Eigl

Qplus-P Target Builder User’s Guide

Version 1.1

2002/10/1

Woochul Kang(wchkang@etri.re.kr)

Heechul Yun(hcyun@etri.re.kr)

&, ETRI
Vo SRSl

Contents

ABOUT THISDOCUMENT ..ottt 5
1. INTRODUCTION TO TARGET BUILDERcociiieeereeeene et 5
11 INSTALLATION .ttt tuteesuteesuteesureesteesuseesuteessseesaseesabeesaseesabeesaseesabessaseesasessabeesaseesabeesanessnseesnneesns 5
12 RUNNING TARGET BUILDERcuttiitiiiitttesieeenieeesiteesieeesieeesieeesseeesseesssseesssesssseesssesssseesnsesssneas 8
1.3. CREATING A NEW PROUJECT ...eeteeeesueesseesseesseeseesseaseessesssesssesssesssesnsesssssesssessseensessseessesssessanns 8
14. USER INTERFACE OF TARGET BUILDERvtiiiiiiiiiiieiee sttt 11
14.1. (@0]g 1T [N 1Kol N I £ = TSR 12
14.2. BasiC OpPtiON PrOPErtiES........coueeeeeeee ettt sttt ettt ee s e e et esesbesaeseesee e eneeseeaesaeeeesneeeas 16
143. Extended Option ProPertiESo oottt sttt e e ne e saeeeas 17

15. TNV N[I 7Y o 18
151 SAV....c e e e e e Rt ae e e e e et ee R ee e R e e e e e e e e e e s 18
152 SAVE @S ANA LOAM.........cuiiiiie e s 18

1.6. SEARCH. ..ttt ettrte sttt s e e et 19
1.6.1. SEACN SYMDOIS (AIHFS) oo ees e ee s see e ee e seeee s seseese 19
1.6.2. SEAICN NI ..ot e e s e e s e eees e 20
16.3. Lo, (o LTSRS 20

1.7. DEPENDENCYtttittteitte ettt stie sttt sttt e st e sttt e saee e sabeesaaeesab e e s aae e sabeesaseesabeeenseesabeesneesnbeesnennnee 20
1.7.1 Logical expression Of dePendENCIES.ccoeieririererieeeeeee ettt e ettt see e se e e e e eseeneeeas 20
1.7.2. (D= o= a0 (< o Tox YAV T] = 1o o USSR 21

18. BUILD ittt bbbt bbb e ae et e nae e nes 21

2. TARGET IMAGE GENERATION......cciiiieisereeene e s s nne e 23
2.1, KERNEL AND PACKAGE CONFIGURATIONuciiutiieeesseeteeseesseessessseesseesssessssnssssssssessseessennses 23
2.2. NETWORK CONFIGURATIONeuttiteesueeseeeseeaerssessseesseesseessesssessssssesssesssnesssensesssssesssesssesssens 23
2.3. LIBRARY OPTIMIZATIONueeuttsueeseeesueeseeesseassssesseesseesseessesssesssssssssessssesssensesnssssesssesssenssens 24
24, BUILD ittt ettt b et be e b e ae e b e ne e e 25
241 =T T] Lo Y ST S PRSP SUSTTSON 26

3. DEPLOYMENT TO TARGET (I386/GENERIC)..coovireirireirerreensreeresreesesree s 28
3.1. HOST REQUIREMENT ...t vevteeteee et sseeseessanesesseesasssenssessessasssenssessessasasensssssensasasensssssessssesensans 28
3.2. MAKING ETHERBOOT BOOT FLOPPY DISK ...viiiuteeitreesieeestreesneesureessessssessssesssessssessssessnsessnne 29

When target system boots using etherboot disk, it displays MAC address of the network card. You have to

2 ETRI Proprietary -2-

remember it, because it will be used later for dncpd configuration which will be explained in the next chapter.29

3.3 MAKING ETHERBOOT BOOTABLE CD-ROMccciiiieiieiieie e see e see e e 29
3.4. HOST SYSTEM CONFIGURATION FOR ETHERBOOTvvviittieniieesireesireesireeseeesiressseessressneesane 29
34.1. Configuration Of DHCPDc.ciiiiiiieeeeeeie et a e e b sae st e e e e neesesbesaeseees 29
34.2. Configuration Of TFETP dABMONoouiieeieeete e et e e e e 30
343. Configuration Of NS SEIVEYcuiiieeeeeeee ettt st ae et e et ne b e ae e s 30
3.5. DEPLOYMENT WITH INITRD ROOT FILESYSTEM ...vvteiiiieiireenieeesireeseeesireessessaressseesaressnseesane 31
3.6. DEPLOYMENTWITH NS ... st eneennee s 32
3.7. INSTALLING TO THE HARD DISK OF TARGET SYSTEMuttiiiiesieessieesreessieesresssseesresssseesnens 34
3.7.1 update method after INSEAHIEHTONc.ooeeeee et 35
4. DEPLOYMENT TO TARGET (ARM/ZAURUS) ..ottt 36
5. DEPLOYMENT TO TARGET (ARM/IPAQ) .ottt 37
6. DEPLOYMENT TO TARGET (ARM/SAM SUNG SDMK2400)cceovreerienieenienieresiesieeseeneene 38
6.1. BOOT LOADER ...ttt ettt ettt sttt sttt st st e st sa e s ane e st e e s beesabeesneesnbeesneennn 38
6.1.1. RUNNing NEtDO0t FIOM RAM ...ttt s a et e e e e e eeeseas 38
6.1.2. Running netboot from flash (Programming flash memory for new boot loader)ccccceeeerennee. 40
6.2. DEPLOY WITH INITRD ROOT ..vttittieitteesieeesireesseeessreesseeesssessseesssesssessnsessnsesssessnsessnsessnsessnne 41
6.3. DEPLOY WITH NFS ROOTccutiitieiteesieesteeseeeesseesseesseesseessesssesnesssesssesssnesssensssnsessssssesssenssens 45
6.4. SETTING UPHOST SERVER SERVICES......ccutettesteeseesseesseesseesseesseanssssssssssssesssesssesssesssesnessseesees 49
7. ADDINGA CUSTOMEAPPLICATIONSTO YOUR PROJECTcccocviiririeeiieeeeeie e 50
7.1. MERGING YOUR FILES TO THE TARGET IMAGEvvteiieeitteesteesireesneesireessessanesssesssressnsessnne 50
7.2. ADDING A PACKAGE INTO TARGET BUILDERttiiitiiiiiiiiieeiee st siee e saee s 51
7.2.1. CompPONENtS Of A PACKAGEevereeieeeeeee ettt ae e st e ae e e e e e neenesbesaeseees 51
7.22. Creating @QPD Fil..... ottt nee e 51
7.23. Registration of SRPM and QPD ilcoeiiiiieiei et 59
7.24. L= 001 o] = SRS 59
8. USINGATARGER BUILER ON TERMINAL ENVIRONMENTcccoiiiiiiirinieieeeeee e 64
8.1. PROJECT CREATION ... tteutteuteeseesseeseeesteeseeesseessesseesseesseesseessenssessssssessseessnesseensesnsessssssenssenssens 64
8.2. SYSTEM CONFIGURATION ...eeiueriuerieeeseeesseesseesseeseesseesseesseessnesssesssessessssssesssesssesssesssesnsesessses 65
8.2.1. (407 0 0ol o1 1o [OOSR 66
8.2.2. DL(e o] 11 { [TSRS 67
8.3. TARGET IMAGE GENERATIONeuttiutesteesteesteesseesseenesssesssesssesssesssesssessessesssssseesseessesssesnsenns 68
8.4. TARGET DELOYMENT ...ttttiteestttesteesitee st st e sieeesibeesaseesabessaseesabeesaneesabeesaseesnseesaseesnseesnneesn 69
£ ETRI Proprietary -3-

= ETRI Proprietary

About This Document

Qplus-P is ETRI's embedded Linux solution for internet appliances such as PDA, Digitd TV
setopbox and webpad. Target Builder is a development toolkit for Qplus-P.
This document describes embedded system development procedures using Qplus-P/Target Builder.

1. Introduction to Target Builder

Target Builder is an embedded Linux development toolkit tightly coupled with ETRI Qplus-P . It
provides many features for developers to build embedded Linux system. These features include
configuration, dependency checking, conflict resolution, project management and deployment support to
the target system. Using Target Builder, developers can make fully functional operating system very
easily and quickly.

Main features of Target Builder are as fellow.

= User friendly GUI interface

= CML2-based Integrated configuration system (kernel, applications and system environment)
= Automatic dependency checking and Conflict resolution

= Library optimization

= Fine-grain control of system; file-list, compile option, and more

= Various deployment methods support

= Foot-print reporting

= On-line help

= Project & configuration management

This chapter describes brief introduction and usage of Target Builder.

1.1. Installation

This section describes (un)installation procedures of Qplus-P/Target Builder.

System Requirement

- Linux distribution of development host :
B RedHat7.0,7.1,7.2

® WowLinux 7.1 (Korean)

2 ETRI Proprietary -5-

W Other distribution also may work but not tested.

- Required Host Services

m DHCP
m TFTP
®NFS

Installation procedure

You should have following list of files via CD or downloading from our ftp site. For gp-bsp-* and

gp-devels-* packages, you may want to download only needed files that match with your target board.

Currently 4 BSPin x86 and arm architecture are provided.

README

install._sh

qp-tb-2.0-280902.1386. rpm
qp-packages-1.0-280902. 1386. rpm
qp-bsp-arm-Zaurus-1.0-280902. i386. rpm
qp-bsp-arm-i1PAQ-1.0-280902. i386. rpm
qp-bsp-arm-s3c2400-1.0-280902. 1386. rpm

qp-bsp-1386-generic-1.0-280902. 1386. rpm

qp-bsp-i1386-etri-hestia2-1.0-280902. 1386. rpm

qp-tools.tar
gp-devels-arm.tar

qp-devels-i386.tar

this file

install script
Target Builder
package QPD and srpm
BSP for Zaurus

BSP for iPAQ

BSP for SMDK2400

BSP for generic x86
BSP for ETRI hestia2
python2.2,

header and doc for arm

header and doc for 1386

Actual installation procedure are performed viainstall.sh script as you can seein Figurel

= ETRI Proprietary

B heyun&hoyun. Shoome ey mnTmp) ...I.I:IIJH

[rootehcyan gplusp-2.0]8 r'irrstnll sh

olus-F Toarget Bullder im‘.lIrEtullntim Progranm

1] Instoll
21 undrstall

= |

Instolling B5Fs
| E... s EH e S ERH RS S RHHH TR RESEHANNER [100%]

It op=bsp=0rre=s3c2400 HUBHHEEEERHH USSR HHH RN EESHHRH RN R E SR HAHHNE [100%]
Instolling Packoges

e E.. HHHHHESSHHHHHH S RRHHH BB SR NS0 H [100%]
B 'J:"DIHIJ;ES HHHREEEERHHHHRE RN TR S SRR RS EH R [100%]

Instolling Developmenst Fockoges

SZH| £... HHHHHESSHHHHHBE RS RRHUHEHEE SRR HHH S RB00HHYE [100%]

