

Qplus-P Target Builder User’s Guide

Version 1.1

2002/10/1

Woochul Kang(wchkang@etri.re.kr)

Heechul Yun(hcyun@etri.re.kr)

 ETRI

Contents

ABOUT THIS DOCUMENT...5

1. INTRODUCTION TO TARGET BUILDER ...5

1.1. INSTALLATION..5

1.2. RUNNING TARGET BUILDER...8

1.3. CREATING A NEW PROJECT ...8

1.4. USER INTERFACE OF TARGET BUILDER ..11

1.4.1. Configuration Tree ... 12

1.4.2. Basic Option Properties.. 16

1.4.3. Extended Option Properties ... 17

1.5. SAVE AND LOAD...18

1.5.1. Save.. 18

1.5.2. Save as and Load.. 18

1.6. SEARCH..19

1.6.1. Search Symbols (Alt+F8).. 19

1.6.2. Search help... 20

1.6.3. Goto ... 20

1.7. DEPENDENCY...20

1.7.1. Logical expression of dependencies... 20

1.7.2. Dependency violation... 21

1.8. BUILD ..21

2. TARGET IMAGE GENERATION...23

2.1. KERNEL AND PACKAGE CONFIGURATION ...23

2.2. NETWORK CONFIGURATION ...23

2.3. LIBRARY OPTIMIZATION...24

2.4. BUILD ..25

2.4.1. Build All... 26

3. DEPLOYMENT TO TARGET (I386/GENERIC)...28

3.1. HOST REQUIREMENT..28

3.2. MAKING ETHERBOOT BOOT FLOPPY DISK...29

When target system boots using etherboot disk, it displays MAC address of the network card. You have to

 - 2 -

 ETRI Proprietary

remember it, because it will be used later for dhcpd configuration which will be explained in the next chapter.29

3.3. MAKING ETHERBOOT BOOTABLE CD-ROM ..29

3.4. HOST SYSTEM CONFIGURATION FOR ETHERBOOT...29

3.4.1. Configuration of DHCPD .. 29

3.4.2. Configuration of TFTP daemon ... 30

3.4.3. Configuration of NFS server .. 30

3.5. DEPLOYMENT WITH INITRD ROOT FILESYSTEM ..31

3.6. DEPLOYMENT WITH NFS ...32

3.7. INSTALLING TO THE HARD DISK OF TARGET SYSTEM...34

3.7.1. update method after installation ... 35

4. DEPLOYMENT TO TARGET (ARM/ZAURUS) ...36

5. DEPLOYMENT TO TARGET (ARM/IPAQ) ..37

6. DEPLOYMENT TO TARGET (ARM/SAMSUNG SDMK2400) ...38

6.1. BOOT LOADER ...38

6.1.1. Running netboot from RAM .. 38

6.1.2. Running netboot from flash (Programming flash memory for new boot loader) 40

6.2. DEPLOY WITH INITRD ROOT ...41

6.3. DEPLOY WITH NFS ROOT...45

6.4. SETTING UP HOST SERVER SERVICES...49

7. ADDING A CUSTOME APPLICATIONS TO YOUR PROJECT ..50

7.1. MERGING YOUR FILES TO THE TARGET IMAGE ..50

7.2. ADDING A PACKAGE INTO TARGET BUILDER ..51

7.2.1. Components of a package .. 51

7.2.2. Creating a QPD file.. 51

7.2.3. Registration of SRPM and QPD file .. 59

7.2.4. Example ... 59

8. USING A TARGER BUILER ON TERMINAL ENVIRONMENT...64

8.1. PROJECT CREATION..64

8.2. SYSTEM CONFIGURATION ..65

8.2.1. menuconfig .. 66

8.2.2. xconfig ... 67

8.3. TARGET IMAGE GENERATION...68

8.4. TARGET DELOYMENT...69

 - 3 -

 ETRI Proprietary

 - 4 -

 ETRI Proprietary

About This Document

Qplus-P is ETRI’s embedded Linux solution for internet appliances such as PDA, Digital TV

setopbox and webpad. Target Builder is a development toolkit for Qplus-P.

This document describes embedded system development procedures using Qplus-P/Target Builder.

1. Introduction to Target Builder

Target Builder is an embedded Linux development toolkit tightly coupled with ETRI Qplus-P . It

provides many features for developers to build embedded Linux system. These features include

configuration, dependency checking, conflict resolution, project management and deployment support to

the target system. Using Target Builder, developers can make fully functional operating system very

easily and quickly.

Main features of Target Builder are as fellow.

User friendly GUI interface �

�

�

�

�

�

�

�

�

CML2-based Integrated configuration system (kernel, applications and system environment)

Automatic dependency checking and Conflict resolution

Library optimization

Fine-grain control of system; file-list, compile option, and more

Various deployment methods support

Foot-print reporting

On-line help

Project & configuration management

This chapter describes brief introduction and usage of Target Builder.

1.1. Installation
This section describes (un)installation procedures of Qplus-P/Target Builder.

System Requirement

- Linux distribution of development host :

� RedHat 7.0, 7.1, 7.2

� WowLinux 7.1 (Korean)

 - 5 -

 ETRI Proprietary

� Other distribution also may work but not tested.

- Required Host Services

� DHCP

� TFTP

� NFS

Installation procedure

You should have following list of files via CD or downloading from our ftp site. For qp-bsp-* and

qp-devels-* packages, you may want to download only needed files that match with your target board.

Currently 4 BSP in x86 and arm architecture are provided.

README <-- this file

install.sh <-- install script

qp-tb-2.0-280902.i386.rpm <-- Target Builder

qp-packages-1.0-280902.i386.rpm <-- package QPD and srpm

qp-bsp-arm-Zaurus-1.0-280902.i386.rpm <-- BSP for Zaurus

qp-bsp-arm-iPAQ-1.0-280902.i386.rpm <-- BSP for iPAQ

qp-bsp-arm-s3c2400-1.0-280902.i386.rpm <-- BSP for SMDK2400

qp-bsp-i386-generic-1.0-280902.i386.rpm <-- BSP for generic x86

qp-bsp-i386-etri-hestia2-1.0-280902.i386.rpm <-- BSP for ETRI hestia2

qp-tools.tar <-- python2.2, ...

qp-devels-arm.tar <-- header and doc for arm

qp-devels-i386.tar <-- header and doc for i386

Actual installation procedure are performed via install.sh script as you can see in Figure1

 - 6 -

 ETRI Proprietary

Figure 1. Installation

NOTICE: If your host system has python 2.1 installed, it’s recommend to run install.sh after

uninstalling python 2.1. Target Builder needs python 2.2

 - 7 -

 ETRI Proprietary

Directory structure after installation

Directory structure after installation should be like Figure 2.

Figure 2. Directory structure

‘bsp’ directory contains architecture and board specific kernel, deployment tools and precompiled

packages.

‘packages’ directory contains source rpm files and QPD (Qplus Package Descriptor) files.

‘tc’ directory contains main Target Builder executables and common support programs.

