The Linux Proc File System for Embedded Systems
Concepts and Programing

Nicholas Mc Guire
Opentech.at
Hollabrunn, Austria
der .herr@hofr.at, http://www.opentech.at

Abstract

Since the late 0.99.X releases of the Linux kernel the proc file system is included in many GNU/Linux systems.
This virtual file system interface allows both the inspection of kernel internal data structures and the manipu-
lation of these data structures without the need of additional non-volatile memory. In embedded systems with
tight resource constraints, the file system footprint is a key issue, in addition to the requirement for run-time
optimisation. For such systems, utilising the capabilities of the proc file system and the related sysctl functions
in order to provide kernel related administrative information via proc, as well as resource-optimised control in-
terfaces, can substantially ameliorate embedded systems performance. A further, often ignored aspect, is that
the proc and sysctl interface allow very precise tuning of access permissions, both increasing the security of the
embedded system’s administrative interfaces and improving diagnostic precision, which is essential for efficient

error detection and analysis.

1 Introduction

The proc interface is a well-established and widely used
interface in the Linux kernel; beginning with the late
0.99.X releases of the Linux kernel it has been part of
the official kernel releases. First versions focused on net-
work issues, but additional subsystems quickly began us-
ing proc files in order to simplify administrative and de-
bug tasks. With the early releases the API was fairly
complex, but as of Linux kernel 2.4.X, the API for the
proc interface has become very user-friendly. The main
feature of the proc file systems can be summarised as
follows.

Simple API,

Direct access to kernel internals,

Simple access via file system-abstraction,

POSIX compliant open/read/write/close inter-
face,

e Kernel level security setting on a file-scope.

In this article an introduction to using the proc inter-
face specifically for embedded an real-time Linux is given.
This work is part of an on-going GPL project for Keymile
AG Vienna, Austria, where the proc interface is applied
to a series of embedded Linux based high-bandwidth In-
ternet access devices.

2 Proc Basics

Before going into specifics of building an interface using
the proc file system, a basic concept overview of this
special file system is given.

There is a tight relation between proc and sysctl func-
tions. In general, all sysctl functions are also repre-
sented under /proc/sys/ as a proc file system entry.
proc file system entries are not stored on a non-volatile
media such as a hard-drive, they are generated on the
fly, i.e. every time the read-method for the associated
file is invoked. This results in a large freedom in the
way output is represented to the user without requiring
to parse complex input formats just to stay user-friendly.
The proc file system is a file system in the sense that it
provides an interface to the user-space that resembles a
normal virtual file system interface of any other file sys-
tem allowing POSIX style access via open, read, write
and close.

Two basic interface types exist in proc, character based
text-mode interfaces, and binary interfaces. Most inter-
faces are text-mode, and in cases where binary interfaces
are used, usually both types are implemented at the same
time. For user-space applications it is generally simpler

to interface to the binary version rather than to text-
mode, since in the latter case parsing (or at least scanning
fixed format input lines) would be required. On the other
hand, binary interfaces are not well suited for direct in-
terpretation by humans. As an example /proc/pci and
/proc/bus/pci/devices basically contain the same in-
formation, interpreted and raw, respectively.

In this paper, the representation of the sysctl tree in
/proc/sysis treated as part of the proc file system, since
sysctl handlers are not covered, but only the proc re-
lated functions.

2.1 Performance

The main reason to consider the proc interface is the per-
formance of some standard Linux tools. Running appli-
cations like top or the ps-utilities on embedded systems
show that these tools simply have too high CPU-demands
for the system. Analysing these problems unveils:

e System calls are expensive but heavily used by some
tools,

e The executables are large because they are provid-
ing more functionality than required,

e File system utilisation issues arise if many small
tools are built (buzybox solves that problem par-
tially),

e Not all desired information is accessible easily.

Let’s look at some of these issues in more detail, as they
could be relevant for the analysis of other performance
bottlenecks on embedded systems.

2.1.1 System calls

System calls are the preferred, standardised and safe way
to cross the kernel-user-space boundary. But they are
expensive if heavily used. A simple ./hello_world per-
forms about 30 system calls, echo "beep" is up to 42
(numbers may vary slightly on different systems); this
constitutes the bottom line for more or less any user
space application. Looking at some of the typical ad-
ministration tools such as top makes the situation even
clearer. top takes up to a few thousand system calls to
build the output for a single page (SuSE 8.0 standard
installation), and the default is to update the content
once per second. Hence on a reasonably reduced system
top causes one thousand system calls per second to out-
put a single page. But basically top is only collecting
information stored entirely in the Linux task structure.
Running through this task structure using the proc read

method and outputting the result to the console in a top
like manner only takes one additional system call to what
echo beep does, i.e. approximately 43!

2.1.2 Optimised file operations possible

The general file system layer provides a POSIX style in-
terface to the programmer via open, read, write and
close. Data blocks are a general data abstraction, an
approach, which is very flexible, but sub-optimal if the
data is very specific and especially if the data amounts
are rather small. The proc file system has a different
approach. File operations are split in file system spe-
cific open/release, and not file system specific but file
specific read/write, allowing to optimise not only with
respect to performance but also with respect to data rep-
resentation. In the examples given later, it can be seen
how to register a specific read/write method that allows
to present kernel internal or driver specific data struc-
tures in a formatted manner as well as to perform data
interpretation within the read/write methods.

2.1.3 File system overhead

General purpose file system have a certain overhead, since
management objects such as inodes and superblocks
are required to interface to the operating system. Data
blocks are discrete, leading to fragmentation effects. The
proc file system can build application or problem spe-
cific data ”‘blocks”’ and thus optimise the file system
layer, minimising memory usage and file system overhead
without loosing the advantage of a standardised inter-
face. The drawback though is that the proc file system
support code in the Linux kernel itself is fairly large. It
only makes sense if it is providing sufficient utility to an
embedded system. The question if the proc file system
overhead pays off is fairly specific to the appliance, but
most systems which can be found have it enabled per
default.

2.1.4 Module size vs. User-space App

One issue related to the file system overhead mentioned
above is the size of a user-space application required to
achieve a comparable representation of kernel internal
data-structures if dedicated proc files are not used. Such
user-space applications not only require storage area on
a file system, but also the associated libraries must be
taken into account. Comparison between a proc version
of top and the usual top program are given later. Gener-
ally speaking, a kernel-module will be fairly small. Most
of the proc applications built ended up being smaller
than a stripped ”‘hello-world”’ using shared libraries! So

the small file system overhead of storing the module is
definitely a clear advantage of this approach. Special
user-space application are not required for accessing the
files in proc, since there is no need to parse or format
data if the content of the proc files is already prepared
in a user-friendly manner. The user-space can thus be
satisfied with cat and echo, which are considered to be
part of the base file system.

