating the value for Cn(s) must be addressed. As
written forward, this value is derived from the block
of sectors saved in cache when last read-ahead op-
eration RA(s, Tra) occurred, which depends on the
request sequences. The following rules control the
behaviour of read-ahead mechanism:

1a platter

2

1. If s belongs to a data stream, the mechanism
is always capable of detecting it.

2. If the number of data streams is larger than
the number of segments in the cache Cn, then
∀s : C(s) = 0.

3. The maximum number of cached sectors for
each stream is limited by Cmax.

4. The read-ahead operation is interrupted imme-
diately by any I/O request.

5. The read-ahead operation can not cross track
boundaries, i.e. neither seek nor head switch
operation can be performed.

The constraint 4 guarantees that an I/O opera-
tion can not be delayed by an in-progress cache pre-
load operation. From 5 no request is overloaded by
a seek in-progress operation2, nor the value of Mc be
altered influencing Tseek. Constraints 3 and 5 lead
to the expression of the number of sectors retrieved
by a read-ahead operation, RA(s, Tra), which starts
at sector s and has a duration of Tra:

RA (s, Tra) = min

{

Cmax, Fe (s) − s,

⌊

Tra

Trot

Fn (s)

⌋}

Where, Fe(s) is the last sector of the track of s, and
Tra is obtained empirically, as the time elapsed since
the last I/O request ended and the moment where
the read-ahead was interrupted (constraint number
4), i.e. next request arrived. Modern hard-disk
drives use segmented caches to support read-ahead
for multiple streams. An algorithm adjusts the size
of each segment to fit data rate, avoiding minimis-
ing the allocated cache buffer. However, these al-
gorithms, along with other cache related issues, are
subjected to patent restrictions, so there exist a large
range of alternatives. For these reasons, we have
decided to assume a static segment size allocation
schema for the definition of the model, with Cmax as
the segment size obtained empirically.

Assuming Pi as the last I/O request, then a read-
ahead operation is triggered when:

i. The disk is idle. There are not any remain-
ing I/O requests to server after Pi (constraint
number 4).

ii. Pi belongs to a data stream as required by con-
straint number 1.

iii. The next sector of the stream is not cached, i.e.
C(s + l + 1) = 0

3 Experimental set up

According to our experience, RTLinux [11] has
shown to be a stable and mature platform to imple-
ment applications with hard real-time constraints.
It has encourage us to use RTLinux to implement
this new hard-disk model and to test it. However,
RTLinux lacks of its own hard-disk driver. Currently,
when a real-time application requires of these capa-
bilities Linux’s drivers are used instead. This is a
good solution for the most of the existing RTLinux
applications but not for us. Therefore, our first chal-
lenger before implementing our model was to imple-
ment a RTLinux hard-disk driver.

Beyond being RTLinux native, our driver is ca-
pable of performing probe operations to detect and
configure present hardware, and it has been designed
to introduce minimum overhead. For this purpose,
DMA transfers are being used along with IRQ data
transfer completion notification. The code associ-
ated to the IRQ handling has been optimised in this
sense: when an interrupt is received, the only opera-
tions performed in IRQ context are its acknowledge,
and its occurrence notification to the thread which
was waiting for. Status check and further opera-
tions are performed in normal CPU-scheduled con-
text. The exclusive I/O access is achieved through a
mutex, thus the requests are served in CPU sched-
uler order. In addition, modern LBA sector address-
ing schema is supported, as well as large disk 48-bit
addressing feature set3.

By using this driver, the parameters required by
our model have been measured through the tech-
niques proposed in [2] and in [4].

Table 1 shows the parameters obtained from the
target disk WDC-WD136BA and the table 2 shows
disk geometry.

To test the model, a constant bandwidth I/O
generator feeds the model implementation and the
WDC-WD136BA, through the referred driver, using
an RT-task. As the model is aimed to take advantage
of locality reference, the generated load has to follow
a stream pattern with enough time within requests
to allow the read-ahead mechanism to pre-fetch the
maximum number of sectors. Varying the request
length in the range [0, Cmax], allows us to evaluate
the profit of the proposed cached model versus the
mechanical model. We have used the following I/O
synthetic loads:

Period 300 ms
Length 1, 50, 200, 350, 385 sector/request

2typically, seek operations can not be aborted
3not tested

3

General parameters

Tovh 0 ns
Trot 8,312,032 ns
Tskew 2,401,344 ns

Cache parameters

Cr 14,616 ns/sector
Covh 106,843 ns
Cmax 385 sectors
Cn 2 segments

Seek function

seek(d) =

{

124770
√

d + 702938 if d < 1834
122 d + 6500000 if d ≥ 1834

TABLE 1: Model parameters for WDC-
WD136BA

Initial cylinder Number of cylinders Sectors

0 13131 450
13131 7033 432
20164 6989 420
27153 7644 405
34797 4540 390
39337 3201 378
42538 7800 360
50338 6742 330
57080 4064 315
61144 2921 300
64065 5793 270

TABLE 2: WDC-WD136BA disk format

4 Model validation: early out-

comes

In our first experiments to validate this new hard-
disk model, we have compared it with a real hard-
disk and with other previously existing model: a disk
model usually referred in bibliography which only re-
gards the mechanical operation of a disk. The results
are expressed in absolute and relative error respect
the outcomes obtained from the real disk.