1.2. Running Target Builder

Changing to ‘root’ privilege

To run Target Builder root permission is required. If you did not login as root, login as root using ‘su’

command.

su -

Running Target Builder

tb (or /opt/q+esto/tc/bin/tb)

1.3. Creating a new project
The first time you launch Target Builder, the following screen displays.

 - 8 -

 ETRI Proprietary

Each project covers creating entire system for each board. To create a new project you must select

proper architecture and specific board name for your target. Do following in the menu.

Project > New

In the following windows, you should specify project directory. After then, press ‘Next’ button.

 - 9 -

 ETRI Proprietary

In the following window, specify Qplus-P install directory. Currently Qplus-P install directory is fixed at

/opt/q+esto , so just press ‘Next’ button.

Qplus Directory: Qplus/Target Builder install directory.

 - 10 -

 ETRI Proprietary

Target Directory: Generated target system image (kernel, root filesystem) is stored here. In other words,

you can see everything that will be loaded on your target.

Package Directory: source rpm and its QPD descriptor for all packages provided by Qplus-P.

You must select target architecture and specific board name of your target.

Architecture: Select target architecture. Currently only arm and i386 are provided

Board: Select specific board name of your target.

List of items in this window may be different as your BSP installation.

If you found proper item, press ‘Finish’ button. Then Target Builder will create project directory for your

target.

Notice : It can takes up to several minutes. Please wait for a while.

1.4. User Interface of Target Builder

Figure 3 is initial window after project is loaded.

 - 11 -

 ETRI Proprietary

Basic

option

information Configuration

Tree

Extended

option

information

Build log

Figure 3. Project loaded window

Developers can navigate and click the configuration tree. Various property information are shown in right

side of the window. When (s)he start to build the system, build log will be displayed in the bottom box.

1.4.1. Configuration Tree
In Target Builder all configurable options are provided in single configuration tree. That includes kernel,

applications, board specific options, etc.

Developer can configure his/her target system through navigating this tree.

Tree structure

Configuration tree three major parts:

kernel configuration, system configuration, and

target. Configuration. Kernel configuration part

has similar structure with normal Linux

configuration and system part has options regarding to application packages. Target part is for target

specific options such as network address and booting method. Each part will be explained in following

sections.

 - 12 -

 ETRI Proprietary

1. Linux Kernel Configuration System

Linux kernel configuration section is based on Eric Raymond’s CML2 rules file of standard Linux

distribution.

2. System Configuration

 - 13 -

 ETRI Proprietary

Indicates the package is

selected

Indicates the package is

not selected

You can configure entire system applications and libraries provided by Qplus-P in the ‘System

Configuration’ section. Each package is categorized based on its group.

Icons of each package shows whether it is selected or not. means it’s selected and means

it’s not selected. Each package can have sub configurations. For example, ‘busybox menu’ is submenu of

‘busybox’ package. Unlike packages (deb or rpm) in normal Linux distribution such as Redhat or Debian,

package in Qplus-p can be configured more finely through the submenu.

Notice::

Submenu of each package is only displayed when the package is selected.

3. Target Configuration

 - 14 -

 ETRI Proprietary

Target Configuration deals with target specific information such as network address and deployment

method.

Set value of each option

Point an item that you want to configure and press right button of your mouse. Then you can see a

popup menu. Contents of popup menu will be different with the value type of the item.

In the case of BOOL type, you can select “Enable” or ”Disable” . For TRIT type(modulable kernel

option), you also can select “Enable in Module”. For other types (CHOICE, STRING, DECIMAL,

HEXA), a dialog box will be launched to set proper values of each type.

You can see the type and value of each item through icon.

 : BOOL or TRIT type and Enabled.

 : BOOL or TRIT type and Disabled

 : TRIT type and Enabled in Module

 : Other types (Not bool or trit type). Values is

displayed inside ‘{ }’

Incremental disclosure of hidden items

Target Builder shows options incrementally. It means that you can start configuration from small set of

options and when you enable an option related options, Target Builder show related options that you just

enabled.

 - 15 -

 ETRI Proprietary

In the above picture, submenus of tinylogin package is only shown when the package is enabled.

1.4.2. Basic Option Properties

Basic option property

It shows basic properties of selected option. Displayed properties are as follows

Symbol name: CML2 symbol name of the option

 - 16 -

 ETRI Proprietary

Prompt Message: Simple description

Type: Type of the option. There are BOOL, TRIT, CHOICE, STRING, DECIMAL and HEXA types.

Value: Value of the option

Size: Size of a package including sub options. Only meaningful for package option.

Provide: provided symbol of this item. It is used to prevent conflict.

Export symbol: exported symbol name, which will be stored as a file. (It’s special for a busybox and a

tinylogin package).

1.4.3. Extended Option Properties

Extended option properties let you know about more detailed description, list of files to be installed

and dependency of each option. And ‘

dependencies

File list

Online Help

Build Log

Help Tab

This tab shows detailed description of the selected item.

 - 17 -

 ETRI Proprietary

File List Tab

File list to be installed. It includes files in selected sub items. For example, the following picture

shows that tcpwrapper package install 3 files (/sbin/tcpd, /sbin/safe_finger, /sbin/try-from) to the target

system.

If you select top-level item Qplus-P Configuration you can see the whole file list of your target root

filesystem.

Dependencies Tab

This tab shows dependency information of each item. Refer section 2.7.

1.5. Save and Load

1.5.1. Save

Each project has its configuration file (config.out) in the project directory. Target Builder stores whole

configuration in the file and when you open a project Target Builder will load last configuration status

from the file, config.out

Notice: Configuration states are automatically stored when you close project or start to build. Also you

can save it anytime using save menu, File > Save.

1.5.2. Save as and Load
You can save and load configuration state at arbitrary file.

Save As

File > Save As : stores current configuration information on the given file name.

Load

File > Load : loads configuration information from a selected file.

 - 18 -

 ETRI Proprietary

1.6. Search
Target Builder provide powerful search feature. You can search items, which contain a given word in help

text, symbol name, or prompt message.

1.6.1. Search Symbols (Alt+F8)
This feature enables you to find items that contain given string in the prompt message or symbol name.

For example you can find all item that contain ‘PCI’ in the symbol name or prompt message.

Select Navigation > Search symbols in the menu

type ‘PCI’ in the message box.

Search result window will be created. If you double click an item, point will be located to the item in the

configuration tree.

 - 19 -

 ETRI Proprietary

1.6.2. Search help
Same as Search Symbols except it tries to find a given string in the help text.

1.6.3. Goto
You can use this feature when you know exact name of symbol and you want to know where the symbol

is in the configuration tree.

1.7. Dependency
Many configuration items have dependencies. For example, X-window or syslog daemon requires

‘unix domain socket’ feature of kernel configuration to be enabled. This kind of dependencies can be

described through QPD or CML2 language.

Target Builder shows dependencies of each item through the ‘Dependencies’ tab and you can go-to

dependent item directly by clicking the mouse.

Dependencies

1.7.1. Logical expression of dependencies
Dependencies are shown in logical expression form and describe the predicate of safe state. Logical

operators that are used in the expression are like below.

and

 - 20 -

 ETRI Proprietary

or

not:

== , !=, > , < , >= , <=

Implies (means ⊃ or →)

For a real example, If you select ‘Unix Domain Socket’ item in the configuration tree you can

see following 2 dependencies in the dependencies tab.