2.2 Portability

Whenever time and effort is invested into designing an
embedded device, the question of portability to other po-
tentially interesting OS/RTOS and hardware platforms
arises. It may well be the most significant reason not to
go for a proc based administrative interface, since proc
must be generally considered very non-portable.

2.2.1 proc functions

Employing the proc file system interfaces for application
specific administrative functionality is also the most sig-
nificant disadvantage. The application is not portable
to other embedded operating systems. The portability
over different Linux supported architectures is very good
though. This is an important issue, since anybody who
tried to cross-compile ” ‘simple”’ utilities knows that hav-
ing cross-platform portability is a serious development
advantage.

2.2.2 Bound to kernel release

The proc file system may even be non-portable be-
tween different kernel releases as internal data-structures
change quite often.

2.3 Security

A key concern to embedded systems is security, espe-
cially now where every system needs full network access
over standard protocols. Two issues out of many should
be emphasised here with respect to introducing a proc
based interface:

e Introducing kernel code is always a potential risk,

e Utilising advanced security mechanism in kernel
space can improve security a lot.

Security, as usual, depends largely on the know-how of
the programmers. Linux is not a secure operation sys-
tem per se; it is though an operating system that has
the potential to be configured and to be used in a secure
manner.

2.3.1 Modifying kernel code

The idea of kernel-space user-space separation always
was that kernel code is validated and safe; but errors in
kernel-space often are fatal to the system. On the other
hand user-space is considered un-trusted; errors are fatal
to the application but not to the system. Introducing
kernel code potentially breaks this trusted-code concept.
If a decision is made to introduce kernel code in a project,
carrying out a security evaluation is required, which again
requires that a security policy is available. Since the ker-
nel is one flat address space and it is non pre-emptive in
principal, deadlock prevention is up to the programmer.

2.3.2 TUtilisation of kernel capabilities on a file
scope

The last paragraph might suggest that introducing kernel
code is in principal a bad idea. The reason why this may
not be the case is that the security mechanisms available
in the Linux kernel are quite potent but have not really
made there way into the file system designs. Since proc
declares file operations on a per file basis, these file op-
erations can be designed much more restrictive than a
generalised virtual file system interface. In addition, full
utilisation of kernel capabilities is possible on a per file
basis which can lead to clearly enhanced security capabil-
ities. As a simple example consider taking away privileges
even from the root-user.

3 Proc API vor Kernel 2.4.X

In this section an introduction to the kernels proc API
is given. It is not limited to the proc specific functions
for building and maintaining the proc files but also gives
the most commonly associated functions to allow actually
working with proc.

3.1 Proc core structures

The core proc data structures are presented in the fol-
lowing.
3.1.1 proc_dir_entry

The most important data structure is

struct proc_dir_entry {
const char *name;
mode_t mode;

The name should be selected in a meaningful way and
should not contain any special characters or blanks as
this makes it difficult to access them from shell scripts,
which is a very common access method. The proper se-
lection of the mode bits is also important. Especially
setting these carelessly on writable files can create seri-
ous security problems (see man stat for details on the
flags defined in 1linux/stat.h).

struct file_operations *proc_fops;

The file operations structure proc_fops: these file oper-
ations are not on a file system scope like with usual file
systems but on a file scope. The proc_fops are limited
to read and write.

get_info_t *get_info;

The get_info method is a special read method that is
not part of the file operations. It is more restrictive than
the general read method.

struct module *owner;

The owner is used to associate modules with each other
in order to prevent race conditions caused by module un-
loading. If the module name is set to THIS_MODULE (see
linux/modules.h) then the kernel module is indepen-
dent of all others and will unload if not in use. By setting
it to a different module it will not be unloaded as long as
this other module is loaded even if no common symbols
are shared.

struct proc_dir_entry *next, *parent, *subdir;

Linked list of proc directories; the proc file system does
not distinguish between regular files and directories di-
rectly, a regular file is everything that does not have any
subdirectories, this is why directories and files are created
with the same functions (the flags do differ though).

void *data;

Data returned by the proc read methods; this can be
passed directly or assigned to a specific variable if only

this should be returned (see create_proc_read entry
below).

read_proc_t *read_proc;
write_proc_t *write_proc;

};

proc file operations; this is the generic read/write
method interface; it is up to the programmer to make
sure that these functions don’t open any security holes
into the system.

3.1.2 proc file operation

Although the proc file system integrates into POSIX en-
vironments, it does not define all possible file operations.
User-defined file operations are limited to

e get_info_t get_info

e read_proc_t proc_read

e write proc_t proc_write

whereby get_info is not part of the fops structure as-
sociated with the proc file system and does not follow
POSIX read/write interface standard in its parameter
list. The prototypes of these functions are declared in
linux/proc_fs.h as

typedef int (read_proc_t) (

char *page,
char **start,
off_t off,
int count,
int *eof,
void *data);

typedef int (write_proc_t)(
*file,
*buffer,
count,
*data) ;

struct file
const char
unsigned long
void

typedef int (get_info_t)(

char *buffer,
char **start,

off_t offset,
int length) ;

3.2 General proc functions

The proc interface has a small and simple API. Unfortu-
nately, it tends to change over time with kernel versions
(at least with major releases, rarely with minor releases).
The following list is the general proc API, it provides
methods that have no format restriction on them, i.e.
checking and validation of passed data is up to the pro-
grammer.

3.2.1 create_proc_entry

The function

struct proc_dir_entry *create_proc_entry(
const char *name,
mode_t mode,
struct proc_dir_entry *parent);

creates an entry in the proc file system with the string
in the first field as file name. Generally it is a bad idea
to have blanks in a filename; it is not forbidden but most
UNIX-users don’t expect blanks in file names. Thus,
file_name is to be preferred over file name. For the mode
bits see stat.h, for a description of the flags see man
stat. The last argument is the directory in which the
proc file is to appear, the value &proc_root is /proc
itself.

After having created the entry in /proc the file op-
erations for this file must be assigned by assigning
the functions to the appropriate function pointers in
the proc_dir_entry structure returned by the call to
proc_dir_entry. Example:

struct proc_dir_entry *proc_file;
proc_file = create_proc_entry(
"file_name",
S_IFREG | S_IWUSR,

&proc_root) ;

proc_top->read_proc=list_tasks;

Predefined directories in proc are proc_root (/proc),

proc_root. driver (proc/drivers), proc.root_fs
(/proc/fs), procmet (/proc/met), proc_bus
(/proc/bus).