[
1 : gp—gd-armdevel HUBHHEEEEHUUHHNE RSN R SRR B SRR [
Z2:gpglib-ormdevel HHHHHESSHUHH SRR H U BB SRR S BB [
J:gegik+—ormdeve] HHHHHBEEHHHHHHEESEHHHHH RS EHHHH IR ESERRRIH [
1:op-1ib jpeg-ormdavel HHRHAEEEHHHAHAREEEHHAH AR SHHAH AR ESRHANANR [
£:gp-1ibpng-armdevel HUBHEESEEHH U RS EHHHH R SRHR NN RESRHHH 0N [
b:op-libtiff-ormdevel HUHHHEEEHHUHHHN RS H NN S E RN B R R [S4%]
T:gpreur ses—a mdeve] HHHHHHSSHEHH NS RN RS S HH R B SR H Y E

[
[
[

B:op—top_wroppers—ormcevel i HHHESEHHHHRRESSEHHHHHRES SHHHRRRRESERINANE [72%]
O op—t irye—ormdewal HHHHRESEHHHHHHEESEANHHHHEESHUNH IS SEHUNNIR [B1%]
10:op=utempter=-armdevel HHEHEESERHHHHAREEEHHNHAREESHHNHARBESEHNHARE [90%]

11:gp-zlib-ormdevel BELLEEEEERELEEEEEERELEEBEEERELEERLEEER L EENE
Instolling reguired pockoges for Torget Budlder

pyther si7Ii7F &A=eA 2% et
| .. HHHHAESEHHHHHREESEHHHHHR S SRAAHHHRESERHHARR [100%]

i: |:i=|tl'-:n2 HuHHHESSHHHHHREESERNHHR G S RHHHR IR ESRRHARNY [S0%]
2ipythonZ-tkinter Hipnasesaidtiness sl H e SRRNHER R =S HHNAE [100%]
w-Bose B 7| x|7F @A = X WE-lcr
—.—'='| =.. HHHHHESEHHHHHHEESEHHHHHHEE S HUNH RS ERNH NS [100%]
u&qﬂ:.rs HHHHESEHHHHH RS RANH RS SRUN TS ERUN T [100%]
w;n: o 7| =7t A HA x| Wguck
S| F.. Hipndgesaidunessspiiinas s RuHd RS0 HNAEE [100%]
]+ updGTK HHHHBSES U NN S S S R = S [100%]
hon 7| x|7F @xlHe S| gy ck
—E— s HHHREEEEHHHHHREEERAH TS SRR RS EHR I [100%]
1 2 w=Python HifHhesSEHHHH R e EHH UGS S RN TR ESRRHARIY [100%]
Ir'rstnllihg Torget Bullder
| =.. HHHHHESHH RS RN R SR S 2B [100%]
I: l:p—rFl"'l HHHHHESSHHHHHHESRRHHHHHEESRUNH RSB0 [100%]
ini] [HHHREEEEHHHHHREEERAH TR S SRR RS EH R [100%]
I:gp-th s EH e S B R RS SR HHH T RESEHANNER [100%]

Successfully installed. ..
[hoyurahcyun tep))
A 1l3d 12]

1
s

l

Figure 1. Installation

NOTICE: If your host system has python 2.1 installed, it’'s recommend to run install.sh after
uninstalling python 2.1. Target Builder needs python 2.2

2 ETRI Proprietary -7-

Directory structure after installation

Directory structure after installation should be like Figure 2.

fopt/g+estof—hbsp
— packages

te

Figure 2. Directory structure

‘bsp’ directory contains architecture and board specific kernel, deployment tools and precompiled
packages.
‘packages’ directory contains source rpm files and QPD (Qplus Package Descriptor) files.

‘tc’ directory contains main Target Builder executables and common support programs.

1.2. Running Target Builder

Changing to ‘root’ privilege

To run Target Builder root permission is required. If you did not login asroot, login as root using ‘ su’
command.

su -

Running Target Builder

tb (or /opt/gt+esto/tc/bin/tb)

1.3. Creating a new project

Thefirst time you launch Target Builder, the following screen displays.

2 ETRI Proprietary -8-

Each project covers creating entire system for each board. To create a new project you must select

proper architecture and specific board name for your target. Do following in the menu.

Project > New

In the following windows, you should specify project directory. After then, press‘Next’ button.

2 ETRI Proprietary -9-

E < New Project > Project Direch =10 x|

Project Mame |pr|:|j.ini

Directory Mame ||.*r|:.|:.t.meje|:t2 |g

Fresy [[=F Cancel

In the following window, specify Qplus-P install directory. Currently Qplus-P install directory is fixed at
/opt/g+esto , sojust press ‘Next’ button.

E < New Project > Qplus Directo =10 x|

Qplus Directary |||’|:|pt-’q+est|:| | g

Target Directory |fr|:| otProjectzitarget

Fackage Direct: |fr|:| otProjectz/packages

Prey [[=F Cancel

Qplus Directory: Qplusg/Target Builder install directory.

2 ETRI Proprietary -10-

Target Directory: Generated target system image (kernel, root filesystem) is stored here. In other words,
you can see everything that will be loaded on your target.
Package Directory: source rpm and its QPD descriptor for all packages provided by Qplus-P.

You must select target architecture and specific board name of your target.

B < New Project > Architecture =101 x|

Atchitecture |i385

[~ =

Board |generi|:

Prey Finish Cancel

Architecture: Select target architecture. Currently only arm and i386 are provided

Boar d: Select specific board name of your target.

List of itemsin this window may be different as your BSP installation.

If you found proper item, press ‘Finish’ button. Then Target Builder will create project directory for your
target.

Notice: It can takesup to several minutes. Please wait for awhile.

1.4. User Interfaceof Target Builder

Figure 3 isinitial window after project isloaded.

2 ETRI Proprietary -11-

s Taina Buieles. Prajects fooPesing Vo inl. Arohe'sim. TeaidsTowms O =

Fils dasgpimn Sulim Tomr Fiogsn Hedp J
SH W g e
B v et .
g J Lings Kpes Confipasion Sydes s panialioners le {’ BaSIC
[GpidEe Croll guiakas Promp ideage E".-:"'""":b".-"'!"‘"“"“" .
/ B 2] Tamgest Cawligaration Tops I-n,,.-.-., Optlon
L | . .
Configuration 7/ A — information
Tree Frirdin [r—r—
B anmand |'-'l|."\|w1

el ol b g - Targel Deldai

i mer Tasgel Bk ' pu o6 BEe wErEre g imsge wian EXtended
Ak And s, v isppor] variaus egel miorslion eechers e fan e b
O gl SRl P Gsnily ™

option
aarerE gracecur o lbr bekra poo cen oo el feae dep aidh Ba foel
i et 4| information
el | ruu:ll Dnperebenz s
1 Buildlog

s Losy | Eodmiet Aud Ly |

Figure 3. Project loaded window

Developers can navigate and click the configuration tree. Various property information are shown in right

side of the window. When (s)he start to build the system, build log will be displayed in the bottom box.

14.1. Configuration Tree

In Target Builder all configurable options are provided in single configuration tree. That includes kernel,
applications, board specific options, etc.
Developer can configure his/her target system through navigating this tree.

Tree structure

CiplusP Configuration Configuration tree three major parts:
(1 Linux Kernel Configuration System
[System Configuration
(1 Target Configuration

kernel configuration, system configuration, and
target. Configuration. Kernel configuration part
has similar structure with norma Linux
configuration and system part has options regarding to application packages. Target part is for target
specific options such as network address and booting method. Each part will be explained in following
sections.

2 ETRI Proprietary -12-

1. Linux Kernel Configuration System

R Linux Kermel Configuration Syster
Processor type [ARM processors}

Type of system {On-hoard hardware only.}

[+

[Configuration policy options

[+

3 Architecture-independent feature selections

H

[&R processor options

[+

[System buses and controller types

[+

[Power management
1 USE Device Support
[architecture- specific hardware hacks

HH M

1 Memory Technology Device (MTDY support
[Block devices

[Metworking options

1 Sound, ham radia, and telephony

] Character devices

1 File Systems

[Kernel hacking

O I I

Linux kernel configuration section is based on Eric Raymond’s CML2 rules file of standard Linux

distribution.

2. System Configuration

2 ETRI Proprietary -13-

= System Configuration
H] Basic fetc files (inittak, fstab, rcd)
[applications
] Development
=3 System Environment
=3
83 alternative Linus ety
B busyhox
1 busyhox m
B deviiles
83 erfzprogs
63 initscripts
8 mailcap
&l pcmeiacs
i setup
&3 directary skeletan
23 tinylagin
1 tinylogin menu
] Daemans
1 Kernel
[Libraries
[Usger Interface

Indicates the package is
selected

Indicates the package is
not selected

You can configure entire system applications and libraries provided by Qplus-P in the ‘System
Configuration’ section. Each package is categorized based on its group.

Icons of each package shows whether it is selected or not. B meansit's selected and %@ means
it's not selected. Each package can have sub configurations. For example, ‘busybox menu’ is submenu of
‘busybox’ package. Unlike packages (deb or rpm) in normal Linux distribution such as Redhat or Debian,

package in Qplus-p can be configured more finely through the submenu.

Notice::

Submenu of each package is only displayed when the package is selected.

3. Target Configuration
| Target Configuration
[Target Network Configuration
[Libraries Optimization Configuration
(1 Boot & Installation method Configuration

2 ETRI Proprietary -14-

Target Configuration deals with target specific information such as network address and deployment

method.

Set value of each option

Point an item that you want to configure and press right button of your mouse. Then you can see a

popup menu. Contents of popup menu will be different with the value type of the item.

#] Adeviusb/hiddey raw HID device support
| USE HIDEF Keyboard (basic) sups
: Enable
H] USE HIDEP Maouse (hasic) suppc _
#] Wacom Intuos/Graphire tablet sug Ehable I leleelilE
#] USB Scanner support Disable
#] USB kodak DiC- 2w Camera support

In the case of BOOL type, you can select “Enable” or "Disable” . For TRIT type(modulable kernel
option), you also can select “Enable in Module”. For other types (CHOICE, STRING DECIMAL,
HEXA), adialog box will be launched to set proper values of each type.

You can see the type and value of each item through icon.
dl : BOOL or TRIT type and Enabled.
%] . BOOL or TRIT type and Disabled

a . TRIT type and Enabled in M odule
i Broadeast address {123.254.180.255} - Other types (Not bool or trit type). Values is

displayedinside ‘{ }’

Incremental disclosure of hidden items

Target Builder shows options incrementally. It means that you can start configuration from small set of
options and when you enable an option related options, Target Builder show related options that you just

enabled.

2 ETRI Proprietary -15-

=3 Base =1 C3 Base
8 alternative Linux getty 80 alternative Linux getty
B busybox e busybox
(1 busyhox menu 1 busybox menu
) devfiles eg deviiles
[devfiles menu (] devfiles menu
D setup B setup
£g directory skeleton ;
g1 tinylagin 1] tinylogin
=} i3l Daemons M =1 3 tinylagin menu
B partmap (1 tinylogin features
ED tcpwrapper 7] include fbinfadduser
£ xinetd #] include addgroup
(1 inetd menu #] include deluser
=i Kemel #] include delgroup
£ modutils _)

[madutils menu
[Libraries

In the above picture, submenus of tinylogin package is only shown when the package is enabled.