.

(‘include syslogd’ implies (’unix domain socket’ == y))

(‘tinyx’ implies (‘unix domain socket’ == y))

The first line means, enabling ‘include syslogd’ option implies ‘unix domain socket’ should be

true. In other word, ‘unix domain socket’ option is needed to be true to enable ‘include syslogd’

option. The second line is similar with the first line. Underlined blue is prompt message of each

configuration option and you can click it to go to that option to see what this option is.

1.7.2. Dependency violation
Target Builder checks dependency-violation every time you change a value of any option item.

In case of violation, it reports what causes the violation.

In the example of previous section, there are dependencies between ‘unix domain socket’ and

‘tinyx’. If you try to disable ‘unix domain socket’ option while ‘tinyx’ is enabled, it violates the

dependency rules. Therefore, you can see message box like following figure.

1.8. Build
This section explains about compiling kernel and applications and generation of target root filesystem.

 - 21 -

 ETRI Proprietary

There are following menu items in the build menu.

Build Kernel: compile kernel only when you have made any change in kernel configuration from last

time kernel build. Build > Build Kernel

Build Kernel –Force: compile kernel anyway. Build > Build Kernel –Force

Build Applications: compile packages in system configuration tree. Not every packages are compiles, but

only packages which you have changed compile related configuration (compile flag, …). Build > Build

Application

Build Root filesystem: generate root filesystem in <projdir>/target/rootfs. This directory contain fully

functional root filesystem image. Depending on your target configuration target specific configuration

such as network address and boot scripts are also generated.

Build All: Do ‘Build Kernel’, ‘Build Application’, and ‘Build Root Filesystem’ in sequence. It is

probably most user want to do. You can do this from the menu or you can use short-cut <F8> function key.

Build Target deployment image: process root filesystem depending on your deployment method and your

BSP. For example, if you choose initial ramdisk deployment method in i386/generic BSP, Target Builder

will generate Etherboot image, which include kernel and ramdisk image of your target root filesystem.

Refer to BSP documentations of your board.

Stop: stop the current build. Build > Stop

Warning : clicking ‘Stop’ menu doesn’t mean immediate stop. Currently, it can stop at several

checkpoints. we recommend wait a while for safe stop.

 - 22 -

 ETRI Proprietary

2. Target Image Generation

In the previous chapter, we described brief introduction of Target Builder. In this chapter, we

describe practical usage to create kernel and target root filesystem.

2.1. Kernel and Package Configuration
When you create a new project Target Builder will load a default configuration of the selected BSP.

The default configuration is tuned to fit for most users. Therefore you may don’t need to modify anything

except target specific configuration such as network address. Later you can configure the target from the

default configuration to optimize for your target system. Therefore, in this section we only discuss target

specific configuration. For kernel and each package configuration, please refer to online help.

2.2. Network Configuration
This is generic TCP/IP network configuration. For now only static-IP configuration of single Ethernet

interface is supported. But you can easily extend to support various type of network configuration such as

dhcpd or multiple adapter configurations. Figure 1 shows network configuration menu in the Target

Builder. You can configure this by doing as follow.

- Enable ‘Target Configuration > Using Static IP’

- Set proper values of ‘Static IP Configuration submenu’

� ‘Eth0 device name’ section is only used when you select your Ethernet device driver as a

module. If you included the driver in the kernel, you can leave this field empty.

 - 23 -

 ETRI Proprietary

Figure 1. Network Configuration

2.3. Library Optimization
Target Builder provides following two methods of library optimization.

File level optimization

If you enable this option, While generating target system image, Target Builder inspects all

executable files and remove unnecessary shared libraries to execute them. This is simple and most useful

for most of system.

Symbol level Optimization

If you enable this option, Target Builder further optimizes share libraries in symbol level. It means

that only needed symbols are included for each shared library. However this takes a long time and only

glibc library can be optimized for now.

 - 24 -

 ETRI Proprietary

Figure 2. Library optimization

For most case, file level optimization will be enough. If size is really matter you can use symbol level

optimization. However, if you enabled symbol level optimization, whenever you add new executables on

your root filesystem, you must regenerate whole root filesystem using Target Builder.

Warning: Symbol level optimization have bug for now. It will be fixed in a near future.

If you want to leave specific library files untouched, write down those library names in

<projdir>/piclib/keeplist file.

lib/libnss_files-2.2.3.so

lib/libnss_dns-2.2.3.so

Example of keeplist file

2.4. Build
In this section, we will describe how to build kernel and applications.

 - 25 -

 ETRI Proprietary

2.4.1. Build All
Select following menu (shortcut is F8)

Build > Build All

This procedure build everything and generate fully functional root filesystem image. In fact, this

procedure calls Build Kernel, Build Applications, and Build Root Filesystem in sequence. Each procedure

will be explained in the following sections. This doesn’t recompile everything but compile only selected

components that have changed its configuration from the previous build. Therefore, it doesn’t take much

time and you may not want to use other build menu if you know exactly what you are doing.

You can see build log in the Build Log tab at the bottom of Target Builder.

We will explain other build menu in the following sub sections.

Build Kernel

This will compile kernel and leave kernel image on <projdir>/target/kernel directory and modules on

<projdir>/target/usersupp/lib/modules/<kernelver> directory. Because this procedure compares current

state with previous build time state, if you didn’t changed kernel configuration, it does nothing.

 - 26 -

 ETRI Proprietary

Build Kernel – Force

Same as Build Kernel except this doesn’t compare state change. Always do kernel compile.

Build Application

Build every selected package in the System Configuration section of tree. Like Build Kernel, it also

compares current state with previous build time state. Therefore a package will be compiled only when

the state have changed. Moreover, if you changed a option which does not related with actual compilation

such as file list related option, then it doesn’t recompile the package and only affected files will be

installed (or uninstalled) while generating root filesystem.

Build Root Filesystem

This procedure generate root filesystem directory of target on <projdir>/target/rootfs directory.

Detailed procedures are as follows.

- Installing compiled applications (via Build Applications) on the <projdir>/target/rootfs

directory

- Generating basic configuration files or boot scripts (e.g. /etc/rc.d/rc.sysinit) based on your

configuration.

- Library optimization (if selected)

 - 27 -

 ETRI Proprietary

3. Deployment to Target (i386/Generic)
‘Deployment’ means to transfer kernel, root file system image which were generated by build process to

the designated target system.

In this chapter, we will explain deployment methods in the case of generic PC environment which uses

i386-generic BSP.

3.1. Host Requirement
First of all, you needs a target system(i386 based PC) and a host PC runs on Linux(strongly recommends

Redhat 7.1 or later). Both target and host system should be connected via Ethernet LAN.

You have to check below functionalities in the host system.

1) Support of loopback device

Execute following commands with root permission.

dd if=/dev/zero of=diskimage count=1024

mkfs.ext2 diskimage

mkdir mntptr

mount –o loop disimae mntptr

If all sequences are executed successfully, it means loopback device is supported.

