
Ethernet-based Network Storage – Reality or Pipe Dream?

Patrick B. T. KHOO, Wilson Y. H. WANG and H. N. YEO
MCSA Group, NST Division – Data Storage Institute

Affiliated to the National University of Singapore
Funded by the Agency for Science, Technology And Research Singapore

DSI Building, 5 Engineering Drive 1, 117608 Singapore
Email: {khoo_beng_teck, wang_yonghong, yeo_heng_ngi}@dsi.a-star.edu.sg

Web: http://nst.dsi.a-star.edu.sg/mcsa/

Abstract

The basic problem in network storage today is
how to implement solutions that are cost effective
and efficient but without using a lot of new
components and equipment. Implementing
Storage Area Networks today generally implies
using Fibre Channel, however, a lot of work is
being done to try to use Ethernet instead for
network storage [1][2][3]. But these new
Ethernet solutions still seem a little short.

In this paper, we would like to first introduce
some of the key features of the new open source
network storage protocol, HyperSCSI, and how it
is different from existing solutions. This will be
followed by benchmark and test results to show
how HyperSCSI is capable of using an existing
Ethernet-based network infrastructure, common-
off-the-shelf hardware and well-established
storage technologies and turning that into a high-
performance and reliable network storage
solution. Since specialized hardware and custom
software are not required for HyperSCSI, we
believe this is a step in the right direction to
building cost effective and efficient network
storage solutions.

Finally, we want to draw just one conclusion in
our paper, that the existing network infrastructure
and technologies can be successfully exploited to
meet the requirements of network storage. The
lesson learned in the search for this answer is that
one must be ready to look for innovative new
methods and perhaps, use unconventional
thinking to meet the requirements of network
storage. The resultant HyperSCSI protocol is
proof of this.

1 Introduction

The concept of a network for storage has not been
a new one. Before the terms “Storage Area
Networks (SAN)” and “Network Attached
Storage (NAS)” became commonplace,
mainframes, and later on, simple file servers have
been doing “network storage” for years. Of
course, it was not quite in the form that we
recognize today, but it was certainly a kind of
network-ed storage. In fact, the very concept of
transferring data over a wire, which is
fundamental to network storage, is older than
“networking” itself.

Fibre Channel (FC) is today a key technology for
the deployment of the modern SAN. The
explosive growth of the Internet, applications like
CRM and ERP and so on, has been supported in
part by the ability of storage to scale. However, its
adoption has not been as stellar as many had
hoped. There was even a time when people talked
about running IP over FC, but not anymore. The
deployment of SANs has not grown as fast as the
analysts had predicted. Of course, part of the
reason for this is due to socio-economic events
and downturns, but certainly not the whole reason.

With new advancements like Fast and Gigabit
Ethernet (and 10GE around the corner), as well as
new high performance wire-speed Layer 3
switching and so on, it is a good time to analyze if
Ethernet-based network storage can do the job.
However, it is not as simple, nor as easy as that. A
lot of work needs to be done and the industry
developed various technologies like iSCSI,
mFCP, iFCP, FCIP and iSNS to fill this gap [4].
The two leading core protocols are of course
Internet SCSI (iSCSI) [5] and Fibre Channel over
IP (FCIP) [6]. While they may seem to compete,

they actually meet different needs. FCIP is needed
for bridging FC-SANs over an IP-based network,
while iSCSI is more for storage over an IP
network. iSCSI is probably the leading contender
that allows the deployment of pure Ethernet-SANs
without the use of FC. However, its performance
has not been adequate. To solve this problem,
development work has shifted towards hardware
acceleration [7] like TCP/IP Offload Engines
(TOEs) and iSCSI HBAs. These new
developments are needed to push iSCSI to
comparable FC speeds. But the reality is, with all
these add-ons, what will be the difference between
a TOE-NIC and an iSCSI HBA from a FC HBA
then? TOE and iSCSI HBA manufacturers point
to the cost savings you will get by using Ethernet
switches instead of FC-based switches, and the
fact that TOEs and iSCSI HBAs will get cheaper
as adoption increases. But does that sound a little
like vapor-ware? As a result, adoption is still
rather slow. Perhaps a new solution is required.