3.2.2 create_proc_read_entry

The convenience function

static inline
struct proc_dir_entry * create_proc_read_entry(
const char * name,
mode_t mode,
struct proc_dir_entry * base,
read_proc_t * read_proc,
void * data);

is basically a wrapper to proc_create_entry:

static inline
struct proc_dir_entry *create_proc_read_entry(
const char *name,

mode_t mode,
struct proc_dir_entry *base,
read_proc_t *read_proc,

void *data)
{
struct proc_dir_entry *res = create_proc_entry(
name, mode, base);
if (res) {
res->read_proc=read_proc;
res—->data=data;
}
return res;
}

There is no principal difference in calling
proc_create read_entry and proc_create_entry plus
the additional setups done explicitly.

3.2.3 create_proc_info_entry

The convenience function

static inline *create_proc_info_entry(
const char *name,
mode_t mode,
get_info_t *get_info);

is a wrapper to proc_create_entry again:

static inline
struct proc_dir_entry *create_proc_info_entry(

const char *name ,
mode_t mode,
struct proc_dir_entry *base,
get_info_t *get_info)
{
struct proc_dir_entry *res = create_proc_entry(
name, mode, base);
if (res) res->get_info=get_info;
return res;
}

The get_info method itself is a special read method that
is not a part of the fops (file operations), it is special in
that it is bounded at create time to a defined length; this
is visible in the get_info_t type.

3.2.4 proc_mkdir

This creates a directory in the proc file system. Before
setting up the own directory in the top level /proc it
should be considered putting the new entry into one of
the available categories as people used to Linux would
probably search there first. Generally, it’s a bad idea to
put things in proc_root as it is already fairly cluttered
due to the PID directories.

extern struct proc_dir_entry *proc_mkdir(
const char *dir_name,
struct proc_dir_entry *parent);

3.2.5 proc_symlink

This function creates a symlink, a symbolic link. The
only real use of this function is for compatibility reasons
to systems that are changing. One probably should not
use symlinks when designing a new proc interface.

extern struct proc_dir_entry *proc_symlink(
const char *file_name,
struct proc_dir_entry *parent,

const char *symlink_name) ;

3.2.6 proc_mknod

proc_mknod is used to create device special files below
/proc. Basically it can be used just like mknod is used.
The only real usage is that creating device files below
/proc is convenient if the file system was a read-only file
system (romfs or the like). Originally this seems to have
been introduced in order to provide an initial console de-
vice via /proc during system startup, probably because
devfs provides this in a cleaner way. For embedded sys-
tems enabling devfs is fairly expensive (vmlinuz size of
increase of 11k), so this somewhat brutal substitution can
be interesting for resource constraint systems.

extern struct proc_dir_entry *proc_mknod(

const char *name,
mode_t mode,
struct proc_dir_entry *parent,
kdev_t rdev) ;

It is possible to create all device files for an embedded
system below /proc and link /dev to /proc. This elimi-
nates the file system overhead of /dev and allows to set
the permissions tightly (it’s not trivial to modify the per-
missions of these files even as root). Generally it’s prob-
ably better to use devfs for dynamically created device
files than to misuse /proc.

if (register_chrdev(SIMPLE_MAJOR,
"simple_dev", &simple_dev_fops) == 0)
{
printk("driver (major %d) registered\n",
SIMPLE_MAJOR) ;

/* create the device */

mydevice = proc_mknod(
"simple_dev", S_IFCHR | 0666,
&proc_root, MKDEV(17, 0));

if (mydevice == NULL) {

ret=—-ENQODEV;
}

mydevice->owner = THIS_MODULE;
return ret;

Now the user-space can access this character device via
/proc/simple dev, just as it would via /dev. For em-
bedded systems this might be a way to ”‘emulate”’ devfs
without requiring the full size overhead of devfs.

3.2.7 remove_proc_entry

A very nice way to get a system into trouble is to forget
removing a proc file in the cleanup module of a ker-
nel module. So anything created with any of the calls
above needs a remove_proc_entry in cleanup.module.
The symptom of forgetting this is that 1s -1 /proc re-
sults in a segmentation fault.

extern void *remove_proc_entry(
const char *name,

struct proc_dir_entry *parent);

remove_proc_entry returns void. There seems to be
no simple way to detect failures of remove_proc_entry.
proc entries have to be removed in reverse order to cre-
ation.

3.3 Subsystem specific wrapper functions

Some subsystems make heavy use of /proc. Therefore,
some wrapper functions have been introduced to simplify
programming.

3.3.1 proc_net_create

proc net_create is a wrapper for creating an info entry
routed at /proc/net. It is intended for the network sub-
system. It is probably a bad idea to use it for anything
else but the network subsystem.

static inline

struct proc_dir_entry *proc_net_create(
const char *name,
mode_t mode,
get_info_t *get_info)

return create_proc_info_entry
(name ,mode ,proc_net,get_info) ;

3.3.2 proc_net_remove

As to be expected this is a wrapper to
remove_proc_entry for the networking subsystem.

static inline void proc_net_remove(
const char *name)

{

remove_proc_entry (name,proc_net);

}
3.4 /proc/sys Sysctl functions list

The sysctl related functions have type conversions inte-
grated. So they provide the safer way of building a proc
interface but more restricted. The type conversions are
performed in a way that ensures that if incorrect types
are passed (e.g. abc to proc_dointvec) then nothing is
passed on at all. There is no error or warning though, so
checking for invalid null data is left to the programmer.
Note that the proc mirroring of sysctl table entries is
a side effect of sysctl and not vice-versa. So one can
disable the mirroring of any sysctl related setups by
passing a NULL string in the procname field. Mode fields
are valid for access via /proc as well as accessing via
sysctl.

3.4.1 register_sysctl_table

register_sysctl_ table registers sysctl names and
the mapping to there associated functions via the
ctl_tables. These ctl_tables are passed as NULL ter-
minated arrays, and inserted at the sysctl_head passed.

struct ctl_table_header * register_sysctl_table(
ctl_table *table,
int insert_at_head);

The sysctl head is declared as:

static struct ctl_table_header
*somename_sysctl_header;

3.4.2 unregister_sysctl_table
In cleanupmodule the sysctl functions need to be

unregistered. To do this unregister_sysctl_table is
called with the ctl_table_head.

void unregister_sysctl_table(
struct ctl_table_header *table);

3.4.3 ctl_table

Before going on with the available proc related callback
functions the ctl table is introduced as it is the core
structure used to build sysctl interfaces.

struct ctl_table

{
int ctl_name;
const char *procname;

The ctl name is an enumeration of the files in a given
directory. If the integration of a ctl_table entry into
an existing /proc/sys/* directory is intended, then it
has to be ensured that there is no conflict with existing
entries (see linux/sysctl.h for defined values). If new
directories are created, then functions should simply be
enumerated as shown later in the example for real time
threads controlled via sysctl interface.