2) Support of minix filesystem

Execute following commands with root permission.

modprobe minix

cat /proc/filesystem

if there’s a ‘minix’ item in the result, it means minix filesystem is supported.

3) Installed dhcpd or not

check /usr/sbin/dhcpd file.

4) Installed tftpd or not

check /usr/sbin/in.tftpd file.

 - 28 -

 ETRI Proprietary

5) support nfs server or not

check “/etc/init.d/nfs start” command if it executed or not

3.2. Making Etherboot boot floppy disk
Using Etherboot, i386 based target system can download its kernel, root file system from a host system.

‘<projdir>/tools/etherbooimgs/’ directory has etherboot floppy disk images for diverse network card or

you can download it from http://rom-o-matic.org. You can find a file with .lzdsk file extension

correstonding to your target system’s network card. Then do the following jobs to make a bootable

etherboot floppy disk.

1) insert floppy disk.

2) execute, ‘dd if=<device name>.lzdsk of=/dev/fd0’.

3) insert the boot floppy disk to the target system, and boot it.

While booting, etherboot will send bootp request after searching the network card. Refer to section 4.4 for

the network configuration of the host system.

When target system boots using etherboot disk, it displays MAC address of the
network card. You have to remember it, because it will be used later for dhcpd
configuration which will be explained in the next chapter.

3.3. Making Etherboot bootable CD-ROM
‘<projdir>/tools/etherbooimgs/’ directory has etherboot cdrom images for diverse network card or you

can download it from http://rom-o-matic.org. You can find a file with .iso file extension correstonding to

your target system’s network card. Then do the following jobs to make a bootable etherboot cdrom.

1) make <devicename>.iso file into bootable CD-ROM with CD-Writer.

2) configure first boot method to CD-ROM in the BIOS of target system.

3) insert the boot floppy disk in the target system, and boot the target system.

3.4. Host system configuration for Etherboot
Host system should have proper set up for network daemons needed for etherboot. DHCPD, TFTPD and

NFSD are required for etherboot.

3.4.1. Configuration of DHCPD
Configure /etc/dhcpd.conf file as following example. ‘hardware ethernet’ is a MAC address of target

 - 29 -

 ETRI Proprietary

system , and ‘fixed-address’ is an IP address of target. ‘filename’ is a name of bootable image of

kernel and root filesystem generated by Target Builder.

After the modification, restart dhcpd daemon by typing, ‘/etc/init.d/dhcpd restart’.

subnet xxx.xxx.xxx.0 netmask 255.255.255.0 {

host homeserver {

 hardware ethernet xx:xx:xx:xx:xx:xx;

 fixed-address xxx.xxx.xxx.xxx;

 filename qplusp.etherboot

}

}

Example of /etc/dhcpd.conf file

3.4.2. Configuration of TFTP daemon
Modify disable record in ‘/etc/xinetd/tftp’ file to ‘no’ like below example.

After the modification, restart xinetd daemon by typing, ‘/etc/init.d/xinetd restart’.

service tftp

{

 .

 disable = no

 .

}

Example of /etc/xinetd.d/tftp

3.4.3. Configuration of NFS server
You should modify ‘/etc/exports’ file according to your environment. Following example shows that

‘/tftpboot/X.X.X.X’ directory is exported to outside.

After the modification, restart NFS daemon by typing, ‘/etc/init.d/nfs restart’.

/tftpboot/129.254.xxx.xxx(rw,no_root_squash)

Example of /etc/exports file.

 - 30 -

 ETRI Proprietary

3.5. Deployment with initrd root filesystem
Now, all setup required for Target Builder was finished. From this section, we will explain how to

configure diverse method of deployment using Target Builder.

 Initrd is a ramdisk image of target root filesystem. Because ramdisk has size-constraint of

4M~8M, deployment using initrd root filesystem is useful for small target system(in memory size).

The follow steps show how to deploy using initrd

1. Select ‘Use Initrd as a root filesystem’ option.

Figure 2. Inird deployment option

2. Select Build > Build All in the menu.

Although execute ‘Build’ in kernel or application configuration, execute ‘Build All’ in the menu

again, because kernel or application program configuration can be changed by deploy option.

Following figure shows you dependency rules related to ‘Use Initrd as a root filesystem’ option.

If you select initrd deployment method, ‘RAM disk support’ and ‘Initial RAM disk (initrd)

support’ option in the kernel will be enabled automatically.

Figure 3. Dependency rules to be check with initrd deployment method

3. Select Build > Deploy Target Image in the menu

If it’s successful, you can find etherboot image comprising kernel and initrd in

‘tftpboo’/qplusp.etherboot’

 - 31 -

 ETRI Proprietary

Separate kernel and ramdisk image can be found also in ’<projdir>/target/kernel/qplus’

and ’<projdir>/target/rootfs.img’ file respectively.

4. Check DHCPD and TFTPD are working on you host system.

Refer to section 4.4 for the setup of the services.

5. Boot the target system.

Check etherboot bootable floppy or CD-ROM is inserted(see the section 4.2 and 4.3). After

booting, ‘qplusp.etherboot’ file will be downloaded from the host system and conventional linux

boot procedure will follow(if your target system has no VGA and keyboard, use serial console.

Ensure ‘Use serial console’ option enabled for this purpose).

3.6. Deployment with NFS

This deployment method uses a particular directory of a host system as a root directory of a target system

via network connection. This a very useful method in the development stage, because you can add, delete

and modify files in the host system easily.

The following steps show how to deploy using NFS root filesystem.

1. Select ‘Use NFS root filesystem’ option, and then select sub-options (nfs server configuration).

Figure 4. NFS deployment option

If you select ‘Use NFS root filesystem’ option, two optons, ’Syncing targetnfsroot with project’

and ‘NFS root filesystem’, will come out. ’Syncing targetnfsroot with project’ option makes

Target Builder to synchronize the contents of newly generated target root filesystem(in

<projdir>/target/rootfs) and exported NFS directory(including sub directories) using rsync

command. If the option is not selected, Target Builder generates only a tar archive file with the

generated target root filesystem.

 - 32 -

 ETRI Proprietary

‘NFS Server IP address’ in the NFS root filesystem menu is for an IP address of NFS

server(generally, will be host system running Target Builder). ‘NFS root directory’ option is for

a directory exported by a NFS server. These options’ value is used as basic configuration

information about NFS server in booting target system.

2. Execute Build > Build All in the menu.

3. Execute Build > Deploy Target Image in the menu.

Now, ‘tftpboot/qplusp.etherboot’ file is generated, and target root filesystem is

generated also according to the result of the configuration above. If ’Syncing

targetnfsroot with project’ option is selected, exported NFS root directory will be

updated, otherwise ‘/tftpboot/rootfs.tar.gz’ file will be generated. ‘rootfs.tar.gz’ file

needs to be extracted by hands.

Fig 5. logging display when nfs deploy

4. Confirm NFS server configuration.

Confirm whether root file system directory name installed in the host system is exported or not.

You can refer to the section 4.4.3 for details.