Designing a network storage protocol is not as
straightforward as it might seem. We must
consider that the characteristics of data storage are
different from the conventional data traffic.
Furthermore, the quality of the network has
improved greatly compared to many years ago. As
such, we believe that a non-conventional approach
to solving this problem is required. In this paper,
we present precisely such a solution, a new open
source network storage protocol, which we have
named HyperSCSI [8].

HyperSCSI is designed for the transmission of
SCSI commands and data across a network in a
simple and efficient way. The current
implementation runs over an Ethernet network,
uses existing common-off-the-shelf hardware and
components and does not require any additional
customized software or expensive hardware
accelerators. This ultimately, will reduce the cost
of an overall network storage implementation. We
believe that using existing hardware and
technologies does not compromise on
performance and reliability. In this paper, we will
present key features of HyperSCSI and how it is
different from existing solutions as well as various
test results to demonstrate its capabilities.

2 Selected Key Features of HyperSCSI

HyperSCSI is a new open source network storage
protocol designed for the transmission of SCSI
commands and data across a network. To put this
in “ordinary” terms, it can allow one to connect to
and use SCSI and SCSI-based devices (like IDE,
USB, Fibre Channel) over a network as if it was
directly attached locally. This section focuses on a
few key features of the HyperSCSI protocol, and
how they differ from existing solutions.

2.1 Device Discovery Mechanisms – Using

the HyperSCSI Group Name

To identify and locate storage devices, Fibre
Channel uses the World Wide Name (WWN)
mechanism while iSCSI/FCIP/iFCP uses iSNS
[9]. Such mechanisms are complex and add
another hindrance to achieving ease of use and
even plug-and-play networking. For this purpose,
HyperSCSI uses a standard Ethernet broadcast
mechanism for device discovery but adds a Group
Name to segregate servers and clients. This allows
clients to dynamically locate targets on the
network.

If a server is configured to be in the same group
with a client, it will respond appropriately,
otherwise the device discovery request is ignored.
Thus the only configuration users have to be
concerned about is granting permissions, rather
than setting up complex name servers of some
type. This is particularly useful in a plug-and-play
wireless personal storage network environment.
This also means that there is no single point of
failure like having iSNS servers or requiring
expensive switches with additional intelligence
built-in. HyperSCSI clients will then attempt to
connect to the servers in the groups given to it,
and no other.

For example, as shown in Figure 1, Server A has 2
disks and Server B has 1 disk that can be
exported. Server A exports Disk 1 to “Group
ABC” and Disk 2 to “Group DEF”. Server B also
exports its one disk to “Group DEF”. Client X can
access Disk 1 of Server A only, since it has access
to “Group ABC”. However, Client Y being
configured to look in “Group DEF” can see both
Disk 2 on Server A as well as Disk 1 on Server B.

Groups are secured through HyperSCSI’s
authentication mechanisms. This example shows
that HyperSCSI Group Names are flexible and
easy to use.

Server A Server B

Disk 1

Disk 2

Client X Client Y

Disk 1

Group
ABC

Group
DEF

Figure 1: HyperSCSI Group Names Example

2.2 Flow Control Mechanisms

Conventional network protocols, especially
TCP/IP, transfers data in streams and use an
acknowledgement based sliding window
mechanism for flow control and packet
retransmission. This method works quite well for
the uncertain (“worst case”) network conditions,
like telephone networks. In the SCSI world
however, the host adapter initiates a connection to
a device, knows precisely the capabilities of the
device, and then applies this knowledge to a
dedicated channel. Thus, for the SCSI protocol, a
default credit-based flow control mechanism is
used. HyperSCSI adopts a moving window
mechanism but makes the window size dynamic.
A balance is provided in that the window size
does not fluctuate like TCP/IP’s sliding windows,
but can and does change dynamically in the
middle of a connection. Since clients and servers
dynamically control the window size, algorithms
for determining the window size can be adopted to
find the optimal window size during run-time,
thus adapting to network congestion. With this
flow control mechanism, HyperSCSI can perform
packet retransmission should a packet be lost and
the expected ACK frame not be received in time.
Either a selective retransmission scheme or a
simpler window retransmit scheme can be used.