The procname is a string that will be used to represent
this control function via the /proc/sys interface, if it
should not be available via proc then a NULL string has
to be passed here.

void *data;
int maxlen;
mode_t mode;
ctl_table *child;

proc_handler *proc_handler;

data is a pointer to variable returned by the sysctl/proc
read call. The data passed is limited to maxlen at com-
pile time. So this interface is fairly restrictive, or inflex-
ible compared to proc_read/procwrite methods, but
allows for more security. The mode again is typical UNIX
ruxrwxrwx and will be honored both via sysctl and
/proc/sys access.

proc_handler is the pointer to the function of type
proc_handler_t that is called to produce the data re-
turned. In this handler further restrictions, being beyond
usual UNIX rwx, can be imposed using kernel capabili-
ties.

ctl_handler *strategy;
struct proc_dir_entry *de;

void *extral;
void *extra2;

};

The elements ctl handler is is not proc related. This
is outside of the scope of this document and is men-
tioned here for completeness. The value of *de does
NOT need to be set. This is taken care of by
sysctl register_table. The two void pointer entries
are used for the minmax sysctl handlers to store the

minimum and maximum arrays, respectively. These two
pointers can be misused for anything!

The proc_handler_t type is defined in linux/sysctl.h
to

typedef int proc_handler(

ctl_table *ctl,

int write,

struct file *filp,

void *buffer,

size_t *lenp) ;
3.4.4 ctl_table hirarchy

The struct ctl_table header is used to maintain dy-
namic lists of ctl_table trees. These trees are then
”‘translated”’ to /proc/sys/ based directory structures.

struct ctl_table_header
{

ctl_table

struct list_head

*ctl_table;
ctl_entry;

};

An example of a file using a self-defined proc callback
handler:

enum {
DEV_SIMPLE_INFO0=1,
DEV_SIMPLE_DEBUG=2
};

/* files named "info" and "debug" */
ctl_table simple_table[] = {
{DEV_SIMPLE_INFO, "info",
&simple_sysctl_settings.info,
INFO_STR_SIZE, 0444, NULL,
&simple_sysctl_info},
{DEV_SIMPLE_DEBUG, "debug",
&simple_sysctl_settings.debug,
sizeof (int), 0644, NULL,
&simple_sysctl_handler},
{03}};

Setup a simple sub-directory:

ctl_table simple_simple_table[] = {
{DEV_SIMPLE_INFO, "simple", NULL,
0, 0555, simple_tablel},
{0}};

To create a directory below /proc/sys/dev in order to
put the simple device related files into, a further table
needs to be created. Checking in 1inux/sysctl.h gives:

/* CTL_DEV names: */

enum {
DEV_CDROM
DEV_HWMON
DEV_PARPORT =
DEV_RAID
DEV_MAC_HID

non
M

M

M

|
O WN =

};

Even if the system might only show one directory (say
cdrom) in /proc/sys/dev, the number to use cannot be
chosen freely. This is a somewhat irritating problem. In
the general proc interface, it’s sufficient to chose a unique
name for the directories and files; for sysctl interfaces
it is up to the programmer to ensure that there are no
conflicts with predefined names!

#define DEV_SIMPLE 6

ctl_table simple_simple_table[] = {
{DEV_SIMPLE, "simple", NULL,
0, 0555, simple_tablel,
{0}};

The simple device directory is now put into
/proc/sys/dev as this seems to be the appropriate
place for a device related sysctl. CTL.DEV is defined
in 1inux/sysctl.h again.

ctl_table simple_root_table[] = {
{CTL_DEV, '"dev'", NULL,
0, 0555, simple_simple_table},
{0}};

If a new file should be created in /proc/sys, then a value
that is not yet in use has to be selected. In most cases
it should be possible to fit it into the existing structure,
which should ensure that /proc/sys does not clutter up.
As of kernel 2.4.19 the list is:

enum
{
CTL_KERN = 1, /% General kernel info and control */
CTL_VM = 2, /* VM management */
CTL_NET = 3, /* Networking */
CTL_PROC = 4, /% Process info */
CTL_FS = 5, /* file systems */
CTL_DEBUG= 6, /* Debugging */
CTL_DEV = 7, /* Devices */
CTL_BUS = 8, /% Busses */
CTL_ABI =9, /* Binary emulation */
CTL_CPU =10 /* CPU stuff (speed scaling, etc) */
};

3.5 Dbasic proc_handlers

In many cases it is not necessary to write up a complex
proc_handler callback function. The sysctl implemen-
tation provides a number of proc_handlers. They are
fairly restrictive but on the other hand they are well
tested. Before writing up proc callback handler, it should
be checked if the task can’t be done with one of these. In
order to use one of the predefined handlers, a table entry
has to be defined like:

proc_callback_type var[]=...;

ctl_table simple_table[] = {
{ENUMERATION, "procname", &var,
sizeof (var), UNIX_MODE, NULL,
&proc_calback,...},
{0}};

syctl can be used, or open/read/write/close on the
file ”‘procname”’, and it will be bounded in type by the
callback function, and in size by the initial variable size.
For many of the sysctl needed, this will be sufficient.

The predefined proc callback handlers all have the same
prototype:

extern int proc_xxxxxxxxx(
ctl_table *table,
int direction,
struct file *filep,
*data_buffer,
*lenth) ;

void
size_t

The integer direction is TRUE if this is a write to the
sysctl table, FALSE other wise. The other values should
be clear.

3.6 Predefined proc callbacks

Above proc callback handlers were introduced, being set
up and mapped to some function. In many, if not most,
cases the set of predefined proc callback handlers will be
sufficient.

3.6.1 proc_dostring

read/write strings callback proc handler. If this call-
back receives non-string data, it simply will set the buffer
to NULL.

static char somestring[]="the initial string";

ctl_table simple_table[] = {
{DEV_SIMPLE_SOMESTRING, "somestring",

&somestring, sizeof (somestring),
0644, NULL, &proc_dostring},
{0}};

Passing an oversized string by writing to the proc file will
be truncated to sizeof (somestring) as set at compile
time.

3.6.2 proc_dointvec

read/write a set of integer values to the file, the list of
integers is white space separated. To use an integer array
it is necessary to declare it; the proc_dointvec callback
handler is used to read/write to it.

static int someintvec[]={0,0,0,0};

ctl_table simple_table[] = {
{DEV_SIMPLE_SOMEINTVEC, "someintvec",
&someintvec, sizeof (someintvec),
0644, NULL, &proc_dointvec},
{0}};

A somewhat special behavior that can be confusing with
these handlers is their way of managing excess data ele-
ments. If the example above is taken as a reference, then
cat /proc/sys/dev/simple/someintvec will originally
return 0 0 0 0. If 1 2 3 4 is written to it with echo
1 2 3 4 > someintvec, then it will show 1 2 3 4; if
echo 1 2 3 4 5 > someintvec is written to it again,
then this will wrap around and will show 5 2 3 4. This
can be quite confusing during debugging of sysctl en-
tries. So sysctl arrays can be viewed as FIFOs with
respect to there behavior on write.