14.2. Basic Option Properties

Fiu Mawigalon Euid Tools Project Halp

=H B e

= {23 QpusP Confiquratdon
3 Linups: amed Configuralion Systen

#-] Comfguration policy oplians

=4 AR procassar aphions

=] SAT1 DD impd arsiviEkan
2] 581100 USE Aunclan §uppon
) Fuksra TV PO ¢ ped

Al i wuil ARLIETET mniveeee

It shows basic properties of selected option. Displayed properties are as follows

Y Processor pe (AR proceseors]
3 Twpa of swsbem (On-boamd hardwan ani

-2 Anchbachure - ndepardunt b 5alncid

[ARk procassor iype {5411 00- tasad)

Eymtsal Hans

FTINK ROM 280aT

Frompt Message |77 F5- 7 X iatermad ROM doststnap

Type fioc!

el f

e [KE) [mimsum

Pravide I{.’.r}n;l.m

Ep.:n sywbod [Ciwksum)

Symbol name: CML2 symbol name of the option

= ETRI Proprietary

-16-

Cirwe CLFS-T11H care suppor bem koot
modes. Nomal mode boctiNrom the exdermal menory device al 50

Basic option property

Prompt Message: Simple description

Type: Type of the option. There are BOOL, TRIT, CHOICE, STRING DECIMAL and HEXA types.
Value: Value of the option

Size: Size of a package including sub options. Only meaningful for package option.

Provide: provided symbol of thisitem. It is used to prevent conflict.

Export symbol: exported symbol name, which will be stored as a file. (It's specia for a busybox and a
tinylogin package).

14.3. Extended Option Properties

Extended option properties let you know about more detailed description, list of files to be installed
and dependency of each option. And *

Bl Oplus Targel Uudlder, Project="froot/Project] fpred, bl fech="amnm", Beard="Zaurus" =10 x|
File Mavigalios Buwid Took Prjecl Help |
FEl W oy e

e T LU aTT

#1- [Lol Kamid onfigu na om Syshen Gymbol Hame ﬁ-ﬁﬁ_i“f‘.‘rl'f“.’.:‘.[‘.?_-:ﬁln“‘."
=1 i Byalen Coniguialion Prompl MEage Fﬂhq‘.’-
_;j Bz ke ek [dTan, Sias, res) Type F“*""'
il [Applicainons
) Desalspmenl L h'
= Syelm Ensimiesng Sipe (<) F"
- = Dase Provide |.|'-..w|-n-
dependencies e LR goy Expert mymbel [Fome
= T

| burgh e menu
Filelist == - N
B =21sprags \
&3 intscriphs
Online Hel
P lommm T~
o setup

) Arectoey skeletan
2 Arylogin ‘]

Card Zareces fir Linux is 2 complele POMCWE or "FC Card™ suppos
pactsge. binchades & et of Iosdabie Eemel moduies thal mpemenl
& wRmion ol the Card Davaces: spplcaligne program nlefais 4 dal
Rl e arl 1o Rgmicis Gt Bnd @ Gl RERAGET dasmon Tl
Ljpean B Cand ireitien ard remcdal gvenls, icading and
drivers o demand Hsuppoits “Rol swapping™ of Fid
cands can ba salaly inserfed and gecied al any ine

V4

Dmpendencies

- - - slaling Feleched packaes --- - .
ax Imtaling skelinuw Build Log

i Iresal i
ww Irpfaling net ¢

ikt Log | Extandied Bullt Log |

Help Tab

This tab shows detailed description of the selected item.

2 ETRI Proprietary -17-

File List Tab

File list to be installed. It includes files in selected sub items. For example, the following picture
shows that tcpwrapper package install 3 files (/shin/tcpd, /shin/safe_finger, /sbin/try-from) to the target

system.

'_."”"'.‘_I_l [P k.

=1 i Dammnong hlur4 Fies Packags Cpban
& t0a wesh sarver frbinicpd [Top— e—
ﬂ parimap s debinfsafe_finger IcpTappen lcpeosppers
fﬁm FEi Ay - from IcpTappEn Epeesppers
= PR J

¥ =iretd menu |
£ Hame L [oo b8
I P J

If you select top-level item Qplus-P Configuration you can see the whole file list of your target root

filesystem.

Dependencies Tab

This tab shows dependency information of each item. Refer section 2.7.

1.5. Saveand Load
1.5.1. Save

Each project has its configuration file (config.out) in the project directory. Target Builder stores whole
configuration in the file and when you open a project Target Builder will load last configuration status

from thefile, config.out

Notice: Configuration states are automatically stored when you close project or start to build. Also you

can save it anytime using save menu, File > Save.
15.2. Saveasand Load
You can save and load configuration state at arbitrary file.

Save As

File > Save As: stores current configuration information on the given file name.

Load

File> Load : loads configuration information from a selected file.

2 ETRI Proprietary -18-

1.6. Search

Target Builder provide powerful search feature. You can search items, which contain a given word in help

text, symbol name, or prompt message.

16.1. Search Symbols (Alt+F8)

This feature enables you to find items that contain given string in the prompt message or symbol name.

For example you can find al item that contain ‘PCI’ in the symbol name or prompt message.

Select Navigation > Search symbolsin the menu

g Untitled x|

Enter the pattern to search

|F'CI| |

)4 | Cancel |

type ‘PCI’ in the message box.

1o/
Mum| Symbaol Mame Promppt

|1 PEG_PCIUTILS_OFPT_MEMNU pciutils menu '
2 PRG_PCIUTILS_OPT_IDS pci id datahase J
3 PEG_PCIUTILS_OFT piutils

4 SMNI_RMEDOD_PCI Support for SMIRMEDD PC

a BLE_DEY_IDEDKA_PCI Generic PCI bus-master DA support

G ELK_DEY_IDEPCI Generic PCIIDE chipset support

7 FCl Support for PCI bus hardware

g PCI_QSPAaN Cl3pan P

3 AIROMET4500_MNOMCS Aironet 4500/4800 158/PCIPMNPAIES support

10 AIROMET4500_PCI Alronet 4500/4500 PCI support

11 D5Cc4 Etinc PCISYMC serial board support

12 S0OUMD_ES1371 Ensonig AudioPCl 37 (ES1371) based sound cards

13 SOUNMD_SORICWIBES 33 SonicYibes hased PCI sound cards

‘I.-I1 el i 0 0 T el e O i e | o Solod bacodd Dot cmaaned moaeede Soe ST D‘Qn‘l\. "Ilr
- ~

Search result window will be created. If you double click an item, point will be located to the item in the

configuration tree.

2 ETRI Proprietary -19-

16.2. Search help
Same as Search Symbols except it tries to find a given string in the help text.

1.6.3. Goto

You can use this feature when you know exact name of symbol and you want to know where the symbol

isin the configuration tree.

1.7. Dependency

Many configuration items have dependencies. For example, X-window or syslog daemon requires
‘unix domain socket’ feature of kernel configuration to be enabled. This kind of dependencies can be
described through QPD or CML2 language.

Target Builder shows dependencies of each item through the ‘Dependencies’ tab and you can go-to
dependent item directly by clicking the mouse.

& Uplus Targel Bujlder, Project="froat/Project-| 386/ prol.ini”, fch="110§". Board="generic” =101 =
Fim Havigaios BEuld Tools FProject Halp |
e oy

" - - A

J. Hormval fapey disk suppar Symbel Hare F‘.‘..‘:’_EIEL"_!E‘HH

o 1PE BEICE dewitan - H

] Compag SMARTE siipaie ¥ & l'i'.d.'ﬂ'-.r..k.appo..

1| Compaq Smar Amay sippor Typs e

0] S5 taps dewvi dupport Ter Sl Ars iakaw ',-

=23 sddional Biock Dawoes Sirs (KE) I'-E"":

o Leaphack device mpgor
Frowide Tninsum
] Mebasark bk derice wuppein I“"'"'

o Mutiple Swicas divar suppoit (B Espartsymabal [ninsin
7 Myie: DACIELTACTIIN PO RAID

B s i seppur Fm | Al [T Gepandsrcen

B Dofouk FaM dik size (51 52] i . _'.-': Eﬁfﬁﬂ'ﬂ I'*J'If""i""'“"‘"_['TTI';':H'-‘* L
Al iyl RAMY dink (e} support - . ¥ sh oy () P il S g e) 20
&) Paradiai pod IDE devica suppar - = i R g rWIn) SRR = I

-] Medwnrking opbore
1] Seurd, ham radw, snd leephony

£ (] Characier deicas
£ [] File Syslams Fila List | Capandencias "
T

s

Dependencies

Duld Lisg | Extentad Build Log |

| ooy i Targes

1.7.1. L ogical expression of dependencies
Dependencies are shown in logical expression form and describe the predicate of safe state. Logical
operators that are used in the expression are like below.

and

2 ETRI Proprietary -20-

or
not:
==,l=,> <, ,>= <=
Implies (means > or —)
For a real example, If you select ‘Unix Domain Socket’ item in the configuration tree you can

see following 2 dependencies in the dependencies tab.

(‘include syslogd’ implies ('unix domain socket’ ==y))

(‘tinyx’ implies (‘unix domain socket’ ==y))

The first line means, enabling ‘include syslogd’ option implies ‘unix domain socket’ should be
true. In other word, ‘unix domain socket’ option is needed to be true to enable ‘include syslogd’
option. The second line is similar with the first line. Underlined blue is prompt message of each

configuration option and you can click it to go to that option to see what this option is.

1.7.2. Dependency violation

Target Builder checks dependency-violation every time you change a value of any option item.
In case of violation, it reports what causes the violation.

In the example of previous section, there are dependencies between ‘unix domain socket’ and
‘tinyx’. If you try to disable ‘unix domain socket’ option while ‘tinyx’ is enabled, it violates the

dependency rules. Therefore, you can see message box like following figure.

il)R g d g pndguaalon '
B} BG2 10 Eveeveit Bdging
] Sacial iNarng I-I-I|:| Finbirl DMfaiahidCii | B img |
Kl Lo dws i T L
] Karini hifpsl atcissaban - :. Kyl oyl wapien i pirean doviely g
1l PP fpnind- o~ prird preiocel) asppor 1 ek i Sy 3" s ¢ L porer g T g

el b
° LR -t haves omindexd Eeas mopassemis
"rrdttanyios ol jres 31 5 (PRGBGYEROH BOPT TS 5V B0 mpliey (UHIE -) (PG BUSYEOK_BOPT VS GYEOGDwy, UkFeg|

e ? o sy
1] HOR, nutmyriers ugzaan
1] Fumin ol whydee nigpo

1.8. Build

This section explains about compiling kernel and applications and generation of target root filesystem.

2 ETRI Proprietary -21-

There are following menu itemsin the build menu.

Build Kernel: compile kernel only when you have made any change in kernel configuration from last

time kernel build. Build > Build Kernel
Build Kernel —Force: compile kernel anyway. Build > Build Kernel —Force

Build Applications: compile packages in system configuration tree. Not every packages are compiles, but
only packages which you have changed compile related configuration (compile flag, ...). Build > Build
Application

Build Root filesystem: generate root filesystem in <projdir>/target/rootfs. This directory contain fully
functional root filesystem image. Depending on your target configuration target specific configuration

such as network address and boot scripts are also generated.

Build All: Do ‘Build Kernel’, ‘Build Application’, and ‘Build Root Filesystem' in sequence. It is

probably most user want to do. You can do this from the menu or you can use short-cut <F8> function key.
Build Target deployment image: process root filesystem depending on your deployment method and your
BSP. For example, if you choose initial ramdisk deployment method in i386/generic BSP, Target Builder
will generate Etherboot image, which include kernel and ramdisk image of your target root filesystem.
Refer to BSP documentations of your board.