This can be decided based on the implementation
environment, thus giving users a wide degree of
flexibility and performance tuning options. Figure
2 shows the different flow control mechanisms.

HyperSCSI

Data

ACK

Data

ACK

Data

ACK

Congestion
detected,

reduce
window size

Data

ACK

Data

ACK

Data

Req

Reply

IP-based protocols
(Network)

SCSI-3 (Storage)

Req

Reply

Req

Reply

Req

Reply

Data

ACK

Flow
Control
Window

Figure 2: HyperSCSI Flow Control Compared

2.3 Security - Integrated authentication and

encryption

iSCSI, iFCP and FCIP are all based on the TCP/IP
network protocol. In order to provide a secure
method for data transfer, they require the use of
IPsec for securing the TCP/IP connection.
Certainly, this is a step forward when considering
that Fibre Channel’s main security mechanism is
LUN masking [10] which is implemented mostly
on the switch. However, using IPsec adds to the
complexity of the solution and implies securing
the entire connection. This is different from the
more flexible LUN masking method that FC uses
to allow the user to secure individual LUNs as
required.

HyperSCSI on the other hand has integrated
security options to be specified by individual
devices (or LUNs) instead of at the connection
level. Of course, iSCSI for example, only supports
one LUN per connection, while HyperSCSI can
have multiple devices in a single connection.

During the connection initialization stage, the
HyperSCSI server will authenticate the client and
make a decision whether or not to export the
storage resource by using the HyperSCSI Group
Name and connection password. Once the

authentication succeeds, a security key is also
exchanged between the server and client pair.
HyperSCSI allows for security to be modularized
into different levels of requirements such as data
hashing, encryption or none at all, thereby giving
even more options to secure (or not) the device
and/or the connection. By integrating the different
security functions, HyperSCSI can provide more
efficient, flexible and secure methods for network
storage.

2.4 Reliability

As shown in Figure 3, each individual layer has its
own functions to ensure the reliability of data
transfer. The SCSI layer has its own functions to
check and ensure that SCSI data and commands
are transferred properly. TCP/IP guarantees that
the network connection is reliable, while the
Ethernet layer also has its own features to check
data correctness.

SCSI

iSCSI +
TCP/IP

Ethernet Reliability
Functions

Reliability
Functions

Reliability
Functions SCSI

HyperSCSI

Ethernet

R
el

ia
bi

lit
y

Fu
nc

tio
ns

Figure 3: HyperSCSI Reliability

IP storage protocols, like iSCSI, iFCP and FCIP,
rely solely on the TCP/IP layer for reliable data
transfer. However, HyperSCSI makes use of the
SCSI layer to ensure that SCSI data and
commands are transferred properly and the
Ethernet layer to check packet correctness. In
addition, HyperSCSI provides its own reliable
control mechanisms, such as flow control and
packet retransmission. Hence, by combining the
features of different layers, the entire system with
HyperSCSI is as reliable as one using TCP/IP
based encapsulation. However, HyperSCSI is

likely to be more efficient by working with
functions that already exist in other layers.

3 Benchmarking Tests and Performance

Analysis of HyperSCSI

Based on our designs and protocol specifications
[11], we implemented the HyperSCSI protocol on
the Linux platform to see if our designs work as
intended. While the reliable transfer of data over
HyperSCSI is certainly verifiable, we are also
very much concerned if it will perform as
designed. As such, we ran a battery of tests and
benchmarks over both Fast and Gigabit Ethernet
to see if it can respond to the challenge. The
results so far prove to be most encouraging.