5. Booting the target system.

The following messages will be displayed in the boot process (through monitor or serial calbel).

1) Using following default configuration

serverip = <default serverip>

nfsrootdir = <default nfsrootdir>

2) Manual configuration

 - 33 -

 ETRI Proprietary

x) Exit to shell

>> 1

Check all values are collect, and choose ‘1’ if it does otherwise choose ‘2’.

3.7. Installing to the hard disk of target system
Using this method, you can download target root filesystem image and install it to the hard disk in

the target system. After the installation, the target system can boot stand-alone.

The following steps show how to do that.

1. Select ‘Install to target system’ option

2. Execute Build > Build All in the menu.

3. Execute Build > Deploy Target Image in the menu.

Check if the following files are created.

/tftpboot/qplusp.etherboot Å kernel + initrd for Target Installer

/tftpboot/qplus Å user built kernel to be installed

/tftpboot/rootfs.tar.gz Å root filesystem to be installed

4. Check DHCPD and TFTPD are running correctly on the host system.

Refer to section 4.4.1 and 4.4.2 for details.

5. Boot the target system.

6. The following messages will be displayed in the boot process (through monitor or serial calbel).

Select ‘1’.

1) ethernet install

2) serial install

r) reboot

c) set to defaults

x) start shell

 - 34 -

 ETRI Proprietary

>> 1

7. Set the value of ‘Remote host address’ and install configuration file name (default is

‘install.conf’).

Remote host address: 129.254.180.120

remote host address is 129.254.180.120; is this ok? (y/n/q): y

config name: install.conf

config name is install.conf; is this ok? (y/n/q): y

Getting install configuration

Preparing target device

.

Downloading target root filesystem..

Downloading target kernel..

Run LILO? (y/n): y

..

Table 1. Target Installer Ethernet install configuration

8. After proper installation, push ‘R’ key in the main display and reboot. At that time, make sure

the floppy disk or CD-ROM is ejected.

3.7.1. update method after installation
Execute following command in the target system.

/sbin/qp_update

You may find detailed information in the Manuals/remote_update.txt file of Qplus-P release.

 - 35 -

 ETRI Proprietary

4. Deployment to Target (Arm/Zaurus)

 - 36 -

 ETRI Proprietary

5. Deployment to Target (Arm/iPAQ)

 - 37 -

 ETRI Proprietary

6. Deployment to Target (Arm/Samsung
SDMK2400)

This chapter explains how to make and deploy target image for Samsung SMDK2400X (ARM920T

based), and how to use its bootloader for booting. The BSP for SMDK2400 should be installed.

6.1. Boot Loader
Original boot loader for SMKD2400 provided by Samsung has very limited usage, so Target Builder

provides a more powerful and flexible one. You can both replace a original bootloader with a Target

Bulider’s and use the new one with the original.

Target Builder BSP for SMDK2400 comprises bootloader images in

/opt/q+esto/bsp/arm/s3c2400/tools’ directory.

netboot-0.5-ram.bin

This loader can download a target image through serial port, but built-in boot image in

24xmon package must be used.

netboot-0.5-rom.bin

This loader can download a target image through network, but new loader must be burned on

flash in place of built-in boot loader.

Target Builder’s bootloader is can be use to load not only Linux image but other images also.

Notice: SMDK2400 boards have no EEPROM which is used to store MAC address, it is a critical

problem for using BOOTP/DHCP protocols. For this bug, you should isolate your target/host system’s

network connection physically from outside, otherwise DHCPD may have a severe problem in searching

the board based on the MAC address.

6.1.1. Running netboot from RAM
Using this method, you can download Target Builder’s bootloader with the original one.

Do as the following steps.

- Run “dnw.exe” program which is included in SMDK2400’s package you bought. (windows host

is required. Sorry~~~).

- Set the COM port configuration to <COM1, 115200 baud rate>.

 - 38 -

 ETRI Proprietary

- Power on and boot your target board

- After “dnw.exe” program completes test of target memory, select “netboot-0.5-ram.bin” in

‘Serial Port/Transmit’ Menu to load new boot loader image into ram.

Figure 1 shows the screen of above procedures.

Figure 1. bootloader

Here are list of bootloader’s commands.

help

boot

Jump to and run the address which is saved in ‘kernel-addr’ environment variable.

dn <filename> <address>

Downloads host’s <filename> to target’s <address>.

 - 39 -

 ETRI Proprietary

tftp

Download files of name in ‘kernel’ and ‘ramdisk’ environment variables, and locate them to the

address in ‘kernel-addr’ and ‘ramdisk-addr’ environment variables respectively.

It does the same as,

Dn <kernel.> <kernel-addr>

Dn <ramdisk> <ramdisk-addr>

Jump <address>

jump to <address>

printenv

Print all or part of environment. The following is default setting value for boot loader

setenv <param> <value>

Changes or adds an environment variable.

6.1.2. Running netboot from flash (Programming flash memory for new boot
loader)

If you wish to use new boot loader in stead of built-in loader, you erase old boot loader from flash

memory and rewrite “netboot-0.5.rom.bin” onto flash using 24xtest’s module. We recommend that you to

use a new boot loader. Because new boot loader modify and improve built-in loader in order to support

networking. If you want to keep old loader, skip this chapter and refer to section 4.1.1.

The steps of burning flash is as follows

1. Power-on, boot your target board

2. Download “24xtest.bin” using DNW

3. Choose ‘Prog Flash’ .

 - 40 -

 ETRI Proprietary

4. Download “netboot-0.5-rom.bin”

Write will continue to the address of 0x80000

Notice: You must select AMD flash type. Netboot only works correctly in AMD flash type

5. Reboot target board

6.2. Deployment with Initrd root
Now, all setup required for Target Builder was finished. From this section, we will explain how to

configure diverse method of deployment using Target Builder.

Initrd is a ramdisk image of target root filesystem. Because ramdisk has size-constraint of 4M~8M,

deployment using initrd root filesystem is useful for small target system(in memory size).

The follow steps show how to deploy using initrd

1. Choose ‘Use Initrd as a root filesystem’ option.

 - 41 -

 ETRI Proprietary

Figure 2. Inird deployment option

2. Choose “Build > Build All” in the menu.

Although execute ‘Build’ in kernel or application configuration, execute ‘Build All’ in the menu

again, because kernel or application program configuration can be changed by deploy option.

Following figure shows you dependency rules related to ‘Use Initrd as a root filesystem’ option.

If you select initrd deployment method, ‘RAM disk support’ and ‘Initial RAM disk (initrd)

support’ option in the kernel will be enabled automatically.

Figure 3. Automatic dependency checking related initrd

3. Choose “Build > Deploy Target Image”

After previous step completes, this deployment method creates kernel image and ramdisk image

in “/tftpbot” directory.

/tftpboot/ss-kernel Å kernel image

/tftpboot/ss-ramdisk Å ramdisk image

Notice: The size of ramdisk supports upto 8M. if you want to use a larger image (more

than 8M), you must use NFS deployment method,

 - 42 -

 ETRI Proprietary

Figure 4. Initrd deploy log

4. Check DHCPD and TFTPD are working on you host system.

Refer to section 4.4 for the setup of the services.