Sop: stop the current build. Build > Sop

Warning : clicking ‘Sop’ menu doesn’'t mean immediate stop. Currently, it can stop at several

checkpoints. we recommend wait a while for safe stop.

2 ETRI Proprietary -22-

2. Target Image Generation

In the previous chapter, we described brief introduction of Target Builder. In this chapter, we

describe practical usage to create kernel and target root filesystem.

2.1. Kernd and Package Configuration

When you create a new project Target Builder will load a default configuration of the selected BSP.
The default configuration is tuned to fit for most users. Therefore you may don’t need to modify anything
except target specific configuration such as network address. Later you can configure the target from the
default configuration to optimize for your target system. Therefore, in this section we only discuss target

specific configuration. For kernel and each package configuration, please refer to online help.

2.2. Network Configuration

This is generic TCP/IP network configuration. For now only static-IP configuration of single Ethernet
interface is supported. But you can easily extend to support various type of network configuration such as
dhcpd or multiple adapter configurations. Figure 1 shows network configuration menu in the Target

Builder. You can configure this by doing as follow.

- Enable*Target Configuration > Using Satic IP’
- Set proper values of ‘Satic |P Configuration submenu’
B 'EthO device name' section is only used when you select your Ethernet device driver as a

module. If you included the driver in the kernel, you can leave this field empty.

2 ETRI Proprietary -23-

B Uptus laret Bullder, Project=" froot/Prefect-| 86 /peol inl”, Arch="1308", Board="gessric" I =) |

File Mawvgelion Buid Teals Projec) Help

w W e

=3 :]p usF Configuration Somababl Masin '-"‘ﬂ'-"":l"
F- 0 Linws Fesreal Configuralion Sysben
F1- [0 Sy shend Confgueatian Tl I‘?"“"""‘me'm”
=} (23 Taget Configuration Tige fprenx
=129 Targal Matwark Configuradon Wl I
4 Using Saic P —— oy
CEEEC| st IF configuration
B Torgel IF Address [125. 254 1000113) Pl [Fratxawn
B Target reame faegen) Espan sywhpl I:E-'ﬂ}.'.'n:lu.'r
B Hetmex 0.2 W T T
B Hpes Hefumek 1129254, 180.1) mier you Bgel rebvark informsban
[Eroadcas! addness [N2R 200080 208
1] Galtraay P Addesss (129205 180013
B OHS Server [IERsE1n)
B emi davice ariver nams [aegr 00}
7] Lkang Oy namic 1P (TGP
o Librgema i Opbmicsinn Conguralion
i Baid & mataialnn naad Confgerabon Hik | Filw List I Dapendincis
Basild Log | Exdendad Build Log

Figure 1. Network Configuration

2.3. Library Optimization

Target Builder provides following two methods of library optimization.

File level optimization

If you enable this option, While generating target system image, Target Builder inspects all
executable files and remove unnecessary shared libraries to execute them. Thisis simple and most useful
for most of system.

Symbol level Optimization

If you enable this option, Target Builder further optimizes share libraries in symbol level. It means
that only needed symbols are included for each shared library. However this takes a long time and only
glibc library can be optimized for now.

2 ETRI Proprietary -24-

File Mawagslion Buid Tegls Prajec) Help

B Uptus laret Bullder. Project=" froot/Profect-zaurusdprel, bnl®, Arche"am’, Dosed=" asns

FH WA

Bl i3 GpusP Conflguration
F- [Linu< Esmal Canfgeraion Sysen
F-C) Eyslen Confguratian
=1 123 Target Configuratian
£ 120 Target Metwoek. Conl gurabian
= {23 Libranies O ptimizadon Confiquration

$Flie eval Rrary optnizatin)

7] Symibsl lavel Kbrary opfinizalon

+- 1 Boot & nsizdlation mettad Cordgeraion

Syl Harg F'.'.-‘“.‘-'._I'I'FT."H.'I.‘T_.".'E'.‘

Fronpt Message [F.e.a:e fevel lebrarp apfmecsiioe

Tgs ==
Wl E'"

e [KE) [{.'nﬂ'.rnu.r
Frovkia | T

Eparsymbol [Dhdwoes

Examing all gxcutabias on e real Masyikn of
ot fapgal and Them autamalically rencea wen oad od |Branes

Hap | FileList | Dependencies

pﬂll] ng =ar -CIH:'-C.'.DHH

-—== Qplimiting iesiey ----
wo Pl il | raras | o

a2 LP 10 £~ FAUTURAATE 0 i opl D FIEfpu gin koo ecsdisn pag Spiugin so 1 0.0
/a3 LP 13 - PaLTLSAGIT e e ople0 FIEfpi g nwfapp InA brard manappki sa.1 0.0
1oL/ P e o= cau g ebro ofs g or b E S C 5o

L P mje cE- rauus I e m s s b b pey S0 6200

Basild Loy | Exdanded Buld Log

Figure 2. Library optimization

For most case, file level optimization will be enough. If size is realy matter you can use symbol level

optimization. However, if you enabled symbol level optimization, whenever you add new executables on

your root filesystem, you must regenerate whole root filesystem using Target Builder.

War ning: Symbol level optimization have bug for now. It will be fixed in a near future.

If you want to leave specific library files untouched, write down those library names in

<projdir>/piclib/keeplist file.

lib/libnss files-2.2.3.s0
lib/libnss_dns-2.2.3.s0

Example of keeplist file

2.4. Build

In this section, we will describe how to build kernel and applications.

= ETRI Proprietary

-25.

24.1. Build All

Select following menu (shortcut isF8)

Build > Build All

This procedure build everything and generate fully functional root filesystem image. In fact, this
procedure calls Build Kernel, Build Applications, and Build Root Filesystem in sequence. Each procedure
will be explained in the following sections. This doesn’t recompile everything but compile only selected
components that have changed its configuration from the previous build. Therefore, it doesn’t take much

time and you may not want to use other build menu if you know exactly what you are doing.

You can see build log in the Build Log tab at the bottom of Target Builder.

= TEELENTg HUmmerdss
== Installing libjpeg
== |nstalling setup

== |nstalling tinylogin
== [nstalling strace

== |nstalling opie

== Installing procps
== Installing initscripts

---- Build fetc directory ----
---- Merging user applications ----
—---- Optimizing libraries ----

---- Do ldconfig ----
‘shinfldconfiy: Path “/lib® given maore than once
‘shindldconfiy: Path *lib’ given more than once
‘shinfldconfiy: Path “fust/lib’ given maore than once
flik:

libproc.s0.2.0.7 - = libproc.50.2.0.7

L]

Build Loy | Extended Build Log

We will explain other build menu in the following sub sections.

Build Kernel

Thiswill compile kernel and leave kernel image on <projdir>/target/kernel directory and modules on
<projdir>/target/usersupp/lib/modul es/<kernelver> directory. Because this procedure compares current

state with previous build time state, if you didn’t changed kernel configuration, it does nothing.

2 ETRI Proprietary -26-

Build Kernel — Force

Same as Build Kernel except this doesn’t compare state change. Always do kernel compile.

Build Application

Build every selected package in the System Configuration section of tree. Like Build Kernel, it also
compares current state with previous build time state. Therefore a package will be compiled only when
the state have changed. Moreover, if you changed a option which does not related with actual compilation
such as file list related option, then it doesn’'t recompile the package and only affected files will be
installed (or uninstalled) while generating root filesystem.

Build Root Filesystem

This procedure generate root filesystem directory of target on <projdir>/target/rootfs directory.
Detailed procedures are as follows.
- Installing compiled applications (via Build Applications) on the <projdir>/target/rootfs
directory
- Generating basic configuration files or boot scripts (e.g. /etc/rc.d/rc.sysinit) based on your
configuration.

- Library optimization (if selected)

2 ETRI Proprietary -27-

3. Deployment to Target (1386/Generic)

‘Deployment’ means to transfer kernel, root file system image which were generated by build process to
the designated target system.

In this chapter, we will explain deployment methods in the case of generic PC environment which uses
i1386-generic BSP.

3.1. Host Requirement

First of all, you needs a target system(i386 based PC) and a host PC runs on Linux(strongly recommends
Redhat 7.1 or later). Both target and host system should be connected via Ethernet LAN.

You have to check below functionalitiesin the host system.

1) Support of loopback device

Execute following commands with root permission.
dd if=/dev/zero of=diskimage count=1024

mkfs.ext2 diskimage

mkdir mntptr

mount —o loop disimae mntptr

If all sequences are executed successfully, it means loopback device is supported.

2) Support of minix filesystem

Execute following commands with root permission.

modprobe minix

cat /proc/filesystem
if there’'sa‘minix’ item in the result, it means minix filesystem is supported.

3) Installed dhcpd or not
check /usr/shin/dhcpd file.

4) Ingtalled tftpd or not
check /usr/shin/in.tftpd file.

2 ETRI Proprietary -28-

5) support nfs server or not

check “/etc/init.d/nfs start” command if it executed or not

3.2. Making Etherboot boot floppy disk

Using Etherboot, 1386 based target system can download its kernel, root file system from a host system.

‘<projdir>/toolg/etherbooimgs” directory has etherboot floppy disk images for diverse network card or
you can download it from http://rom-o-matic.org. You can find a file with .Izdsk file extension
correstonding to your target system’'s network card. Then do the following jobs to make a bootable
etherboot floppy disk.

1) insert floppy disk.

2) execute, ‘dd if=<device name>.lzdsk of=/dev/fd0’.

3) insert the boot floppy disk to the target system, and boot it.

While booting, etherboot will send bootp request after searching the network card. Refer to section 4.4 for
the network configuration of the host system.

When target system boots using etherboot disk, it displays MAC address of the
network card. You have to remember it, because it will be used later for dhcpd
configuration which will be explained in the next chapter.

3.3. Making Etherboot bootable CD-ROM

‘<projdir>/tools/etherbooimgs” directory has etherboot cdrom images for diverse network card or you
can download it from http://rom-o-matic.org. You can find afile with .iso file extension correstonding to

your target system’s network card. Then do the following jobs to make a bootabl e etherboot cdrom.

1) make <devicename>.iso file into bootable CD-ROM with CD-Writer.
2) configurefirst boot method to CD-ROM in the BIOS of target system.
3) insert the boot floppy disk in the target system, and boot the target system.

3.4. Host system configuration for Ether boot

Host system should have proper set up for network daemons needed for etherboot. DHCPD, TFTPD and
NFSD are required for etherboot.

34.1. Configuration of DHCPD
Configure /etc/dhcpd.conf file as following example. ‘hardware ethernet’ isa MAC address of target

2 ETRI Proprietary -29-

system , and ‘fixed-address’ is an IP address of target. ‘filename’ is a name of bootable image of
kernel and root filesystem generated by Target Builder.
After the modification, restart dhcpd daemon by typing, ‘/etc/init.d/dhcpd restart’.

subnet xxx.xxx.xxx.0 netmask 255.255.255.0 {
host homeserver {
hardware ethernet xx:XX:XX:XX:XX:XX;
fixed-address XxXxX.XXX.XXX.XXX;

filename gplusp.etherboot

Example of /etc/dhcpd.conf file

3.4.2. Configuration of TFTP daemon
Modify disable record in ‘/etc/xinetd/tftp’ fileto ‘no’ like below example.
After the modification, restart xinetd daemon by typing, ‘/etc/init.d/xinetd restart’.

service tftp

{

disable = no

Example of /etc/xinetd.d/tftp

34.3. Configuration of NFS server
You should modify ‘/etc/exports’ file according to your environment. Following example shows that
‘[tftpboot/X. X.X.X' directory is exported to outside.
After the modification, restart NFS daemon by typing, ‘/etc/init.d/nfs restart’.