3.1 Description of the test environment

For our test environment, we set up a HyperSCSI
client and a server (or often called initiator and
target in the storage world) connected by a
network switch. Both the client and server run
RedHat Linux 7.1 using the standard Linux kernel
version 2.4.16 with the Linux Second Extended
Filesystem (ext2). The HyperSCSI server contains
an Adaptec 39160 Ultra160 SCSI controller
attached to eight Seagate ST318406 LC Cheetah
18GB 10000 RPM SCSI drives. The version of
HyperSCSI code we ran was 20020725. We used
the hdparm, dd, file copy (cp), iozone, bonnie++
and sar programs as benchmarking tools. The
Iozone version used was 3.71, while the bonnie++
version was 1.02a. For tests involving copy/read
from disk, the destination (copy to) used was
/dev/null. Figure 4, shows a picture of our GE test
environment. All our results are obtained by
averaging the output from running the same test
five times.

Figure 4: HyperSCSI GE Test Environment

3.2 HyperSCSI over Fast Ethernet

Our first test is to investigate if HyperSCSI can
fully utilize a simple channel, like Fast Ethernet
efficiently. The results of this test shows that even
Fast Ethernet can provide network storage,
although not at the kind of speeds that Fibre
Channel is used to.

In this test, both the HyperSCSI server and client
use an Intel Pentium III 1GHz CPU, 32bit 33MHz
PCI bus, 256MB 133MHz SDRAM. The Network
Interface Card (NIC) used is a 3Com 3C905B-
TXNM card and the switch is Cisco Catalyst 3500
XL with 24 ports for 10/100 Fast Ethernet.

12.11 12.12

0.00

2.00

4.00

6.00

8.00

10.00

12.00

M
B

/s

dd cp

HS FE-UNI-SINGLE

Figure 5: HyperSCSI Fast Ethernet
Performance

There are two kinds of test results shown in
Figure 5, dd and cp. For the dd test, the data set
chosen is 1GB of raw data while for cp test, the
file used is a large MPEG file of size 616137020
Bytes. By using large data sets, we hope to
minimize or eliminate the effects of local cache on
the test results. The maximum Ethernet frame size
is 1500 Bytes. Using the HyperSCSI protocol, the
user data transfer rate reaches up to 12.11 MB/sec.

In order to understand the channel utilization, we
can conduct a theoretical calculation. From the
Ethernet standard [12], one frame contains an 8-
byte preamble, a 14-byte header, a 4-byte CRC, a
12-byte inter-frame gap and 1500 bytes of data.

With the HyperSCSI protocol, every packet has a
3-byte HyperSCSI header. Thus the ratio of the
bandwidth available for HyperSCSI user data is
1497 out of 1538. Considering the channel
bandwidth is 100Mbit/sec, the theoretical
boundary for HyperSCSI is 12.16 MB/sec.

However, in actual implementations, various
overheads need to be factored in. This includes
the protocol overhead, SCSI block data that may
not always be fragmented into a full Ethernet
frame size and so on. But as our measured results
are quite close to the theoretical limits, we believe
that HyperSCSI is indeed quite efficient, from
both theoretical calculations and actual
measurement.

3.3 HyperSCSI over Gigabit Ethernet

We then conducted our benchmark tests on
Gigabit Ethernet. Both the HyperSCSI server and
client use an AMD 1.2GHz Athlon dual CPU (but
working in uni-processor mode), 64bit 33MHz
PCI bus, 256MB 266MHz DDR RAM. The
Network Interface Card (NIC) is a Syskonnect
SK-9843 GE-SX and the switch is Extreme
Summit 5i Model 11503 with 16 1000BaseSX
port. The Ethernet frame size is 1500 bytes.

0.00

10.00

20.00

30.00

40.00

50.00

M
B

/s

hdparm dd cp

HS GE-UNI-SINGLELocal Disk HyperSCSI

99.84%
of local

disk

98.97%
of local

disk

99.81%
of local

disk

Figure 6: HyperSCSI Gigabit Ethernet

Performance

3.5 Performance Comparisons From Figure 6, we can see that HyperSCSI is able
to achieve almost the same performance accessing
the disk over the network from the client as
compared to accessing the same disk locally on
the server itself. This is an interesting observation
and shows that when the storage bandwidth is less
than the network bandwidth, and CPU processing
power is enough, the HyperSCSI client machine
may not see any difference between accessing a
network storage device, and its own local disk.