Cache-enabled disk - Mechanical model This
scenario shows how the classic mechanical model
does not take advantage of caching capabilities. As
can be seen in figure 1 increasing the request length
will decrease the error very fast, since the read-ahead
mechanism offer less benefit. This shows the impor-
tance of the model presented.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900 1000

re
la

tiv
e

er
ro

r

sample

l=1
l=50

l=200
l=385

FIGURE 1: Relative error for scenario 2

Cache-enabled disk - Caching-capable disk

model The benefit of using a caching-aware disk
model is illustrated. As can be seen, relative error
for the lowest request lengths has dropped drasti-
cally. Although cache failures still produce very high
relative errors4, the number of cache failures are pro-
portional to request length, recall the Cmax and track
boundary constraints (figure 3).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

sample

l=1
l=50

l=200

FIGURE 2: Relative error for scenario 3

4Peak errors are not shown for l = 1, in means for figure cleanness.

4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

sample

l=1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

sample

l=1

FIGURE 3: Detailed view for l = 1. Sce-
nario 3.

Cached disk model - Mechanical model When
comparing the error frequencies for the two models
depending on the request length (figure 4), we believe
that it becomes clear that using the proposed model
more accurate service time predictions are possible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

fr
eq

ue
nc

y

error (ms)

mechanic,l=1
cache,l=1

mechanic,l=200
cache,l=200

FIGURE 4: Absolute error frequency for
complete cached and mechanical-only disk
models

5 Conclusions and future work

A new hard-disk model has been proposed, and eval-
uation tests show off that an important benefit can
be achieved using such a model, since more accurate
response time are provided. Although these benefits
only take place when data streams are presented, it is
a common data pattern in real-time systems where
I/O is needed. Furthermore, this model could be
also applied to I/O scheduling with minimal modi-
fications to detect I/O stream as required by cache
operation constraint 1. Moreover, new scheduling al-
gorithms could take advantage of pre-fetching tech-
niques by reordering the requests to maximise read-
ahead and then cache hits. A serious drawback of the

model is revealed here since the lack of an analytic
expression for obtaining the value of Cn(s) makes
impossible to use this model in schedulability tests.

As explained, the necessity of a formula for the
calculation of C(s) needs to be addressed to achieve a
fully usable model. As well, more test with multiple
stream and different I/O load patterns should be per-
formed in means of evaluating it’s benefit and usabil-
ity in a largest range of applications. In the end, the
proposal of a new I/O scheduling algorithm aware of
read-ahead mechanism could be contemplated.

References

[1] Tai-YiHuang Chu, Edward T.-H. and Cheng-
HanTsai. EMSOFT 2004 - Fourth ACM In-
ternational Conference on Embedded Software.
Association for Computing Machinery, 2004.

[2] G.R. Ganger and J.Schindler. Automated disk
drive characterization. Performance evaluation
review, 28(1):112–113, 2000.

[3] H. Garcia-Molina and R.K.Abbott. [1990] Pro-
ceedings 11th Real-Time Systems Symposium.
1990.

[4] N Lambert and OMesut. Hdd characterization
for a/v streaming applications. IEEE trans-
actions on consumer electronics, 48(3):802–807,
2002.

[5] Bradley G.Wherry Love, J. Spencer and Ra-
makrishnaKaredla. Caching strategies to im-
prove disk system performance. Computer,
27(3):38–46, 1994.

[6] J.Wilkes Merchant, A. and E.Shriver. An ana-
lytic behavior model for disk drives with reada-
head caches and request reordering. Perfor-
mance evaluation review, 26(1):182–91, 1998.

[7] RCChang Shih, WK and RIChang. Real-time
disk scheduling for multimedia applications with
deadline-modification-scan scheme. Real-time
systems, 19(2):149–168, 2000.

[8] et al Stankovic, John A. Performance evaluation
of two new disk scheduling algorithms for real-
time systems. Real-time systems, 3(3):307–336,
1991.

[9] J. Wilkes and C.Ruemmler. An introduction
to disk drive modeling. Computer, 27(3):17–28,
1994.

[10] J.1 Wyllie and A.L.Narasimha Reddy. Proceed-
ings ACM Multimedia 93. ACM, New York, NY,
USA, 1993.

5

[11] V. Yodaiken. The RTLinux manifesto. In Proc.
of The 5th Linux Expo, Raleigh, NC, March

1999.

6