[tftpboot/129.254 . xxx.xxx(rw,no_root_squash)

Example of /etc/exportsfile.

2 ETRI Proprietary -30-

3.5. Deployment with initrd root filesystem
Now, all setup required for Target Builder was finished. From this section, we will explain how to
configure diverse method of deployment using Target Builder.
Initrd is a ramdisk image of target root filesystem. Because ramdisk has size-constraint of
AM~8M, deployment using initrd root filesystem is useful for small target system(in memory size).
The follow steps show how to deploy using initrd

1. Sdlect ‘Uselnitrd asa root filesystem’ option.

= {3 Target Configuration
[Target Metyork Configuration
[Libraries Optimization Confiquration
=13 Boot & Installation method Configuration
Root filesystem type {Minix}
=} {4 Target deploy method.

Usze initrd image as a root filesystam

#] Use MFS root filesystem

Figure 2. Inird deployment option

2. Select Build > Build All in the menu.
Although execute ‘Build’ in kernel or application configuration, execute ‘Build All’ in the menu
again, because kernel or application program configuration can be changed by deploy option.
Following figure shows you dependency rules related to ‘ Use Initrd as a root filesystem’ option.
If you select initrd deployment method, ‘RAM disk support’ and ‘Initial RAM disk (initrd)
support’ option in the kernel will be enabled automatically.

Help | File List | Dependencies ‘ Build Log |
Turi Fulfilled Fielated Dependencies
‘Uz initrd imace a5 a root filesystern”
1 “es irmplies {C°RAM disk support’ == wyand §

‘Initial Rk disk {nitrd support == g3
(“Use initrd image a5 a root filesystern”

2 Was

Figure 3. Dependency rulesto be check with initrd deployment method

3. Select Build > Deploy Target Image in the menu
If it's successful, you can find etherboot image comprising kernel and initrd in

‘tftpboo’ /gplusp.etherboot’

2 ETRI Proprietary -31-

Separate kernel and ramdisk image can be found also in '<projdir>/target/kernel/gplus
and ' <projdir>/target/rootfsimg’ file respectively.

4. Check DHCPD and TFTPD are working on you host system.
Refer to section 4.4 for the setup of the services.

5. Boot the target system.
Check etherboot bootable floppy or CD-ROM is inserted(see the section 4.2 and 4.3). After
booting, ‘ gplusp.etherboot’ file will be downloaded from the host system and conventional linux
boot procedure will follow(if your target system has no VGA and keyboard, use serial console.

Ensure ‘Use serial console’ option enabled for this purpose).

3.6. Deployment with NFS

This deployment method uses a particular directory of a host system as a root directory of atarget system
via network connection. This a very useful method in the development stage, because you can add, delete
and modify filesin the host system easily.

The following steps show how to deploy using NFS root filesystem.

1. Select ‘Use NFSroot filesystem' option, and then select sub-options (nfs server configuration).

==y Boot & Installation method Configuration
d] Booting Target via etherboot
Root filesystem type {EXTZ}
=} i3 Target deploy method.
#] Use initrd image as a root filesystem
Use MFS root filesys

4] Syncing target nfsroot with project
=3 MFS root filesystem menu
MFS Server P address (129254180120}
MFS root directory {Aftphooti386- generic}

B I P e | A RS e

Figure 4. NFS deployment option

If you select ‘Use NFSroot filesystem? option, two optons, * Syncing targetnfsroot with project’
and ‘NFS root filesystem', will come out. ' Syncing targetnfsroot with project’ option makes
Target Builder to synchronize the contents of newly generated target root filesystem(in
<projdir>/target/rootfs) and exported NFS directory(including sub directories) using rsync
command. If the option is not selected, Target Builder generates only atar archive file with the

generated target root filesystem.

2 ETRI Proprietary -32-

‘NFS Server IP address in the NFS root filesystem menu is for an IP address of NFS
server(generally, will be host system running Target Builder). ‘NFSroot directory’ option isfor
a directory exported by a NFS server. These options value is used as basic configuration

information about NFS server in booting target system.

2. Execute Build > Build All in the menu.

3. Execute Build > Deploy Target Image in the menu.
Now, ‘tftpboot/qplusp.etherboot’ file is generated, and target root filesystem is
generated also according to the result of the configuration above. If 'Syncing
targetnfsroot with project’ option is selected, exported NFS root directory will be
updated, otherwise ‘/tftpboot/rootfs.tar.gz’ file will be generated. ‘rootfs.tar.gz’ file

needs to be extracted by hands.

[F== —opV target NenvarE, Cormguanon mes
=== hake etherboot image for nfsroot
console_param =

ype o tagged

kernel : froot'Project-i3d6Marget’kermel/gplus
initrd : froot/Project- i386arget s initrd.gz
append : root=/dev/ram0 init=/linu=rc

output : Aftpboot/gplusp.etherhoot

mknbi-linu= froot'Project-i3d6Aargetkermel/gplus froot'Project- 386 arget nfs.initrd. gz
- -append="root=/dewramd init=/linu<rc " = Mphoot'gplusp.etherboot

=== SYNCcing project root with nfsroot

rsync -a frootProject-i3g6targetrootfs’ Mphoot/i386-generic

Il5age:
1. Check your fetc/dhcpd.conf

Fig 5. logging display when nfs deploy

4. Confirm NFS server configuration.
Confirm whether root file system directory name installed in the host system is exported or not.
You can refer to the section 4.4.3 for details.

5. Booting the target system.
The following messages will be displayed in the boot process (through monitor or serial calbel).

1) Using following default configuration
serverip = <default serverip>
nfsrootdir = <default nfsrootdir>

2) Manual configuration

2 ETRI Proprietary -33-

x) Exit to shell

>>1

Check all values are collect, and choose ‘1’ if it does otherwise choose ‘2'.

3.7. Ingtalling tothehard disk of target system

Using this method, you can download target root filesystem image and install it to the hard disk in
the target system. After the installation, the target system can boot stand-alone.
The following steps show how to do that.

1. Sedlect ‘Install to target system’ option

=} i3 Target deploy method.
#] Use initrd image as a root filesystem
#] Use NFS root filesystem

Install to target system
=} i3 Install ta target menu
H] Create partition on target boot device during installation
Target boot device {fdewhda)}
Size of the parition (0 means device maximum size) {0}

2. Execute Build > Build All in the menu.
3. Execute Build > Deploy Target Image in the menu.
Check if the following files are created.

[tftpboot/qplusp.etherboot < kernel + initrd for Target Installer
[tftpboot/qplus < user built kernel to be installed
[tftpboot/rootfs.tar.gz < root filesystem to be installed

4. Check DHCPD and TFTPD are running correctly on the host system.
Refer to section 4.4.1 and 4.4.2 for details.

5. Boot the target system.

6. The following messages will be displayed in the boot process (through monitor or serial calbel).
Select ‘1.

1) ethernet install
2) serial install
r) reboot

c) set to defaults

x) start shell

2 ETRI Proprietary -34-

>> 1

7. Set the value of ‘Remote host address’ and install configuration file name (default is
‘install.conf’).

Remote host address: 129.254.180.120
remote host address is 129.254.180.120; is this ok? (y/n/q): y

config name: install _conf
config name is install.conf; is this ok? (y/n/q): y
Getting install configuration

Preparing target device

Downloading target root filesystem..
Downloading target kernel..
Run LILO? (y/n):y

Table 1. Target Installer Ethernet install configuration

8. After proper installation, push ‘R’ key in the main display and reboot. At that time, make sure
the floppy disk or CD-ROM is gjected.

3.7.1. update method after installation

Execute following command in the target system.

Isbin/gp_update

You may find detailed information in the Manual s'remote_update.txt file of Qplus-P release.

2 ETRI Proprietary -35-

4. Deployment to Target (Arm/Zaurus)

2 ETRI Proprietary -36-

5. Deployment to Target (Arm/iPAQ)

2 ETRI Proprietary -37-

6. Deployment to Target (Arm/Samsung
SDMK2400)

This chapter explains how to make and deploy target image for Samsung SMDK2400X (ARM920T
based), and how to use its bootloader for booting. The BSP for SMDK 2400 should be installed.

6.1. Boot Loader
Original boot loader for SMKD2400 provided by Samsung has very limited usage, so Target Builder

provides a more powerful and flexible one. You can both replace a original bootloader with a Target
Bulider’'s and use the new one with the original.

Target Builder BSP for SMDK?2400 comprises bootloader images in
/opt/g+esto/bsp/arnV/s3c2400/tools directory.

netboot-0.5-ram.bin
Thisloader can download a target image through serial port, but built-in boot image in
24xmon package must be used.

netboot-0.5-rom.bin
Thisloader can download a target image through network, but new loader must be burned on

flash in place of built-in boot loader.

Target Builder’s bootloader is can be use to load not only Linux image but other images al so.

Notice: SMDK?2400 boards have no EEPROM which is used to store MAC address, it is a critica
problem for using BOOTP/DHCP protocols. For this bug, you should isolate your target/host system’s
network connection physically from outside, otherwise DHCPD may have a severe problem in searching

the board based on the MAC address.

6.1.1. Running netboot from RAM
Using this method, you can download Target Builder’s bootloader with the original one.
Do as the following steps.
- Run*“dnw.exe” program which isincluded in SMDK2400’'s package you bought. (windows host
isrequired. Sorry~~~).
- Set the COM port configuration to <COM 1, 115200 baud rate>.

2 ETRI Proprietary -38-

- Power on and boot your target board

- After “dnw.exe” program completes test of target memory, select “netboot-0.5-ram.bin” in

‘Serial Port/Transmit’ Menu to load new boot loader image into ram.

Figure 1 shows the screen of above procedures.
DWW w0 44b [COMI, 115200bps] [USE:x]

Serial Ponn USE Pom Configuration Help

=10] x|

I"I"nhil! CcSHEPOla network adapter. baseaddr=0FBEEIA0
CSRP00 is Found...

Self Conbtrol Register=-ox1%

cal¥ifa: Ho EEPROM

WL Address is BDE2 ADWEGZATY

Oplus-F Boot Loader For SHDE2500%00
FOLK=133MHz , HCLE=-66MHz, PCLE=-3XHHZz
- hcyonBetri . re . kre
IS NS E NN EEEEEEEEEEEEE
Type “help™ to get a list of commands
>

Figure 1. bootloader

Here are list of bootloader’s commands.

help

boot

Jump to and run the address which is saved in ‘kernel-addr’ environment variable.

dn <filename> <address>

Downloads host’s <filename> to target’s <address>.

2 ETRI Proprietary -39-

tftp

Download files of name in ‘kernel’” and ‘ramdisk’ environment variables, and locate them to the

addressin ‘kernel-addr’ and ‘ramdisk-addr’ environment variables respectively.