Every experiment needs a control. Otherwise, it
would be impossible to ascertain if results
obtained were influenced by other factors. We
chose to use the iSCSI and NFS protocols as a
form of control for us to understand our own
benchmark results. For these tests, we
downloaded and compiled Intel’s iSCSI version 8
code and used NFS version 2 over UDP from the
standard RedHat Linux RPM version 0.3.1-5.

3.4 Top Performance of HyperSCSI with
RAID and GE Jumbo Frames

3.5.1 Disk Access Efficiency

Earlier in section 3.3, we measured HyperSCSI’s
ability to meet the same performance as the local
disk. Wanting to see if this can also be done with
the other protocols, we re-ran the same tests with
the iSCSI and NFS.

In order to view the highest performance of
HyperSCSI protocol, we configure the HyperSCSI
server to export 8 SCSI disks to client, and build
software RAID0 on the client machine. We ran
the test using both normal and Jumbo frames
(9000 Bytes) on Gigabit Ethernet. The result is
shown in Figure 7.

 HyperSCSI iSCSI
dd test 98.97% 79.01%

67
.2

4 89
.2

0

77
.6

3 10
1.

03

76
.7

3 10
0.

91

0.00

20.00

40.00

60.00

80.00

100.00

120.00

M
B

/s

hdparm dd cp

HS GE vs GEJHS-GE HS-GEJ

 HyperSCSI iSCSI NFS
cp test 99.81% 60.40% 49.25%

Table 1: Comparison to Local Disk
Performance

In Table 1, we present the performance results of
NFS, iSCSI and HyperSCSI as a percentage of
local disk access. Naturally, NFS is a file-sharing
protocol, and we do not run block-level dd tests
on it. The results show that HyperSCSI is more
efficient at exporting a local disk over a network
than either iSCSI or NFS in the same
environment. This is true for both block and file
level access. Figure 7: GE and GE Jumbo Performance

3.5.2 IRQ Comparison We can see that the benchmark results of both dd

and cp are larger than 100MB/sec. This is
significant value that indicates that existing 1
Gigabit Ethernet can achieve the same or better
performance when compared to 1 Gigabit Fibre
Channel. This shows that a high performance
Ethernet storage network is possible without
needing to resort to special hardware or software.
Results from the hdparm test do not reach
100MB/s because hdparm only uses a 64MB data
set, which is insufficient to measure sustained data
transfer throughput at high speeds.

A common question regarding iSCSI has been the
additional overhead imposed by the TCP/IP stack.
This is also manifested as the Interrupt Requests
(IRQs) generated by the NICs, a point that FC
HBAs, TOEs and iSCSI HBAs are also designed
to address as well. While some new Ethernet
NICs have advanced Interrupt Coalescing
capabilities, it is still worthwhile to measure and
quantify the impact of IRQs on data transfers.

 iSCSI HyperSCSI
Total number
of IRQs 199627.4 170307.2

3.6 HyperSCSI Performance in a Mixed
Traffic Environment

One of the reasons to adopt an Ethernet-based
network storage solution is to consolidate
hardware resources. If one can use the same NIC
card for both LAN and SAN access, it would
represent cost savings, provided the users
understood the potential impact on performance it
would entail.

Table 2: IRQs Generated for 1GB of Data

The results in Table 2 were obtained by using sar
to measure the number of interrupts generated by
the client NIC during a dd transfer of 1GB of data
over GE Jumbo Frames. While MB/sec
throughput numbers may tell the speed of the
transfer, these results show that regardless of the
time taken, iSCSI generates 17.22% more IRQs
than HyperSCSI to transfer the same amount of
data. This proves that HyperSCSI does reduce the
IRQ overhead in a system.

To assist users in making such decisions, we
decided to run some tests to understand the impact
and performance on a HyperSCSI client should
the client also have other network traffic being
sent to it. This is important because most clients
are expected to be application servers of some
type, accessing the SAN. As such, they will more
than likely have other network communications
being sent to it.

3.5.3 File Access Performance Comparison

In the end, many choose to just focus on whether
or not a technology (like HyperSCSI) can provide
better performance in the same environment.