5. Power on, boot your target board to starting boot loader program

For more information of operating Netboot , refer to chapter 6.1

 - 43 -

 ETRI Proprietary

Figure5. The screen of starting boot loader

6. Check addresses and file names using ‘printenv’ command

The above picture shows that ss-kernel and ss-ramdisk are going to be downloaded at kernel-

addr(0x0cf00000) and ramdisk-addr(0x0c800000) respectively.

7. Type “tftp” command

 - 44 -

 ETRI Proprietary

8. Type ‘boot’ command

 After all steps are completed, you will see the following screen of ‘QPlus-P’

Figure 6. Initial Screen of QPlus-P after successful booting

6.3. Deploy with NFS root
This deployment method uses a particular directory of a host system as a root directory of a target system

via network connection. This a very useful method in the development stage, because you can add, delete

and modify files in the host system easily.

The following steps show how to deploy using NFS root filesystem.

1. Select ‘Use NFS root filesystem’ option, and then select sub-options (nfs server configuration).

 - 45 -

 ETRI Proprietary

Figure7. nfs deployment option

If you select ‘Use NFS root filesystem’ option, two optons, ’Syncing targetnfsroot with project’

and ‘NFS root filesystem’, will come out. ’Syncing targetnfsroot with project’ option makes

Target Builder to synchronize the contents of newly generated target root filesystem(in

<projdir>/target/rootfs) and exported NFS directory(including sub directories) using rsync

command. If the option is not selected, Target Builder generates only a tar archive file with the

generated target root filesystem.

2. Choose Build > Build All in the menu.

3. Choose ‘Build > Deploy Target Image’

NFS deployment creates the following files in /tftpboot directory.

/tftpboot/ss-kernel Å kernel image

/tftpboot/ss-ramdisk Å ititrd image for booting via NFS

/tftpboot/rootfs.tar.gz Å target’s root file system (compressed form)

 - 46 -

 ETRI Proprietary

 Figure 8. Build Log Screen of NFS deployment

The above figure shows log of deployment via NFS. This also indicates what to do next, just

follow the steps.

4. Install rootfs.tar.gz.

mkdir /tftpboot/<target root dir>

cd /tftpboot/<target root dir>

tar zxvf ../rootfs.tar.gz

6. Confirm NFS server configuration.

Check whether root file system directory name installed in the host system is exported or not.

You can refer to the section 4.4.3 for details.

7. Power on, boot your system to run boot loader program

For more information of operating Netboot , refer to chapter 6.1

8. Type ‘tftp’ command

9. Type ‘boot’ command

 - 47 -

 ETRI Proprietary

figure9. The screen of booting via NFS

If “1” is chosen, NFS services use default configuration which already specified using Target

Builder. If you choose “2”, you can set up manually NFS services related configuration files. If

you choose other number “1” or “2”, you will exit to the shell prompt.

 - 48 -

 ETRI Proprietary

6.4. Setting up host server services
Refer to section 4.4.1 and 4.4.2 for details.

 - 49 -

 ETRI Proprietary

7. Adding a custome applications to your project
Currently, our Qplus-P Target Builder supports about 60 basic application program packages. However,

these packages are only basic packages required to operate linux. Actual embedded system development

requires for us to configure and build more applications on Qplus-P Target Builder. Target Builder allows

you to place custom applications and configuration files on your target. This chapter explains how to add

a custom application to Target Builder.

 There are following two method.

- The first method is a simple way of getting your custom files onto a target. In this case, the user

directory contains custom files to be merged into the target image in the target directory after the

Target Builder’s default packages have been placed there.

- The second method is to integate your packages into Target Builder so that they can be

cofigured and built alongside the Target Builder’s default packages.

7.1. Merging your files to the target image
Target Builder generates temporary target root file system in the directory “<project

directory>/target/rootfs”. This temporary root file system is changed into loadable form and installed

onto the target.

Target Builder supports the following process to combine user application programs with this temporary

root file system.

1. Locate your files “<project directory>/target/usersupp” directory.

Note that Target Builder considers the directory “<project directory>/target/usersupp” to be root

directory of actual target system. For example, if you want to install the file “test.sh” in the

directory “/usr/bin/” of target, you should locate it in “<project

directory>/target/usersupp/usr/bin”.

2. Select ’Build > Build All’ menu

Target Builder merges the files in ‘<projdir>/target/usersupp’ into the ‘<projdir>/target/rootfs’

directory.

Warning: Note that the when the actual files are loaded into the target root file system,

ownership and permission are transmitted as they are.

 - 50 -

 ETRI Proprietary

7.2. Adding a package into Target Builder
Merging directories works well when you have a fixed set of files to place on your targets. However, this

method doesn’t provide a way for you to maintain all configuration under the Target Builder’s project

state.

Target Builder was designed to allow you to configure individual applications through a simple interface.

If you integrate your applications into Target Builder, you gain the advantage of begin able to configure

your application alongside the default packages.

7.2.1. Components of a package
Each Target Builder package consists of the following files.

file usage

SRPM file Contains source code and spec file ot the package

QPD file Contains information relevant to Target Builder

SRPM file consists of compressed sources and spec file, which explain how to compile and install them,

and generated by ‘rpm’ command. To generate SRPM, run “rpm –ba <package spec file>” after locating

spec files and compressed source files to the designated location(in case of Redhat Linux,

“/usr/src/redhat”).

Note: refer to http://www.rpm.org/max-rpm for detailed information on RPM.

QPD(Qplus Package Descriptor) is a file that has package information. To add packages, you should

describe on it how to configurable items of each package.

7.2.2. Creating a QPD file
QPD file format is a simple extension of RPM spec file. You can create it by adding options at the end of

the pakcage’s RPM spec file.

QPD file = rpm spec file + additional package information

Grammatical syntax of QPD file

The following is syntax of QPD file. QPD files should be created according to the following rules.

QPD ::= <common spec file section> <package information>

 - 51 -

 ETRI Proprietary

http://www.rpm.org/max-rpm

;; QPD file starts with the tag, ‘%package’

;; Package information is a series of options.

<package information > ::= ‘%package’ <package name>

 <option subfield >

 [<option> | <group>]*

;; Each option have name and property

<option> ::= ‘%option’ <option name>

< option subfield >

;; Group is a option that includes only simple description.