It does the same as,
Dn <kernel.> <kernel-addr>
Dn <ramdisk> <ramdisk-addr>

Jump <address>

jump to <address>

printenv

Print all or part of environment. The following is default setting value for boot loader

setenv <param> <value>

Changes or adds an environment variable.

6.1.2. Running netboot from flash (Programming flash memory for new boot
loader)

If you wish to use new boot loader in stead of built-in loader, you erase old boot loader from flash
memory and rewrite “ netboot-0.5.rom.bin” onto flash using 24xtest’s module. We recommend that you to
use a new boot loader. Because new boot loader modify and improve built-in loader in order to support

networking. If you want to keep old loader, skip this chapter and refer to section 4.1.1.

The steps of burning flash is as follows
1. Power-on, boot your target board

2. Download “24xtest.bin” using DNW
3. Choose ‘Prog Flash' .

2 ETRI Proprietary -40-

DWW w0 ddbh [COMI, 11530060s] [USB:x] =10 =]
Serial Pod USE Pom Configuration Halp
S2IHHC IntHltWrite S3:ARC IntM1ERead SH:MHC DmaStrdrite 5% :HAC DmaStrRead .ﬂ

St tHHC DmaSqlUrite S7:HHC DmaSglRead S8:HHC DmaMltUrite S9:HNC DmaMltRead
6@ :HHC ZetPRTEest &1:HHC ClrPRTCest &2:5L_IDLE Hode 63 :IDLE mode

Gl 2 TDLE (hard) G5 IDLE wsing HHU &6 -5TOP Hode 67 CHOLD mode

O Z5L0OW mode G0 SLOMEIDLE mode F@:HEW Write Test 71:HENW Read Test
T2:IHFLL change T3 :IHFLL ondofFfF THIHFLL mps change 75IEXTIHTN test
TH:FI0 interrupt 77:Int priovity THDME MIH TOBHA2D Hultd
Bd:DHA XDRED B1:nUAIT tesk #2 :nBRED/nBACK B3 :P-RAM March C-
i Read Page Hode A5 HonAlgined pt 86501 test A7 -PE_CARD{EIS)

##:Frog. Flash B0 SR test

Select the Function to testTas

=== HOR Flash Hemory writer wver (.4 ===

The program buffer: Qxdi0BBRE-@<dFFFFrF

a: AHZILVEGABE =1 bz 2EF6HOIIA x2

Select the btype of a Flash menorcy?

Do you want to download through UARTE From Bxd BAEAEAT [win]:y

dounloadAddress=dBaaaagg

Dounload the plain binary Filef BHC) to be written
The File Fornats <n+63{&)+(n)}+C5(2)

To tramsmit _BIM file: wkocmd wxx BIH /1 Fd:1
Download methods: COM:BELt, WP 15TOF

4. Download “netboot-0.5-rom.bin”
Write will continue to the address of 0x80000

Notice: You must select AMD flash type. Netboot only works correctly in AMD flash type

5. Reboot target board

6.2. Deployment with Initrd root

configure diverse method of deployment using Target Builder.

I T N S I N

Now, all setup required for Target Builder was finished. From this section, we will explain how to

Initrd is a ramdisk image of target root filesystem. Because ramdisk has size-constraint of 4M~8M,

deployment using initrd root filesystem is useful for small target system(in memory size).

The follow steps show how to deploy using initrd

1. Choose ‘Use Initrd as a root filesystem’ option.

2 ETRI Proprietary -41-

=1 {5 Target Configuration
[Target Metyork Configuration
[Libraries Optimization Configuration
=1-i5 Boot & Installation method Configuration
Root filesystem type {Mini=<}
=14 Target deploy method.

Use initrd image as a root

%] Use MNFS root filesystem

Figure 2. Inird deployment option

2. Choose “ Build > Build All” in the menu.
Although execute ‘Build’ in kernel or application configuration, execute ‘Build All" in the menu
again, because kernel or application program configuration can be changed by deploy option.
Following figure shows you dependency rules related to ‘ Use Initrd as a root filesystem’ option.
If you select initrd deployment method, ‘RAM disk support’ and ‘Initial RAM disk (initrd)
support’ option in the kernel will be enabled automatically.

Help | File List | Dependencies | Build Log |

Puri Fulfilled Related Dependencies
i “Use initrd irmace as a root filesystern”
1 Yes implies (AR disk support” == viand §

‘Initizl FAM disk {nitrdy support? == g3
Use initrd irnace 25 2 root filesystern”

2 e

Figure3. Automatic dependency checking related initrd

3. Choose “Build > Deploy Target Image”
After previous step completes, this deployment method creates kernel image and ramdisk image
in “/tftpbot” directory.
[tftpboot/ss-kernel < kernel image

[tftpboot/ss-ramdisk < ramdisk image

Notice: The size of ramdisk supports upto 8M. if you want to use a larger image (more

than 8M), you must use NFS deployment method,

2 ETRI Proprietary -42-

Help ‘ File List ‘ Dependencies Build Log

== Building target deployment image =»

fatype @ mini«
tarball : shomeshcyunigpoonffarm-testtargetrootfs tar.gz

--— Deploy using initrd

=== hake a image file of your root filesystem.
make a disk image “rootfs.img’ of size 8132
§192+070 2| Y2 =5 LRSS T
g192+070 2| 2lE =5 &3 sL ot

make a mini= filesystem on rootfs.img

048 inodes

G192 hlocks

Firstdatazone=63 (63)

Conesize=1024

haxsize=260966312

mount disk image to Ampdinitrd 13X ewd

extract fhomeshcyunigpoontfarm-testtargetrootfs tar.gz to disk
image

fzip rootfs.img

=== Copy kernel :target’kernel/gplus - Aftpboot/'ss- kernel
=»x Copy ramdisk : targetrootfs img.gz - = Mpboot’ss-ramdisk

Isage:
1. Check your fetc/dhopd.conf
2. Boot your target

4. do *hoot’

3. download newly built kernel & ramdisk with mornitor program ||

Figure 4. Initrd deploy log

4. Check DHCPD and TFTPD are working on you host system.

Refer to section 4.4 for the setup of the services.

5. Power on, boot your target board to starting boot |oader program

For more information of operating Netboot , refer to chapter 6.1

2 ETRI Proprietary -43-

“gsamsung - slOlHE OIS -0l x|

oy HEE) 22 =80 330 Zs2H

[jlﬁi:l ﬁ§?|ZSJ ﬁiﬁlffﬁl Jﬁ{]

Frobing cs8900a network adapter. baseaddr=C77000Z00
Cs58900 is found. ..
Self Control Register=0x15
cs8300a: Mo EEPROM
MAC Address is 002004862374

Oplus-P Boot Loader for SMOKZ2400%01
FCLE=133MHz, HCLk=EBGMHz, PCLk=33MHz
- hocyun@etri.re. kr

Tvpe "help” to get a list of commands
>

|HZ 00008 WTI00 115200 8-1-1 SCROLC [CAPS [NUM_[L"_ Wz

x e

Figure5. Thescreen of starting boot loader

6. Check addresses and file names using ‘ printenv’ command

> printeny
param value

kernel ss-kernel

ramdisk ss—ramdisk
kernel-addr C=0c {00000
ramdisk-addr Cx=0c300000

>

The above picture shows that ss-kernel and ss-ramdisk are going to be downloaded at kernel-
addr(0x0cf00000) and ramdi sk-addr(0x0c800000) respectively.
7. Type“tftp” command

2 ETRI Proprietary -44-

Tvpe "help” to get a list of commands

* tftp

Sending BOOTF requests . CK

Got BOOTP answer from 129.264.180.1Z20

my address is 129.254,180.119

TFTPing ss—kernel OFK - 576316 Bytes Received
TFTPing ss-ramdisk Ok - 941728 Bvtes Received

=

8. Type ‘boot’ command

After all steps are completed, you will see the following screen of ‘QPlus-P’

“gsamsung - ot0lHE OIS I =]
OFE(FY M™E(E) H2I(V ZEC) #&(T) =EENH)
D[] |5 o

init started: BusyBox +0.B0.0 (ZF00Z.03.26-14:34+0000) multi-call binary _:J

[Booting QplusP-1inux]
{c) ETRI Embedded S/W Team 2001

HeeChul Yun (howun@etri.re.kr)
WooChul Kang (wchkang@etri.re.kr)

Starting fetc/init.dfrcS ...
Remounting /
Mounting other filesystems..
Set hostname

Starting servicess..
[xinetd] Starting
Starting fetc/init.d/rec. lacal ...

*» Start vour services here <<
getty: joctl() TIOCSP
Qplus-P 1.0 | Linux for Embedded Dewices

target login: root_

|HZ 0:08:27 |WTI000 [115200 B-M-1 SCROLL [CAPS [NUWPE_ W=

sl

Figure 6. Initial Screen of QPlus-P after successful booting

6.3. Deploy with NFSroot

This deployment method uses a particular directory of a host system as a root directory of atarget system

via network connection. This a very useful method in the development stage, because you can add, delete

and modify filesin the host system easily.
The following steps show how to deploy using NFS root filesystem.

1. Select ‘Use NFSroot filesystem' option, and then select sub-options (nfs server configuration).

2 ETRI Proprietary -45-

=13 Boot & Installation method Configuration
Root filesystem type {Mini=}
=5 Target deploy method.
%] Use initrd image as a root filesystem

]
i MFS root filesystem menu
MFS Server [P address {1293.254.180.1 20}
MFES root directory fAftphoot 23254180113}

Figure7. nfsdeployment option

If you select ‘Use NFSroot filesysten? option, two optons, ’ Syncing targetnfsroot with project’
and ‘NFS root filesystem’, will come out. ' Syncing targetnfsroot with project’ option makes
Target Builder to synchronize the contents of newly generated target root filesystem(in
<projdir>/target/rootfs) and exported NFS directory(including sub directories) using rsync
command. If the option is not selected, Target Builder generates only atar archive file with the

generated target root filesystem.

2. Choose Build > Build All in the menu.
3. Choose ‘Build > Deploy Target Image’
NFS deployment creates the following files in /tftpboot directory.

[tftpboot/ss-kernel < kernel image
[tftpboot/ss-ramdisk < ititrd image for booting via NFS
[tftpboot/rootfs.tar.gz < target’s root file system (compressed form)

2 ETRI Proprietary -46 -

Help ‘ File List ‘ Dependencies Build Log

== Copy kernel :targetkermnel/gplus - = Aftpboot/ss- kernel
=== Copy ramdisk : targetnfs.initrd.gz - = Mphoot'ss - ramdisk
== Copy rooffs :targetrooffstargz - = Apboot

Isage:

1. Check your fetcidhcpd.conf

2. Untar rootfs tar.gz
mkdir Aftpboot123.254.180.113
oo Aftpboot123.254.180.115
tar z«wf _Arootfs targz

3. Setup up your nfs server
-- < fetciexports = - -
Afpboot123.254.180113 129.254 180,11 3(rw, no_roof_sguash)

4. Restart NFS server
fetoirc.dfinit.d/nfs restart

5. Boot your target

Figure 8. Build Log Screen of NFS deployment

The above figure shows log of deployment via NFS. This also indicates what to do next, just
follow the steps.

4. Ingtal rootfs.tar.gz.

mkdir /tftpboot/<target root dir>
cd /tftpboot/<target root dir>

tar zxvf ../rootfs.tar.gz

6. Confirm NFS server configuration.
Check whether root file system directory name installed in the host system is exported or not.