These tests were conducted using a Fluke Link
Analyzer to generate fixed amounts of traffic to
the client machine. The packets generated were
512-Byte frames to simulate other types of
protocols and short messages. By varying the load
sent by the Link Analyzer in a linear fashion
(10%, 20%, 30%, onwards), we were able to
gauge the impact of different network loads
together with HyperSCSI in the same

As can be seen from Figure 8, HyperSCSI is able
to consistently provide higher performance for
both reads and writes at the file system level when
compared to iSCSI and NFS in the same
environment.

0
50

10
0

15
0

M
B

/s

Benchmark - cp Write (MB/s) Rewrite (MB/s) Read (MB/s) Reread (MB/s)

File Performance NFS
iSCSI
HyperSCSI

GE-JUMBO-UNI-RAID0

Iozone Iozone Iozone Iozone

Figure 8: File Access Performance Comparison

environment. We conducted this experiment with
both normal and Jumbo Frames.

For Jumbo Frames however, the total channel
utilization with HyperSCSI reaches close to 100%
much faster than normal frames. Again, we
suspect this is due to the NIC processing
overhead, which is less for GE Jumbo than for
normal frames. These results are presented in
Figure 10.

Mixed Traffic Performance and
Utilization

Additional
Traffic

HyperSCSI -
Normal
Frames

0
50

10
0

15
0

0% 10% 20% 30% 40% 50% 60% 70%

Network Loading

M
B

/s

Figure 9: Mixed Traffic Utilization - Normal
Frame

On the whole, HyperSCSI can adapt to meet
changing or diverse network load conditions and
still provide reliable network storage data transfer.

4 Discussion and Conclusion

In the introduction of this paper, we looked back
and understood that network storage is in fact not
really a new idea. Neither are SCSI, Ethernet and
TCP/IP. But why reminisce? Looking back in
history shows us that in fact, the primary drivers
for growth in both economic and technical terms
has been very simply - “Can I do more for less?”
If we understand this very important point, then
all other predictions on trends and evaluations on
technologies can be put into its proper focus.

The results in Figure 9 show that for normal
Ethernet frames, when the network load is light,
HyperSCSI traffic cannot use all remaining
available bandwidth. This is likely due to the
Gigabit NIC processing overhead on the
HyperSCSI machine, therefore the total channel
utilization is not full. Only when the network load
increases to a certain amount, does the total
channel utilization reach close to 100%.

Also in the introduction, we covered how users
were not completely satisfied with Fibre Channel
and iSCSI-type solutions. Whether it was
complexity or cost, the adoption has just not been
as strong as forecasted [13]. Do users really get
more for less? The naysayers therefore, point to
the possibility that Ethernet can’t really do
storage.

Mixed Traffic Performance
and Utilization

Additional
Traffic

HyperSCSI -
Jumbo Frames

(9KB)

0
50

10
0

15
0

0% 10% 20% 30% 40% 50%

Network Loading

M
B

/s

Figure 10: Mixed Traffic Utilization - Jumbo
Frames

However, in the rest of this paper, we tried to
illustrate a new solution called HyperSCSI, which
attempts to truly give users more for less. It is not
over-engineered, is simple in concept, does not
require special hardware or customized software
and manages to provide a reasonable level of
performance.

Can people really get more for less? We believe
the answer is an unqualified yes. However, as we
outlined in the beginning of this paper, doing so
requires us to change our mindsets.

For example, if TCP/IP is really the bottleneck for
storage over Ethernet, then why use it? Do we
really need it? Of course, for certain wide-area

connectivity applications, like disaster recovery
and so on, a solution like iSCSI is quite a good
idea [1][14]. Some long distance tests were
successfully conducted, demonstrating iSCSI
storage between Israel and California [15]. But in
fact, most SAN implementations are not for use in
wide-area long-distance applications. If it were,
FC would have already died out by now since FC
is itself also a local-area networking technology
that needs something like FCIP to bridge the
router divide. Eliminating TCP/IP would
eliminate the need for hardware accelerators while
still achieving high performance Ethernet-SANs.
A nice side effect of eliminating TCP/IP is that
the disk array providing Ethernet-SAN can’t be
hacked from the Internet.