3.6.3 proc_dointvec_bset

proc_dointvec bset is a specially restricted version
of proc_dointvec for setting of kernel capabilities
(cap-bset). It is a good example of how to use a
sysctl interface to set up access to security critical
data structures in a simple but still safe way (see
linux/kernel/sysctl.c for details). To protect this
data structure not only the tight limits imposed by
proc_dointvec are used, but also kernel capabilities:

int proc_dointvec_bset(

ctl_table *table,
int write,
struct file *filp,
void *buffer,
size_t *1lenp)

if (!capable(CAP_SYS_MODULE)) {
return -EPERM;

}
return do_proc_dointvec(
table,write,filp,buffer,lenp,1,

(current->pid == 1) 7 OP_SET : QOP_AND);

The assignment of the callback function is as expected
(from linux/kernel/sysctl.c:

extern kernel_cap_t cap_bset;
ctl_table kernel_table[] = {

{KERN_CAP_BSET, "cap-bound", &cap_bset,
sizeof (kernel_cap_t), 0600, NULL,
&proc_dointvec_bset},

{0}};

It is no recommended to use proc_dointvec_bset for
other variables. This should be seen as a sample imple-
mentation to build specific proc callback functions for
security critical variables.

3.6.4 proc_dointvec_minmax

All the minmax variants of the proc callbacks use the val-
ues stored in table->extral and table->extra2 (min,
max respectively) to verify that the passed data on write
is in the permitted range. If not, then no change oc-
curs (but there also is no warning message in the log
files). The min/max values are valid for the correspond-
ing elements in the integer vector passed, i.e if an integer
array is passed with 2 elements but the min/max value
is an ”‘array”’ with only one value then the first ele-
ment is bounded, the second is not bounded and can’t
be changed. To make both element bounded the min and
max variables must both be of size two in the below ex-
ample, if only duty_cycle min where an array of size two
then the second value still would not be changeable.

static int duty_cycle[]={50,45};
static int duty_cycle_min=10;
static int duty_cycle_max=90;

{DEV_SIMPLE_DUTYCYCLE, "dyty_cycle",
&duty_cycle, sizeof(int), 0644, NULL,
&proc_dointvec_minmax, NULL, NULL,
&duty_cycle_min, &duty_cycle_max},

In this example the second value can’t be changed and
the first is limited between 10 and 90. Setting the
ctl handler (the 8th parameter) to NULL makes this ta-
ble accessible via proc but inaccessible via sysctl).

3.6.5 proc_dointvec_jiffies

This function treats the input as seconds and converts it
to jiffies.

3.6.6 proc_doulongvec_minmax

Same as proc_dointvec minmax, just for long integers
not integers, and bounded.

3.6.7 proc_doulongvec_ms_jiffies_ minmax

Same as proc_dointvecminmax just for unsigned long
integers passed, interpreted as milliseconds which are
converted to jiffies.

3.7 TUsing regular Library Functions

System libraries (such as 1ibc, 1ibm, etc.) that are avail-
able to user-space programmers are unavailable to kernel
programmers. When a process is being loaded, the loader
will automatically load any dependent libraries into the
address space of the process. None of this mechanism is
available to kernel programmers. Libraries can be linked
statically to kernel modules. This is in fact useful for
math functions, but generally not a good thing to do. To
statically include 1ibm something like the Makefile entry
below should be used.

my_mod.o: my_mod.c
$(CC) ${INCLUDE} ${CFLAGS} -c -o tmp.o my_mod.c
$(ILD) -r -static tmp.o -o my_mod.o -L/usr/1lib -Im
rm -f tmp.o

Naturally this can have side effects, as library functions
are not designed to run in kernel context. Therefore it has
to be verified what the functions in the library included
are doing.

The standard 1ibc code can be used instead as basis for
kernel re-implementation, as there might be significant
problems with stack handling (the kernel is limited to a
small amount of stack space, while user-space programs
don’t have this limitation) causing random memory cor-
ruption. Many of the commonly requested functions have
already been implemented in the kernel, sometimes in
”‘lightweight”’ versions that aren’t as featureful as their
user-land counterparts. Therefore, usage should not be
based on the man-pages of the corresponding 1ibc func-
tions. The headers for any functions to be used can be
”¢tgrepped”’ before writing kernel versions from scratch.
If such functions are written, they should be contributed
back to the Linux community. Some of the most com-
monly used ones are in include/linux/string.h.

Whenever a library function is needed, it should be con-
sidered in the design phase whether all the code can be
moved into user-space instead, or to limit the functions
to those available in the kernel. Generally modifying and
adding to the kernel should be limited to the really nec-
essary.

3.8 Kernel ‘libc* Functions

The kernel internally available 1ibc function set is lim-
ited to what kernel developers need and identified as
so general that it was extracted into generally available
functions. In general, they behave like the functions from
the C-library. These are currently the memory and string
functions:

3.8.1 memory functions
memcpy memset memmove
memscan memcmp memchr
3.8.2 string functions
strcpy strncpy strsep
strcat strncat strcmp
strncmp strchr strrchr
strlen strstr strtok
simple_strtol strpbrk sprintf
3.8.3 type-conversion functions

As noted in linux/include/linux/ctype.h. NOTE:
This ctype does not handle EQF like the standard C li-
brary.

isalnum(c) isalpha(c) iscntrl(c)
isdigit(c) isgraph(c) islower(c)
isprint(c) ispunct(c) isspace(c)
isupper(c) isxdigit(c) isascii(c)
toascii(c) tolower(c) toupper(c)

Some of these are architecture specific, therefore all can-
not be expected to be available on all platforms. In
order to find out, the kernels symbol table can be in-
spected either by running ksyms -a or by checking the
System.map. Aside from these 1ibc functions in kernel
space, any of the kernel internal functions provided there
symbol exported can be used.

Of course the programmer is not limited to using these
string functions even if proc input and output is a charac-
ter basis and these are most commonly needed; any other
exported kernel function can be used. Note though that
many functions can have security relevant side-effects

aside from the ability to hard-lock up the system if used
incorrectly. Generally speaking, some sanity checks on
any values users may pass have to be performed.

3.9 Related Kernel functions

The more common cases of kernel functions are listed
here for convenience.

3.9.1 copy-from_user

copy_from user is still widely used although it is actually
only a function for backwards compatibility to 2.3 and
2.2 kernel releases. The function behind copy_from user
is memcpy (memcpy_fromfs). memcpy takes the same ar-
guments as copy-fromuser (to, from, count). See
/1linux/compatmac.h for more information.

3.9.2 MKDEV

MKDEV just wraps up a major and minor number to create
a kdev_t type, a ”‘device file”’ hook in the kernel. It is
declared in 1inux/kdev_t.h along with a number of fur-
ther useful macros to extract major and minor number
from kdev_t types.