<group> ::== ‘%group’ <group name>

<group subfield>

;; Each subfield indicates properties of the option

<option subfield> ::== <prompt>

[<export symbol>]

[<files>]

[<require>]

[<provide>]

[<build_vars>]

[<help>]

<group subfield> ::== <prompt>

[<help>]

;; Simple description about option

<prompt> ::= ‘%%prompt’ <string>

;; Detailed description about option

<help> ::= ‘%%desc’ <string>

<build_vars> ::= ‘%%build_vars’ <string>

;; In case of option being chosen, macro symbols to be written on external

 - 52 -

 ETRI Proprietary

header file

<export symbol> ::= ‘%%export_symbol’ <external symbol> *

;; In case of option being chosen, list of files to be installed onto the target

<files> ::= ‘%%files’ <file name>*

;;Dependency rules

<require> ::= <logical>

;;To remove confliction between options

<provide> :: = ‘%%provide’ <symbol>*

<option name>, <package name > :: = [A-Za-z][A-Za-z0-9/]*

<symbol> ::= [A-Za-z0-9_-]*

<string> ::= '[^']*'|"[^"]*";

<decimal> ::= [0-9]+

<hexadecimal> ::= 0x[A-Fa-f0-9]+

<tritval> ::= [ymn]

<expr> ::= <expr> '+' <expr>

 | <expr> '-' <expr>

 | <expr> '*' <expr>

 | <ternary>

<ternary> ::= <expr> '?' <expr> ':' <expr>

 | <logical>

<logical> ::= <logical> 'or' <logical>

 | <logical> 'and' <logical>

 | <logical> 'implies' <logical>

 | <relational>

<relational> ::= <term> '==' <term>

 | <term> '!=' <term>

 | <term> '<=' <term>

 | <term> '>=' <term>

 - 53 -

 ETRI Proprietary

 | <term> '>' <term>

 | <term> '<' <term>

 | <term>

 | 'not' <relational>

<term> ::= <term> '|' <term> ;; maximum or sum or union value

 | <term> '&' <term> ;; minimum or multiple or intersection value

 | <term> '$' <term> ;; similarity value

 | <atom>

<constant> ::= <tritval>

 | <string>

 | <decimal>

 | <hexadecimal>

<atom> ::= <symbol>

 | <constant>

 | '(' <expr> ')'

%package, %group and %option

QPD file have three types of item, %package , %group, and %option to describe property of each

application package.

The item %package <package name> indicates the start of QPD’s own region, which describes overall

property of package and appears once for each QPD file. The item %option <option name> may have

various sub-fields, which describes the option’s properties. The item %group <group name> is one

sort of %option, which can be used to group related options. %group can have only %%desc

and %%desc properties.

Hierarchical and naming convention of options

Package, group and options have tree structure. Each package includes option and group, which can

recursively include another group and option. This recursive structure is expressed in the form of tree.

Group and option is named for tree

Each item’s name is used to show where it belongs to. Each item’s name should include all names of its

parents to the root item and they are separated using ‘/’. For example, in case that the package “foo”

 - 54 -

 ETRI Proprietary

includes the option “goo” which also includes the option “hoo”, it can be expressed as followings

%package foo <= the package “foo”

…

%option foo/goo <= the option “goo” belongs to the package “foo”

…

%option foo/goo/hoo <= the option “hoo” belongs to the option “goo”

Warning: Note that only alphabets and numbers are used for the name of package, option, and group and

they are case insensitive, because internal CML2 engine requires that.

Properties

Each item(package, option, and group) has its own property. Those properties are used (1)to inform the

user what the item is for, (2) to make a file list to be installed to the target when the item is selected.

Each items can have the following properties.

name Description applicable item

%%prompt Brief description for the item all

%%desc Long description for the item all

%%files Files to be installed to the target system if the option is

selected

package, option

%%require Dependencies of of the item package, option

%%provide Remove confliction between items. Items which provide the

same symbol can’t chosen together.

package, option

%%export_symbol Used only for busybox and tinylogin package, option

%%build_vars Patch specific strings with another string if the option is

selected.

package, option

Properties can be added to each item without order. For example, in case that the option “foo/goo” has

properties of “%%prompt, %%desc, %%files, %%require”, it is described as follows.

%option foo/goo <= the option “goo” belonging to the package “foo”

%%prompt some special option <= brief description

%%files /usr/bin/good-file <= Three files are installed on target

 - 55 -

 ETRI Proprietary

/usr/bin/bad-file

/etc/goo.conf

%%require foo/hoo ==y <= required for the option “foo/hoo” to be chosen

%%desc <= very long help

it is a very very very long long long

long~~~~~long help file.

File list

The property of file list describes list of files to be installed when each package/option item is chosen.

The following example shows if package ‘foo’ is selected, ‘/usr/local/bin/prog1’ and

‘/usr’local/bin/prog2’ files will be installed to the target.

 . . .

%package foo

%%prompt good package

%%files /usr/local/bin/prog1

/usr/local/bin/prog2

Dependency rule

Dependency of each package item can be described by ‘%%require’ property. Each item can have

dependencies on kernel and other items. Target Builder check those dependencies every time you

change the value of items and shows warning message what it is violated.

Dependencies are stated using a logical expression. The following operators can be used.

and

or

not:

== , !=, > , < , >= , <=

Implies (represents inclusion relationship such as ⊃ or →)

To identify another package item, full path name (which includes its parents recursively) of the

corresponding item is used.

 - 56 -

 ETRI Proprietary

The following example shows option ‘foo/goo/goo’ requires ‘haa/huu/hee’ option should be enable

and ‘haa/huu/hii/’ option should be disabled.

%option foo/goo/hoo

%%require haa/huu/hee ==y and haa/huu/hii ==n

Avoiding conflict between options

Some options or packages should not be chosen together. In this case, you can use ‘%%provide’

property to avoid it. Two options(or packages) exporting the same symbol can’t be enabled together.

For example, if both ‘busybox’ package and ‘procps’ package have ‘ps’ command and you don’t

want to install them together., then you can add ‘%%provide’ property to both options as the

following example.

busybox.qpd

. . .

%package busybox

. . .

%option busybox/ps

%%provide PS

. . .

procps.qpd

. . .

%package procps

. . .

%option procps/ps

%%provide PS

. . .

Above two options provide the same symbol “PS”, it can’t be chosen concurrently.

 - 57 -

 ETRI Proprietary

Controlling build option

Target Builder compiles according to information described in spec region of qpd file, not using spec

file in SRPM. And Target Builder offers the way to control compilation options in the qpd file.

‘%%build_vars’ property replaces specific string in the spec region of the QPD file in case of items.

To do this, string to be replace should be embrace with “!!” symbol, and state in ‘%%build_vars”

property what string will replace the embraced string if the the item is chosen.

For example, suppose that the package “foo” can be compiled statically by giving

“DOSTATIC=true” option to ‘make’ command. Then QPD file’s %build section should be changed

as follows

. . .

%build

make !!MYOPT!!

. . .

And ‘%%build_vars’ property states what string will replace “!!MYOPT!! string as follows.

. . .

%option tinylogin/static

%%prompt: static compilation?

%%build_vars: MYOPT=”DOSTATIC=true”

. . .

In case that the option “tinylogin/static” of the package “tinylogin” is chosen, the string !!MYOPT!!

will be replaced with the string DOSATIC=true.

Writing spec region inside QPD

The spec region of the QPD file uses the same format as is ordinary RPM spec file except the following

constrains.

z QPD doesn’t support sub package

RPM can include sub-package using %package. However, it overlaps with the tag %package

which represents start of QPD region. And also, QPD don’t support sub-package concept yet.

Therefore, modification is required for the spec files which uses generate sub packages.

z Restriction on using macros

RPM variables is not substituted in the Preamble part of QPD file. In other words, if Name is foo,

the variable %{Name} is interpreted as it is, not ‘foo’. Therefore, be careful.