You can refer to the section 4.4.3 for details.

7. Power on, boot your system to run boot loader program

For more information of operating Netboot , refer to chapter 6.1
8. Type tftp’ command

9. Type ‘boot’ command

2 ETRI Proprietary -47 -

“gsamsung - slOlHE OIS -0l x|

oy HEE) 22 =80 330 Zs2H

[jlﬁi:l ﬁ§?|ZSJ ﬁiﬁlffﬁl Jﬁ{]

Freeing initrd memory: 5120K
YF3: Mounted root (miniw filesvstem).
Freeing init memory: GEK
Starting Alinuxrc for WFSROOT
Loading nfs modules..
Using /1ibsmodules/2. 4.1 7-rnk5-swl 6 kernel Anet Ssunrpedsunrpe .o
Using Alib/modules 2. 4.17-rmkE-swl6/kernel /s lockd/ lockd . o
Using Alib/modules/2. 4.1 7-rmkE-sw!G/kernel /fs/nis/nfs.a
Configure ethernet
bring up ethd successful |y
Configure route
Executing portmap for rpc
Mounting Aproc

NFS server information where wvour target root filesvstem reside

17 Using following default configuration
serverip = 129,254,180.120
nfsrootdir= ftftpboot129.254,180.119

2) Manual configuration

#) Exit to shell

B
-
x e

|HZ 00657 WTI00 115200 8-1-1 SCROLC [CAPS [NUM_[L"_ Wz

figure9. The screen of booting via NFS

If “1" is chosen, NFS services use default configuration which already specified using Target
Builder. If you choose “2", you can set up manually NFS services related configuration files. If

you choose other number “1” or “2”, you will exit to the shell prompt.

2 ETRI Proprietary -48-

6.4. Setting up host server services
Refer to section 4.4.1 and 4.4.2 for details.

2 ETRI Proprietary -49-

7. Adding a custome applicationsto your project

Currently, our Qplus-P Target Builder supports about 60 basic application program packages. However,

these packages are only basic packages required to operate linux. Actual embedded system development

reguires for us to configure and build more applications on Qplus-P Target Builder. Target Builder allows

you to place custom applications and configuration files on your target. This chapter explains how to add

a custom application to Target Builder.

7.1.

Target

There are following two method.

The first method is a simple way of getting your custom files onto atarget. In this case, the user
directory contains custom files to be merged into the target image in the target directory after the
Target Builder’'s default packages have been placed there.

The second method is to integate your packages into Target Builder so that they can be
cofigured and built alongside the Target Builder’s default packages.

Merging your filesto the target image

Builder generates temporary target root file system in the directory “<project

directory>/target/rootfs’ . This temporary root file system is changed into loadable form and installed

onto the target.

Target Builder supports the following process to combine user application programs with this temporary

root file system.

1

Locate your files“ <project directory>/target/usersupp” directory.

Note that Target Builder considers the directory “<project directory>/target/usersupp” to be root
directory of actual target system. For example, if you want to install the file “test.sh” in the
directory “/ust/bin/” of target, you should locate it in “<project

directory>/target/usersupp/usr/bin”.

Select 'Build > Build All" menu
Target Builder merges the files in ‘<projdir>/target/usersupp’ into the ‘<projdir>/target/rootfs

directory.

Warning: Note that the when the actual files are loaded into the target root file system,

ownership and permission are transmitted as they are.

2 ETRI Proprietary -50-

7.2. Adding a packageinto Target Builder

Merging directories works well when you have a fixed set of files to place on your targets. However, this
method doesn’t provide a way for you to maintain all configuration under the Target Builder's project
state.

Target Builder was designed to allow you to configure individual applications through a simple interface.
If you integrate your applications into Target Builder, you gain the advantage of begin able to configure
your application alongside the default packages.

7.2.1. Components of a package
Each Target Builder package consists of the following files.

file usage
SRPM file Contains source code and spec file ot the package
QPD file Contains information relevant to Target Builder

SRPM file consists of compressed sources and spec file, which explain how to compile and install them,
and generated by ‘rpm’ command. To generate SRPM, run “rpm —ba <package spec file>" after locating
spec files and compressed source files to the designated location(in case of Redhat Linux,
“Jusr/srciredhat”).

Note: refer to http://www.rpm.org/max-rpm for detailed information on RPM.

QPD(Qplus Package Descriptor) is a file that has package information. To add packages, you should

describe on it how to configurable items of each package.

71.2.2. Creating a QPD file
QPD file format is a simple extension of RPM spec file. You can create it by adding options at the end of
the pakcage's RPM spec file.

QPD file=rpm spec file + additional package infor mation

Grammatical syntax of QPD file

The following is syntax of QPD file. QPD files should be created according to the following rules.

QPD ::= <common spec file section> <package information>

2 ETRI Proprietary -51-

http://www.rpm.org/max-rpm

;; QPD file starts with the tag, ‘%package’

;; Package information is a series of options.

<package information > ::= ‘%package’ <package name>
<option subfield >

[<option> | <group>]*

;; Each option have name and property
<option> := ‘Y%option’ <option name>

< option subfield >

;; Group is a option that includes only simple description.
<group> ::== ‘%group’ <group name>

<group subfield>

;; Each subfield indicates properties of the option
<option subfield> ::== <prompt>
[<export symbol>]
[<files>]
[<require>]
[<provide>]
[<build_vars>]

[<help>]

<group subfield> ::== <prompt>
[<help>]

;; Simple description about option

<prompt> ::= ‘%%prompt’ <string>

;; Detailed description about option

<help> ::= ‘%%desc’ <string>

<build_vars> ::= ‘%%build_vars’ <string>

;; In case of option being chosen, macro symbols to be written on external

2 ETRI Proprietary -52-

header file

<export symbol> ::= ‘%%export_symbol’ <external symbol> *

;; In case of option being chosen, list of files to be installed onto the target

<files> ::= ‘w%files’ <file name>*

;;Dependency rules

<require> ::= <logical>

;;To remove confliction between options

<provide> :: = ‘%%provide’ <symbol>*

<option name>, <package name > :: = [A-Za-z][A-Za-z0-9/]*
<symbol> ::= [A-Za-z0-9_-]*

<String> = '[/\']*' I "[I\"]*ll;

<decimal> = [0-9]+
<hexadecimal> ::= Ox[A-Fa-f0-9]+
<tritval> = [ymn]

<expr> ::= <expr=> '+' <expr>
| <expr>'-' <expr>
| <expr> "*' <expr>

| <ternary>

<ternary> ::= <expr>'?' <expr>":' <expr>

| <logical>

<logical> ::= <logical> 'or' <logical>
| <logical> 'and"' <logical>
| <logical> ‘implies' <logical>

| <relational>

<relational> ::= <term> '==' <term>
| <term>'I=" <term>
| <term> '<=' <term>

| <term> '>=' <term>

2 ETRI Proprietary -53-

| <term>'>' <term>
| <term>'<' <term>
| <term>

| 'not’ <relational>

<term> ::= <term>'|' <term> ;; maximum or sum or union value
| <term>'&' <term> ;; minimum or multiple or intersection value
| <term>'$' <term> ;; similarity value
| <atom>

<constant> ::= <tritval>
| <string>
| <decimal>

| <hexadecimal>

<atom> ::= <symbol>
| <constant>

| '(<expr>")’

%package, %group and %option

QPD file have three types of item, %package , %group, and %option to describe property of each
application package.

The item %package <package name> indicates the start of QPD’s own region, which describes overall
property of package and appears once for each QPD file. The item %option <option name> may have
various sub-fields, which describes the option’s properties. The item %group <group name> is one
sort of %option, which can be used to group related options. %group can have only %%desc

and %%desc properties.

Hierarchical and naming convention of options

Package, group and options have tree structure. Each package includes option and group, which can
recursively include another group and option. This recursive structure is expressed in the form of tree.
Group and option is named for tree

Each item’s name is used to show where it belongs to. Each item’s name should include al names of its

parents to the root item and they are separated using ‘/’. For example, in case that the package “foo”

2 ETRI Proprietary -54-

includes the option “goo” which also includes the option “hoo”, it can be expressed as followings

%package foo <= the package “foo”
%option foo/goo <= the option “goo” belongs to the package “foo”
%option foo/goo/hoo <= the option “hoo” belongs to the option “goo”

Warning: Note that only alphabets and numbers are used for the name of package, option, and group and

they are case insensitive, because internal CML2 engine requires that.

Properties

Each item(package, option, and group) has its own property. Those properties are used (1)to inform the
user what the item isfor, (2) to make afilelist to be installed to the target when the item is selected.

Each items can have the following properties.

name Description applicableitem
%%prompt Brief description for the item al
%%desc Long description for the item al
%%files Files to be installed to the target system if the option is| package, option
selected
%%require Dependencies of of the item package, option
%%provide Remove confliction between items. Items which provide the | package, option

same symbol can’t chosen together.

%%export_symbol | Used only for busybox and tinylogin package, option
%%build_vars Patch specific strings with another string if the option is| package, option
selected.

Properties can be added to each item without order. For example, in case that the option “foo/goo” has

properties of “%%prompt, %%desc, %%files, %%require’, it is described as follows.

%option foo/goo <= the option “goo” belonging to the package “foo”
%%prompt some special option <= brief description
%%files /usr/bin/good-file <= Three files are installed on target

2 ETRI Proprietary -55-

{usr/bin/bad-file

/etc/goo.conf
%%require foo/hoo ==y <= required for the option “foo/hoo” to be chosen
%%desc <=very long help
it is a very very very long long long

long~~~~~ long help file.

File list

The property of filelist describeslist of filesto be installed when each package/option item is chosen.
The following example shows if package ‘foo’ is selected, ‘/usr/local/bin/progl’ and
‘/usr’local/bin/prog2’ files will be installed to the target.

%package foo

%% prompt good package

%%files /usr/local/bin/progl
lusr/local/bin/prog2

Dependency rule

Dependency of each package item can be described by ‘%%require’ property. Each item can have
dependencies on kernel and other items. Target Builder check those dependencies every time you
change the value of items and shows warning message what it is violated.
Dependencies are stated using alogical expression. The following operators can be used.

and

or

not:

==,l=,>,<,>= <=

Implies (represents inclusion relationship such as o or —)

To identify another package item, full path name (which includes its parents recursively) of the

corresponding item is used.

2 ETRI Proprietary -56-

The following example shows option ‘foo/goo/goo’ requires ‘haa/huu/hee’ option should be enable
and ‘ haa’huu/hii/’ option should be disabled.

%option foo/goo/hoo

%%require haa/huu/hee ==y and haa/huu/hii ==n

Avoiding conflict between options

Some options or packages should not be chosen together. In this case, you can use ‘%%provide
property to avoid it. Two options(or packages) exporting the same symbol can’t be enabled together.

For example, if both ‘busybox’ package and ‘procps package have ‘ps command and you don’t
want to install them together., then you can add ‘%%provide’ property to both options as the

following example.

busybox.qpd

%package busybox

%option busybox/ps
%%provide PS

procps.gpd

%package procps

%option procps/ps
%%provide PS

Above two options provide the same symbol “PS’, it can't be chosen concurrently.