3.9.3 SET_MODULE_OWNER

If the proc functionality of a application is put into
a separate kernel module then this module often needs
to be protected against race conditions that occur dur-
ing unloading of stacked kernel modules. To associate
a proc file entry with the network subsystem the net
structure can be grabbed via the device and assigned
to the module owner with the SET_MODULE_OWNER macro
(1inux/modules.h. If no association is necessary, i.e.
the module may be unloaded independently of any other
modules, then the module owner is set to THIS_MODULE
(also declared in 1inux/modules.h.

struct net_device *net ;

net = &dev->net;
SET_MODULE_QOWNER (net);

4 Managment Interfaces via proc

On many embedded systems the user space is primar-
ily responsible to provide a dedicated HMI (Human-
Machine-Interface), an administrative interface, and

rarely a full-fledged user space as expected on a regu-
lar Linux desk-top system. The HMI in most cases is
very application specific, but at the same time utilises
typical user space interfaces (libs, device files, etc.). The
administrative interface on the other hand will require
tools to inspect system status that are Linux specific and
fairly independent of the specific application.

4.1 Available tools

During Linux development a large variety of adminis-
trative tools has evolved. Many of these are distribution
specific (1inuxconf, yast, etc.) and are of no interest for
embedded systems as they are tailored to the demands of
the distribution and not really adaptable to the needs of a
dedicated device. They are too heavy-weighted for most
embedded platforms. A large set of distribution indepen-
dent administrative tools is also available, many of which
integrate into the POSIX2 specs (ifconfig, route, etc.).
But some of these tools, notably those that relied on the
proc file system are too heavy weight for embedded sys-
tems due to the large number of system calls required to
access information in /proc. Some typical examples of
this overhead are listed below:

Command | Options | Nr of syscalls
sysctl -a 2750

top -nl 1350

who -u 174

route 135

ifconfig 88

Number of system calls on a normal desktop for some
typical admin tools. Results naturally will vary on dif-
ferent systems.

Looking at the tools in detail the overhead is produced
due to a few factors:

e Highly configurable,
e Large number of possible options,

e General-purpose, that is, application independent
interface,

e CPU usage is not a key issue during design of these
apps.

The first three issues listed might not seem like disad-
vantages if they did not have a dramatic influence on the
resource demands - but this is not quite correct. The is-
sues of configurability and abundance of runtime options
is critical, and any product-hot-line will be able to tell
this, because the maintenance personnel often will not be

trained to a level to manage all of these options leading to
misinterpretation and consequent errors. The goal of an
administrative interface is to provide all necessary data to
the administrative personnel in a well-documented man-
ner and with a minimum complexity. Taking the above
list - the admin interface demands can be sketched out
as

e Minimum set of required options

Configured to the needs of the specific appliance

Highly application specific especially with respect
to error messages

CPU usage and data representation is a key issue.

What does this all have to do with the proc interface?
Administrative interfaces primarily are monitoring sys-
tem operations, user space tasks are looked at from the
kernels perspective, i.e. administration interfaces are pri-
marily interested in kernel-space data-structures and thus
it is very expensive to put these administrative interfaces
in user space.

4.2 /proc/top a comparison

As a comparison a top-like interface is presented that has
de-facto zero-configurability, runs in kernel-space, has a
minimum file system foot-print and a minimum runtime-
resource demand and at the same time outputs exactly
what is needed in a top-like manner. Naturally the ‘ex-
actly what is needed‘ will vary but the variance can nor-
mally be set at compile time and need not be runtime-
configurable (although that is possible even with this ap-
proach).

4.2.1 Comparing resources

To give an idea of what resource advantage such a dedi-
cated proc interface may provide here is a (somewhat un-
fair) comparison between standard top and a /proc/top.

e top - libncurses 289k stripped

e top - file system size 350k (54k /usr/bin/top + 298k
for the libs)

e top - number of system calls is approximately 1500
to produce a single page of output

e proc_top - no libs

e proc_top - file system size 2k (2028 bytes on linux-
2.4.20)

e proc_top - number of system calls 43 (one more than
echo takes)

From this comparison it seems fairly clear that at least
in some areas building dedicated /proc interface for em-
bedded systems really can pay-off the effort invested.

4.2.2 proc_top.c

/proc/top

simply run through the task list of linux for a light
weight "top” cat /proc/top to get a list of PID, NICE,
UserTime, SYStemTime and Command, this should be
enough for most embedded systems . /proc/ifconfig
display network information in the form you would ex-
pect from ifconfig.

#include <linux/kernel.h> /* printk level */
#include <linux/module.h> /* kernel version etc. */
#include <linux/proc_fs.h> /* all the proc stuff */
#include <linux/fs.h>

#include <linux/errno.h>

/% don’t forget to make it GPL...%/

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR ("Der Herr Hofrat");
MODULE_DESCRIPTION("Embedded top");

struct proc_dir_entry *proc_top;

int

list_tasks(char *page,
char **start,
off_t off,
int count,

*eof ,

*data)

int
void

int size = 0;

struct task_struct *p;

char state;

size+=sprintf (page+size,
"5shTshTshTshTshTs%hTs ’s\n\n",
||PIDI| . IIUIDII . |IPRIO|| R IINICEH .
"STATE","USERt","SYSt","COMMAND") ;

Admittedly, this is not very elegant code, but the issue is too
simple to allow for elegant solutions. Therefore simply the
tasklist_lock is grabbed and the task list walked through,

PID UID PRIO NICE STATE USERt SYSt
1 0 0 0 S 1 5848
2 0 0 0 S 0 0
3 0 0 19 S 0 3
4 0 0 0 S 0 0

printing data of interest. The only datum that needs some
interpretation is task-state as the numeric values would not
tell anybody anything. Basically the goal is to have output
that will be close enough to the output of top to allow ad-
ministrators to interpret it properly.

read_lock(&tasklist_lock);
for_each_task(p){
switch((int)p->state){

case -1: state=’Z’; break;
case 0: state=’R’; break;
default: state=’S’; break;

}

size+=sprintf (pagetsize,
"h5ARTARTAUTAKTchTd)Td
(int)p->pid,
(int)p->uid,
(int)p->rt_priority,
(int)p->nice,
state,
(int)p->times.tms_utime,
(int)p->times.tms_stime,

hs\n",

p—>comm) ;
}
read_unlock(&tasklist_lock);
return (size);

init_module and cleanup_module just need to take care of
setting up and deleting the proc file system entry.

int
init_module(void)
{
proc_top = create_proc_entry("top",
S_IFREG | S_IWUSR,
&proc_root) ;

proc_top->read_proc = list_tasks;
return 0;

}

void

cleanup_module(void)

{
remove_proc_entry("top", &proc_root);
printk("out of here\n");