Furthermore, HyperSCSI gives rise to entirely
new applications and markets. For example,
HyperSCSI runs quite well on wireless LAN, thus
allowing the development of a wireless HDD or
CDRW for your laptop instead of through USB or
Firewire. Or how about watching a movie on a
webpad from the patio by directly accessing the
DVD player in your living room wirelessly? With
such new developments, it’s no wonder that there
is a renewed sense of optimism for the network
storage industry.

No, we believe that Ethernet storage is not coming
– it’s already here. And yes, you will get more for
less.

Figure 11: HyperSCSI Demonstration Environment for Ethernet-SAN and wireless storage

References

[1] Prasenjit Sarkar, Kaladhar Voruganti, “IP Storage: The Challenge Ahead”, 10th Goddard

Conference on Mass Storage Systems and Technologies and 19th IEEE Symposium on Mass storage
System. Page(s): 35-42

[2] Robert Horst, “IP Storage and CPU Consumption Myth”, 2001 IEEE International Symposium on

Network Computing and Applications. Page(s): 194-200

[3] Huseyin Simitch, Chris Malakapalli, Vamsi Gunturu, “Evaluation of SCSI Over TCP/IP and SCSI

Over Fibre Channel Connections”, Hot Interconnects 9, 2001. Page(s): 87-91

[4] Patrick B. T. Khoo, Wilson Y. H. Wang, “ Introducing A Flexible Data Transport Protocol for

Network Storage Applications”, 10th Goddard Conference on Mass Storage Systems and
Technologies and 19th IEEE Symposium on Mass storage System. Page(s): 241-257

[5] IPS Working Group Internet Engineering Task Force, “iSCSI Internet Draft”, September 2002

[6] IPS Working Group Internet Engineering Task Force, “Fibre Channel over TCP/IP (FCIP) Internet

Draft”, August 2002

[7] Jeffrey S. Chase, Andrew J. Gallatin and Kenneth G. Yocum, “End System Optimisations for High-

Speed TCP”, IEEE Communications Magazine, April 2001

[8] HyperSCSI Project Home Page, http://nst.dsi.a-star.edu.sg/mcsa/hyperscsi/

[9] IPS Working Group Internet Engineering Task Force, “Internet Storage Name Service Internet

Draft”, August 2002

[10] John Vacca, “The Basics of SAN Security - Part II”, Enterprise Storage Forum, July 25, 2002,

http://www.enterprisestorageforum.com/sans/features/article

[11] “HyperSCSI Protocol Specification”, MCSA, Data Storage Institute, Singapore. http://nst.dsi.a-

star.edu.sg/mcsa/hyperscsi/docs.html

[12] Mitchell L. Loeb, et.al, “Gigabit Ethernet PCI Adapter Performance”, IEEE Network, Volume: 15

Issue: 2, March-April 2001 Page(s): 42-47

[13] Todd Spangler, “iSCSI in Exile”, Byte and Switch news, Aug. 14, 2002.

http://www.byteandswitch.com

[14] Roy Levine, “IP-based Storage: Benefits and Challenges”, Infostor, March 2001

[15] “First successful continent-to-continent iSCSI demonstration”, IIS news, Feb. 12, 2002.

http://www.iislf.com/

	Introduction
	Selected Key Features of HyperSCSI
	Device Discovery Mechanisms – Using the HyperSCSI
	Flow Control Mechanisms
	Security - Integrated authentication and encryption
	Reliability

	Benchmarking Tests and Performance Analysis of HyperSCSI
	Description of the test environment
	HyperSCSI over Fast Ethernet
	HyperSCSI over Gigabit Ethernet
	Top Performance of HyperSCSI with RAID and GE Jumbo Frames
	Performance Comparisons
	Disk Access Efficiency
	IRQ Comparison
	File Access Performance Comparison

	HyperSCSI Performance in a Mixed Traffic Environment

	Discussion and Conclusion