2 ETRI Proprietary -57-

Controlling build option

Target Builder compiles according to information described in spec region of gpd file, not using spec
filein SRPM. And Target Builder offers the way to control compilation optionsin the gpd file.
‘%%build_vars' property replaces specific string in the spec region of the QPD file in case of items.
To do this, string to be replace should be embrace with “!!” symbol, and state in ‘%%build_vars’
property what string will replace the embraced string if the the item is chosen.

For example, suppose that the package “foo” can be compiled statically by giving
“DOSTATIC=true” option to ‘make’ command. Then QPD file's %build section should be changed

as follows

%build
make !MYOPT!!

And ‘%%build_vars property states what string will replace “!I'"MY OPT!! string as follows.

%option tinylogin/static
%%prompt: static compilation?
%%build_vars: MYOPT="DOSTATIC=true”

In case that the option “tinylogin/static” of the package “tinylogin” is chosen, the string !'MY OPT!!
will be replaced with the string DOSATIC=true.

Writing spec region inside QPD

The spec region of the QPD file uses the same format as is ordinary RPM spec file except the following

constrains.
® QPD doesn't support sub package

RPM can include sub-package using %package. However, it overlaps with the tag %package
which represents start of QPD region. And also, QPD don't support sub-package concept yet.

Therefore, modification is required for the spec files which uses generate sub packages.
® Restriction on using macros

RPM variables is not substituted in the Preamble part of QPD file. In other words, if Name is foo,

the variable %{ Name} isinterpreted asit is, not ‘foo’. Therefore, be careful.

2 ETRI Proprietary -58-

7.2.3. Registration of SRPM and QPD file

Locate your SRPM file in <projdir>/packagesSRPM and QPD file in <projdir>/packagessQPDS
respectively. Close your current project and open it again. Now your application will appear in the Target
Builder.

7.2.4. Example
In this section, we illustrate how to write out and register simple QPD file of a simple package.

More example can be seen in <project directory>/packages

We will add package ‘foo” to the Target Biulder as the following sequence.

Making a SRPM file

® |ocate the file foo-1.0.tar.gz in the directory /usr/src/redhat/ SOURCES.
® write out Spec file and locate it in the directory /usr/src/redhat/SPECS.

® execute the following command with root authority.

rpm —ba foo.spec

® foo-1.0.src.rpm was generated in the directory /usr/src/redhat/SRPMS.

Writing a QPD file

® copy above spec file and then modify file extension to foo.gpd. Then, the file will be showen as

follows.

Summary: foo is a very simple and nice program
Name: foo

Version: 1.0

Release: 1

Copyright: GPL

Group: System Environmanet/Base

2 ETRI Proprietary -59-

Source: ftp://ftp.etri.re.kr/foo-1.0.tar.gz
BuildRoot: /var/tmp/%{name}-buildroot

%description

Do you nedd more explaination about this famous package

%prep
%setup -q

%build

make

%install
rm -rf SRPM_BUILD_ROOT
make PREFIX="$RPM_BUILD ROOT" install

%clean

rm -rf SRPM_BUILD_ROOT

%files
%defattr(-, root, root)

/

® insert the item %package at the end of the QPD file.

%package foo

%%prompt foo

%%files [usr/local/bin/hoo
lusr/local/bin/haa

%%require goo/gee ==y

%%desc

foo is avery import package which has

many good functions

2 ETRI Proprietary -60-

Two files ‘/usr/local/bin/hoo’ and ‘/usr/local/bin/haa’ will be installed to the target if ‘foo’ package is
selected.

In case that you want to install the file “/usr/local/hee” optionally, add options as follows.

%package foo

%% prompt foo

%%files /usr/local/bin/hoo
lusr/local/bin/haa

%%require goo/gee ==y

%%desc

foo is a very import package which has

many good functions

%%option foo/hee

%%prompt include hee command ?
%%files /usr/local/hee

%%desc

hee is a some nice file .

but you can select it optionally~~~

The following shows final QPD file. The boldfaced region was added to the original RPM spec file

to describe configuration item in QPD.

Summary: foo is a very simple and nice program
Name: foo

Version: 1.0

Release: 1

Copyright: GPL

Group: System Environmanet/Base

Source: ftp://ftp.etri.re.kr/foo-1.0.tar.gz
BuildRoot: /var/tmp/%{name}-buildroot

2 ETRI Proprietary -61-

%description

Do you nedd more explaination about his famous package

%prep
%setup -q

%build

make

%install
rm -rf SRPM_BUILD_ROOT
make PREFIX="$RPM_BUILD ROOT" install

%clean

rm -rf $RPM_BUILD_ROOT

%files
%defattr(-, root, root)

/

%package foo

%%prompt foo

%%files [usr/local/bin/hoo
lusr/local/bin/haa

%%require goo/gee ==y

%%desc

foo is avery import package which has

many good functions

%%option foo/hee

%%prompt include hee command ?
%%files /usr/local/hee

%%desc

hee is a some nice file .

2 ETRI Proprietary -62-

but you can select it optionally~~~

Place of QPD and SRPM files

® copy foo.gpd into <project directory >/packagesQPDS

® copy foo-1.0.src.rpm into <project directory >/packages/SRPM S

Restarting Target Builder

2 ETRI Proprietary -63-

8.Usng a Targer Builer on Teminal
Environment

All basic functions of the Target Builder can be available on the shell prompt but internal function for the
Target Builer GUI. That is, user can execute al development process, from project evaluation to target
deployment, on the shell command environment. It shows that Target Builder has very flexible design
mechanism. Full description about Target Builder structure could be found on additional system design
document.

If one prefers shell environment to GUI interface or has not sufficient system resource, refer to below

description.

8.1. Project Creation

B root@heyun: froot =101 %]
[rootebcyan Sroct JH Sopt/gresto/to/bin/miprodject

. Enter your project nome
== tLk

i |
was

2, Enter gyour torget orchitecture rome
&volloble orochitectures @ oorm 1386

=» Orf 5
3. Enter your torget boord mome %

Avoiloble boords @ s3cZ400
== =3c2400 : |
(B [E2][FEH] fi

Figure.l. Project creation

1. Execute ‘mkprojct’ command.

lopt/g+esto/tc/bin/mkproject

2. Enter your project name.

1. Enter your project name

=> it

Select a CPU architecture

2. Enter your target architecture name
Available architectures : arm i386

=>arm

2 ETRI Proprietary -64-

3. Select aevlaution board name

3. Enter your target board name
Available boards : s3c2400
=>s3c2400

After above procedures, you can see the below message about the project creation messages on

your screen.

B rool@hcyon: Sroot
==+ Creating o rew project. pleose wolt o secord. ..

copy pretullt kerrel
copy prebuilt opplications

sssssssssssnnnssssennnsnnnns| QOlusP-lir: |ssssssssssssssssssssssssnns

() ETRI Embedded S/ Teom 2001
Successfully mode o new project = tit =

To build yowr torget sustem gyou must be o root user.
A= o root user, do followings..

¥ cd Lttt

H . OFLLS,sh

ft moke =config (or menuconfig) —= configure toroet system

B moke = build kernel, opps and rootfs
f moke irstaoll —= deploy ta torost

|rootetogon Sroot [H
[P IFEA]

=loix

Fig. 2. Theinitial screen after project evaluation

4. Execute QPLUS.sh
QPUL S.sh sets environment variables for Target Builder.

#.QPLUS.sh
or
source QPLUS.sh

8.2. System Configuration

CML2 rule files can be used with any configurator which understands how CML2 rules works.

Target Builder with a GUI interface is a sort of CML2 configuratior with extended functionalities. But all

CML2 configurator generates result of configuration in the same file, ‘config.out’ in your project

directory.

2 ETRI Proprietary -65-

In this section we will explain other CML2 configurators, which runsin shell prompt environment.

8.2.1. menuconfig
The menuconfig configurator of CML2 was shown in Fig. 20. It has the same configuration items as
the Target Builder's one. Perform the kernel, system and target configuration. Refer to Target Builder

user’s guide for each item.

B heyun@hoyun: Homefhoypunfopeontdanm-test

mlusP Configurotion
e Ling< Kernel Conflgurotion System

Fig.3. Menuconfig

Lire: Eernel Configurotion Sgstem
== Somsung SMOEZ00E reference boord devices

[13][FH]

Fig.4. Kenel configuration with menuconfig

2 ETRI Proprietary - 66 -

B root@hoyun: froot/

Setem Configurotion 1.2
=\ Bosic Jetc files (inittob, fstob, rcs) =EvS_DEFETCFILES:

Fig.5. System Configuration with M enuconfig

B root@hoyun: froot/

Torget Configurotion

Fig.6. Target Configuration with M enuconfig

8.2.2. xconfig
Xoncifgisanother TK based CML2 configuratior..All configuration items are identical.

2 ETRI Proprietary -67-

B Qplus-P Target Builder GUI. version 2.1.9.

File Havigation Help

=101 x|

H_JLinwe Kernel Configuration System
_1System Configuration
_1Target Canfiguration

t more easily

1 Mrazta wvratact

Welcome to Oplus-P Target Builder.

With our Target Builder, ¥ou can build workable target image within a minute. 2Zn
d also, we support wariows target migration mechanism for you to hoot your targe |=—

General procedure is like below., wyou can do all these step with this tool.

L~

Fig.7. Xconfig

8.3. Target Image Generation

To build kernel and applications, just type as follows.

make

This does the same job as ‘Build > Build Al’l menu in the Target Builder GUI. It compiles modified

one only, so compilation does not take along time.

Alternatively, you can build kernel and root filesystem separately as the following shows.

make kernel

#make rootfs

Final build result can be found in

<projdir>/target/kernel/gplus <= kernel image

<projdir>/target/rootfs.tar.gz <= target root filesystem

2 ETRI Proprietary -68-

If you want to control the building process sophistically, you can use kernel.py, buildpkgs.py,
mkrootfs.py. Usage description of these can be found by typing with ‘-h’ option.

8.4. Target Deloyment

The method to deploy the image to the target is shown in following command.

make install

It executes <projdir>/tools/targetinstall shell script intenally. So if you want to extend the
functionality of Target Builder, you need to modify it.
If no problem, you will meet the following confirmation messages shown in Fig. 8 that describes the

target booting methods. One need to read and follow the messages displayed.

B root@heyun: Shomeheyundgpeont arm-test =10] =]

wxi Copy limeerc for nfsroot.,
== Copy torget retwork conflguotion Files

=ae Copy kernel @ target/kernel/gplus —> Strepboat/ss—kernel
== Copy romdisk : torget/nfs, initrd.gz == /tftpboot/ss—romdisk
== Copy rootfs : torget/roctfs.tor.gs -+ Jtftpboot

Usoge:
1. Check gour Jete/dhepd. canf i
2. Untor roctfs.tor.ge I

§ mkdir Jtftpboot/ 129,254, 180,119

§ od Jtftpboots/ 129,254, 180,119 E 3
g tar =l .. frootfs.tor.ge
3. Setup up yor nfs server i
_— ,."Fl+r,-"|=-*:.rn'+'=. > — E
Jtfipboot/ 129,254,180, 119 129254, 180D, 119{rw, no_root _soquosh) i
d. Restort WFS server
g Jeto/ro.df/init.dfnfs restort i

L. Boot your torget

[rootebcygan ore—test JH
(B 1 [EE [FEa]

Fig.8. NFS deployment instruction

2 ETRI Proprietary -69-