}

By invoking cat /proc/top the typical output would be
something like:

COMMAND

init

keventd
ksoftirqd_CPUO
kswapd

5 0 0 0 S 0 0

661 0 0 0 S 18 7

662 0 0 0 S 24 12
671 0 0 0 R 0 2

Fig.1 output of cat /proc/top

4.2.3 proc_ifconfig.c

The second typical admin tool that is introduced here
is a proc based version of ifconfig. The motivation
for this was that busybox’ ifconfig, by default, allows
setting of network parameters but not displaying them.
So an ”‘inexpensive”’ way of displaying the settings in a
human-readable form was anticipated. Basically all of the
output produced by this proc_ifconfig.o module via
cat /proc/ifconfig could be extracted from all ready
available proc file system entries. But it would hardly be
reasonable to assume that untrained personnel would be
very happy with the output of /proc/net/* if they are
trying to locate a network problem. Therefore, the goal
is to mimic the regular output of ifconfig.

extern struct
net_device *dev_get_by_index(int idx);

struct proc_dir_entry *proc_ifcfg;

int
list_netdev(char *page,
char **start,
off_t off,
int count,
int *eof,
void *data)

int size 0;
int type = 0;
char *hw_types[]={"Ethernet",
"Local Loopback",
"Other"};
struct net_device *dev;
unsigned long addr;
unsigned long bcast;
unsigned long mask;
/* netdevices start counting at 1 */

int i=1;

while ((dev=dev_get_by_index(i)) != NULL){
struct net_device_stats *stats =
(dev->get_stats 7 dev->get_stats(dev): NULL);
struct in_device *in_dev = dev->ip_ptr;
addr=in_dev->ifa_list->ifa_address;
bcast=in_dev->ifa_list->ifa_broadcast;
mask=in_dev->ifa_list->ifa_mask;

/* only check ethernet and

bdflush

sshd
bash
cat

* loopback for now
*/
switch(dev->type){
case 1: type=0; break;
case 772: type=1; break;
default: type=2; break;
}
/* other code */
}
}

The work is done in the top part of the loop above. All that
needs to be done is to grab the appropriate pointers to some
kernel structures of interest and then run through the list of
network devices. The actual sprintf code, an endless long
list of structure elements from the different network related
core structures, is not shown here.

size+=sprintf (pagetsize,....

dev->irq,
dev->base_addr&0x0ffff) ;
i++;

}

return (size);

Finally the mandatory init_module/cleanup_moduleis shown
in the following.

int
init_module (void)
{
proc_ifcfg=create_proc_entry(
"ifconfig",
S_IFREG | S_IWUSR,
&proc_root) ;
proc_ifcfg->read_proc=list_netdev;
return 0;
}
void
cleanup_module(void)
{
remove_proc_entry("ifconfig",
&proc_root) ;
}

The output of a cat /proc/top Fig.2 call is fairly close to
what one would expect from calling /sbin/ifconfig Fig.3.

lo Link encap:Local Loopback HWaddr 00:00:00:00:00:00
inetd addr:127.0.0.1 Bcast:0.0.0.0 Mask:255.0.0.0

MTU:16436

RX packets:38 errors:0 dropped:0 overruns:0 frame:0
TX packets:38 errors:0 dropped:0 overruns:0 carier:0

collisions:0 txqueuelen:0
Interrupt:0 Base address:0

ethO

Link encap:Ethernet HWaddr 00:02:b3:2c:9a:d42

inetd addr:192.168.1.31 Bcast:192.168.1.255 Mask:255.255.255.0

MTU:1500

RX packets:7130 errors:0 dropped:0 overruns:0 frame:0
TX packets:3801 errors:0 dropped:0 overruns:0 carier:0

collisions:0 txqueuelen:100
Interrupt:10 Base address:b000

Fig.2 output of cat /proc/ifconfig

ethO Link encap:Ethernet HWaddr 00:02:B3:2C:9A:D2
inet addr:192.168.1.31 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:8466 errors:0 dropped:0 overruns:0 frame:0
TX packets:4540 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:10 Base address:0xb000

1o Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:38 errors:0 dropped:0 overruns:0 frame:0
TX packets:38 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

Fig.3 output of sbin/ifconfig

For trouble shooting it is fairly simply to take apart the
details of the different errors that /sbin/ifconfig ads
up, or add other network related values of interest.

5 RT-Interfaces via proc

When setting up a real-time task there are a number of
issues where using the proc file system can help. No-
tably starting or stopping rt-threads, reporting status of
the rt-system, or rt-applications as well as some of the
security issues related to managing rt-threads.

5.1 Task control via /proc

Inserting modules requires root privileges. When setting
up an embedded system with RTLinux then commonly
some way to launch an rt-thread is neded without giv-
ing the operator root privileges. Setting the SETUID bit
for insmod is a unacceptably insecure way, as this would
allow inserting a trivial module to gain full control of
the system. A common method used is to insert the
rt-modules at system startup and have the application
modules loaded in an inactive state. Later on, a unpriv-
ileged user starts the rt-thread by sending a start com-
mand via real-time FIFO, but this does requires to give
the /dev/rtf# write access for unprivileged users, thus
also opening some potential problems. An alternative is
to use a /proc file and protect these files via kernel ca-

pabilities if needed. The advantage of the proc based
solution is that the read/write methods are file specific
and not file system specific or tied to the major num-
ber of a device with access control restricted to virtual
file systems capabilities, which are generally insufficient.
These file specific file operations allow very restricted ac-
cess to kernel space. File operations for proc files not
only map to a very specific read/write method but also
have statically, compile time defined, virtual file systems
permissions preventing runtime modifications, and allow
a very application specific check of passed data.

pthread_t thread;
hrtime_t start_nsec;

static int running=1;
struct proc_dir_entry *proc_th_stat;

This rt-thread is launched on insmod (running is ini-
tialised to 1) and stops by exiting the while(running)
loop when running is set to 0 via /proc/thread_status,
it also allows monitoring the status of this thread by
inspecting the /proc/thread status simply by running
cat /proc/thread status.

void *
start_routine(void *arg)
{
int i=0;
struct sched_param p;
hrtime_t elapsed_time,now;
P . sched_priority = 1;
pthread_setschedparam(pthread_self(),
SCHED_FIFO, &p);

pthread_make_periodic_np(pthread_self(),
gethrtime(), 500000000) ;

while (running) {
pthread_wait_np Q;
now = clock_gethrtime (CLOCK_REAL-TIME) ;
elapsed_time=now-start_nsec;
rtl_printf ("elapsed_time = JLd\n",
(long long)elapsed_time) ;
i++;

}

return (void *)i;

One of the nice things about the proc files being gener-
ated on the fly is that the read method can output the val-
ues in a nice user-friendly manner while the write method
does not need to bother with any parsing as would be re-
quired with a configuration file.