 - 58 -

 ETRI Proprietary

7.2.3. Registration of SRPM and QPD file
Locate your SRPM file in <projdir>/packages/SRPM and QPD file in <projdir>/packages/QPDS

respectively. Close your current project and open it again. Now your application will appear in the Target

Builder.

7.2.4. Example
In this section, we illustrate how to write out and register simple QPD file of a simple package.

More example can be seen in <project directory>/packages

We will add package ‘foo’’ to the Target Biulder as the following sequence.

Making a SRPM file

z locate the file foo-1.0.tar.gz in the directory /usr/src/redhat/SOURCES.

z write out Spec file and locate it in the directory /usr/src/redhat/SPECS.

z execute the following command with root authority.

rpm –ba foo.spec

z foo-1.0.src.rpm was generated in the directory /usr/src/redhat/SRPMS.

Writing a QPD file

z copy above spec file and then modify file extension to foo.qpd. Then, the file will be showen as

follows.

Summary: foo is a very simple and nice program

Name: foo

Version: 1.0

Release: 1

Copyright: GPL

Group: System Environmanet/Base

 - 59 -

 ETRI Proprietary

Source: ftp://ftp.etri.re.kr/foo-1.0.tar.gz

BuildRoot: /var/tmp/%{name}-buildroot

%description

Do you nedd more explaination about this famous package

%prep

%setup -q

%build

make

%install

rm -rf $RPM_BUILD_ROOT

make PREFIX="$RPM_BUILD_ROOT" install

%clean

rm -rf $RPM_BUILD_ROOT

%files

%defattr(-, root, root)

/

z insert the item %package at the end of the QPD file.

. . .

%package foo

%%prompt foo

%%files /usr/local/bin/hoo

 /usr/local/bin/haa

%%require goo/gee == y

%%desc

foo is a very import package which has

many good functions

. . .

 - 60 -

 ETRI Proprietary

Two files ‘/usr/local/bin/hoo’ and ‘/usr/local/bin/haa’ will be installed to the target if ‘foo’ package is

selected.

In case that you want to install the file “/usr/local/hee” optionally, add options as follows.

. . .

%package foo

%%prompt foo

%%files /usr/local/bin/hoo

 /usr/local/bin/haa

%%require goo/gee == y

%%desc

foo is a very import package which has

many good functions

%%option foo/hee

%%prompt include hee command ?

%%files /usr/local/hee

%%desc

hee is a some nice file .

but you can select it optionally~~~

. . .

The following shows final QPD file. The boldfaced region was added to the original RPM spec file

to describe configuration item in QPD.

Summary: foo is a very simple and nice program

Name: foo

Version: 1.0

Release: 1

Copyright: GPL

Group: System Environmanet/Base

Source: ftp://ftp.etri.re.kr/foo-1.0.tar.gz

BuildRoot: /var/tmp/%{name}-buildroot

 - 61 -

 ETRI Proprietary

%description

Do you nedd more explaination about his famous package

%prep

%setup -q

%build

make

%install

rm -rf $RPM_BUILD_ROOT

make PREFIX="$RPM_BUILD_ROOT" install

%clean

rm -rf $RPM_BUILD_ROOT

%files

%defattr(-, root, root)

/

%package foo

%%prompt foo

%%files /usr/local/bin/hoo

 /usr/local/bin/haa

%%require goo/gee == y

%%desc

foo is a very import package which has

many good functions

%%option foo/hee

%%prompt include hee command ?

%%files /usr/local/hee

%%desc

hee is a some nice file .

 - 62 -

 ETRI Proprietary

but you can select it optionally~~~

Place of QPD and SRPM files

z copy foo.qpd into <project directory >/packages/QPDS

z copy foo-1.0.src.rpm into <project directory >/packages/SRPMS

Restarting Target Builder

 - 63 -

 ETRI Proprietary

8. Using a Targer Builer on Terminal
Environment

All basic functions of the Target Builder can be available on the shell prompt but internal function for the

Target Builer GUI. That is, user can execute all development process, from project evaluation to target

deployment, on the shell command environment. It shows that Target Builder has very flexible design

mechanism. Full description about Target Builder structure could be found on additional system design

document.

If one prefers shell environment to GUI interface or has not sufficient system resource, refer to below

description.

8.1. Project Creation

Figure.1. Project creation

1. Execute ‘mkprojct’ command.

/opt/q+esto/tc/bin/mkproject

2. Enter your project name.

1. Enter your project name

=> ttt

Select a CPU architecture

2. Enter your target architecture name

 Available architectures : arm i386

=> arm

 - 64 -

 ETRI Proprietary

3. Select a evlaution board name

3. Enter your target board name

Available boards : s3c2400

=> s3c2400

After above procedures, you can see the below message about the project creation messages on

your screen.

Fig. 2. The initial screen after project evaluation

4. Execute QPLUS.sh

QPULS.sh sets environment variables for Target Builder.

. QPLUS.sh

or

source QPLUS.sh

8.2. System Configuration
CML2 rule files can be used with any configurator which understands how CML2 rules works.

Target Builder with a GUI interface is a sort of CML2 configuratior with extended functionalities. But all

CML2 configurator generates result of configuration in the same file, ‘config.out’ in your project

directory.

 - 65 -

 ETRI Proprietary

In this section we will explain other CML2 configurators, which runs in shell prompt environment.

8.2.1. menuconfig
The menuconfig configurator of CML2 was shown in Fig. 20. It has the same configuration items as

the Target Builder’s one. Perform the kernel, system and target configuration. Refer to Target Builder

user’s guide for each item.

Fig.3. Menuconfig

Fig.4. Kenel configuration with menuconfig

 - 66 -

 ETRI Proprietary

Fig.5. System Configuration with Menuconfig

Fig.6. Target Configuration with Menuconfig

8.2.2. xconfig
Xoncifg is another TK based CML2 configuratior..All configuration items are identical.

 - 67 -

 ETRI Proprietary

Fig.7. Xconfig

8.3. Target Image Generation
To build kernel and applications, just type as follows.

make

This does the same job as ‘Build > Build Al’l menu in the Target Builder GUI. It compiles modified

one only, so compilation does not take a long time.

Alternatively, you can build kernel and root filesystem separately as the following shows.

make kernel

#make rootfs

Final build result can be found in

<projdir>/target/kernel/qplus <= kernel image

<projdir>/target/rootfs.tar.gz <= target root filesystem

 - 68 -

 ETRI Proprietary

If you want to control the building process sophistically, you can use kernel.py, buildpkgs.py,

mkrootfs.py. Usage description of these can be found by typing with ‘-h’ option.

8.4. Target Deloyment
The method to deploy the image to the target is shown in following command.

make install

It executes <projdir>/tools/targetinstall shell script intenally. So if you want to extend the

functionality of Target Builder, you need to modify it.

If no problem, you will meet the following confirmation messages shown in Fig. 8 that describes the

target booting methods. One need to read and follow the messages displayed.

Fig.8. NFS deployment instruction

 - 69 -

 ETRI Proprietary