int

get_status(char *page, char **start,
off_t off, int count, int *eof,
void *data)

int size = 0;
MOD_INC_USE_CQUNT;

size+=sprintf (page+size,"Thread State:}d\n",
(int)running) ;

MOD_DEC_USE_COUNT;
return(size);

}

As the proc interface receives character input, one needs
to convert input values to the appropriate internal data
types. In this example a brute-force atoi is done, which
also only takes the first passed character into account.
Generally one needs to ensure that ANY write method
in proc checks data passed to not open security holes in
the kernel.

static int

set_status(struct file *file,
const char *user_buffer,
unsigned long count,
void *data)

{
MOD_INC_USE_COUNT;
/* brute force atoi */
running=(int)*user_buffer-’0’;
MOD_DEC_USE_COUNT;
return count;

}

int init_module(void) {

int retval;

start_nsec=clock_gethrtime(CLOCK_REAL-TIME);

retval = pthread_create(&thread, NULL,
start_routine, 0);

if (retval) {
printk("pthread create failed\n");
return -1;

}

proc_th_stat=create_proc_entry("thread_status",
S_IFREG | S_IWUSR, &proc_root);

/* the file specific operations */
proc_th_stat->read_proc=get_status;
proc_th_stat->write_proc=set_status;
return 0;

void cleanup_module(void) {
void * ret_val;
pthread_cancel (thread) ;

pthread_join(thread, &ret_val);

printk("Thread terminated (%d)\n",
(int)ret_val);

remove_proc_entry ("thread_status",
&proc_root) ;

5.2 Exporting RTLinux-internals via /proc

A critical issue for real-time systems is the ability to mon-
itor status of the system with a minimum overhead. Pe-
riodically logging to the system logs is one of the possi-
bilities. This is somewhat limited though as the data-
volume would become very large and it is often hard
to say a-priori what values are going to be relevant for
monitoring. Therefore periodic monitoring needs to by
adjustable. To make it adjustable a large spectrum of
kernel/rt internal values must be reachable with low pro-
cessing overhead. For this purpose the proc and sysctl
interfaces are clearly a most suitable approach. The cur-
rent /proc file system gives a snap shot of the status of
the kernel. But more important for systems that need to
exhibit fault-tolerance qualities is the analysis of system
tendencies. Roughly this means that the developments
of values are more important than the values themselves.
With the current concept behind /proc there are two
possibilities.

e Save status locally and periodically compare it to
current values,

e Log status to a remote system and leave complex,
and computational intensive, work to a appropri-
ately powerful server system.

With the limited resources of embedded system the first
option more or less is not suitable as it would potentially
request log or analysis related processing efforts at the
same time that the system is in a high load situation due
to error handling. Thus the data needs to be analysed as
far as possible at low-load situations. This can be best
achieved by delegating the data interpretation to the sys-
tem’s idle task. In order to minimise processing overhead
this task is performed in kernel-space and the results are
then presented via sysctl or proc.

Here is an example of making RTLinux internal data
available by simply dumping the hrtime variable to user-
space via /proc/hrtime. This allows user-space applica-
tions direct access to RTLinux internal data structures
via open/read/close on proc files or as shown here make
it available in a ”‘formated”’ way to allow use of cat
/proc/hrtime to read the RTLinux internal clock.

/* /proc/hrtime "file-descriptor"

*/

struct proc_dir_entry *proc_hrtime;

/* /proc/hrtime read method - just
* dump the dynamic syscall number
* in a human readable manner
*/

int

dump_stuff (char *page, char **start,

off_t off, int count, int *eof,
void *data)

{
int size = 0;
MOD_INC_USE_COUNT;
size+=sprintf (pagetsize,"RT-Time:%1lu\n",
(unsigned long long)gethrtime());
MOD_DEC_USE_COUNT;
return(size);
}
int
init_module (void)
{
/* set up a proc file in /proc */
proc_hrtime=create_proc_entry("hrtime",
S_IFREG | S_IWUSR, &proc_root);
/* assign the read method of
* /proc/hrtime to dump the number
*/
proc_hrtime->read_proc=dump_stuff;
return 0;
}
void
cleanup_module(void)
{
/* remove the proc entry */
remove_proc_entry ("hrtime", &proc_root);
}

5.3 Security Issues

There are some general security issues involved with mod-
ules. Commonly on embedded systems, everything is
statically compiled into the kernel to eliminate the prob-
lem of requiring privileges to load modules at runtime. In
cases where this is not possible — and RTLinux is one of
them — some way to permit usage of dynamically loaded
kernel modules in a safe way is needed. For RTLinux a
common strategy is to load all RTLinux modules at sys-
tem startup time (RTLinux core modules + application
specific modules), and have the application specific mod-
ules in an inactive state (suspended). This way the only
thing left to do is to start or stop the rt-threads, which

can be done safely via a proc interface. Embedded systems have a higher security demand than

standard desktop systems as they must operate in a very

autonomous fashion. They have a higher demand on the
6 Conclusion monitoring of kernel internals to allow reacting to aris-
ing problems on time. To do this, a safe and light-wait
method for accessing kernel/rt-context internal struc-
tures is necessary. The proc interface is both capable of
providing the necessary secure access as well as providing
the basic functions to allow human-readable output via
/proc files.

Standard tools are designed for desktop systems/server-
systems and are too heavy weighted for embedded sys-
tems. A large amount of the administrative tasks com-
prises inspecting kernel internal structures. Using the
proc interface of the Linux kernel lightweight variants of
standard admin tools can be built.

7 Acknowledgement

This project is part of ongoing development work for Keymile AG, Vienna http://www.keymile. comas part of design

of a new generation of telecom-access devices. This GPL project has been made available at http://www.opentech.at/proje
in order to develop a proc based embedded utility set. This project is also available via cvs, cvs -d :pserver:anoncvsopente
login (password: anoncvs), cvs -d :pserver:anoncvsopentech.at:/home/gpl co proc_utils. Feedback to
der.herrhofr.at is always appreciated.

References

[GNU] GNU not UNIX,
http://www.gnu.org/, ftp://ftp.gnu.org/.

[linux] Linux Kernel Home-Page,
http://www.kernel.org/,ftp://ftp.kernel.org/.

[rtlinux] RTLinux/GPL Home-Page,
http://www.rtlinux.org/, ftp://ftp.rtlinux.at/.

[proc-howto] The proc-howto,
Terrehon Bowden terrehonpacbell.net, Bodo Bauer bbricochet.net,
Jorge Nerin comandantezaralinux.com,
Documentations/proc.txt, /linux/Documentation/filesystems/proc.txt.

[LDD] Allesandro Rubini, Linux Device Drivers,
O’Reilly & Associates, http://www.xml.com/1dd/chapter/book/index.html

