
by Andrey Filippov, Ph.D.
President
Elphel, Inc.
andrey@elphel.com

Just recently, Gordon Moore “renewed” his
law for another decade, predicting that the
density of integrated circuits will continue
to double every 18 months. At this daunt-
ing pace, how is it possible to keep up with
the ever-growing challenges of electronics
design? One answer is to effectively reuse
what others have done before, so you can
focus on the really new issues.

The growing number of successful
adoptions of the Free Software and Open
Source Software (FS/OSS) development
models has proved the effective reuse of
software in applications development.

Xilinx programmable logic devices rep-
resent a “frontier” between the hardware
and the software worlds. They offer a
unique opportunity to apply FS/OSS solu-
tions to hardware design.

I strongly believe that the potential for
successful applications of the FS/OSS
models to hardware design is even higher
than for software itself – you can always
make a profit by selling the actual hard-
ware. In this article I’ll show how this
approach helped me to create a high-
speed, high-resolution network camera (a
class of cameras that do not need addition-
al computers to serve digital images and
video over the LAN or the Internet).

Background
I had my first experience with
GNU/Linux less than two years ago when
I realized I would have to program the net-
work cameras I designed around the
ETRAX100LX processor. The processor,
made by Axis Communications AB, was
optimized for running GNU/Linux.
Having the experience of designing many
microprocessor-based systems that were
mostly programmed in assembly lan-
guages, I was really amazed that in just a
couple of weeks my camera was able to
serve JPEG images over a LAN using
HTTP protocol. It was possible to control
acquisition and view images using any
standard web browser.

Looking to bring the Free Software/Open Source Software movement
into the realm of hardware design, Andrey Filippov built a low-cost,
high-performance network camera using a Spartan-IIE FPGA and free
WebPACK development software from Xilinx.

How to Use Free
Software in FPGA
Embedded Designs

00 Xcell Journal Summer 2003

That Model 303 camera combined soft-
ware from multiple sources – GNU/Linux
itself, specific code for the ETRAX plat-
form, and many, many others. I just had to
add specific drivers for my hardware and
modify some of the existent programs.
What impressed me the most was the ease
of navigation in big, third-party software
systems where I could find just the right
place to insert small patches of code to
modify functionality.

Being primarily an electronics designer, I
started to think it was possible to make sim-
ilar productivity enhancements to the hard-
ware/FPGA part of the camera system.

Design Goals
Starting the design of a new camera –
Model 313, shown in Figure 1 – I had the
following goals in mind:

• A high-performance, simple network
camera that fully supports the frame
rate/resolution of megapixel CMOS sen-
sors. That means 15 fps at 1280x1024
resolution (or proportionally, 60 fps at
640x512 resolution, for example).

• Use a reconfigurable FPGA for image
acquisition/processing/compression –
as opposed to two specialized ASIC
chips and one-time-only programma-
ble devices (as was used in the model
303 camera). That goal came from the
following requirements to:

– Simplify the product development.
I estimated if that if I were to com-

I did not use that IP, however, because it
would prevent me from having an open
source design. So, I just used the IP specs as a
temporary substitute for my own lack of
expertise in Xilinx devices.

Knowing that my project was doable in
terms of hardware, I downloaded for free
WebPACK™ 4.2i software from the Xilinx
website to try it out. I wanted to see if there
was anything else I was not aware of, at the
moment, that would prevent me from follow-
ing my plan.

To get some initial experience with both
Xilinx devices and software, I read Xilinx
Application Note XAPP610 and decided to
try an 8x8 DCT core (needed for JPEG
compression). The application note provid-
ed Verilog sources, which allowed me to
synthesize, map, and place-and-route the
design – but I had problems trying to simu-
late the design.

It turned out that the “lite” version of a
third-party simulator bundled for free with
the WebPACK software had limitations on
design complexity. The most obvious prob-
lem was the 500-line limit on the source code.
The XAPP610 DCT implementation alone
was bigger, but I was able to try simulation by
removing comment lines and combining
multiple lines into one.

The “lite” simulator did run, but that
workaround trick would not work for my
complete project, so I had to forget about that
simulator and use something different.

All the rest of the WebPACK software
worked just fine for me. Eventually, I was able
to utilize more than 98% of the chip’s
resources to meet all of my timing constraints.

System Architecture
Now that I knew I could fit my design to a
Spartan-IIE, I switched to the schematic
and PCB design. The Model 313 camera
consists of two boards, shown in Figure 2.
The small board has just the CMOS image
sensor and closely related circuitry.

The main board consists of a 1.48 by
3.50 inch, four-layer PCB that has the fol-
lowing principal components:

• 32-bit, 100 MHz processor
(ETRAX100LX, Axis
Communications) running a

pletely troubleshoot a one-time pro-
grammable FPGA by simulation, it
would be too difficult and time con-
suming. On the other hand, the
Xilinx Spartan™-IIE XS300E chip
was five times higher (in gate count)
than the biggest anti-fuse FPGA I
was able to design. Having the
option to switch between simulation
and actual hardware testing proved
to be much more efficient.

– Make the system flexible with
upgradeable “hardware” algorithms
in the same way as it is done with
software – this would significantly
increase the lifespan of the product.

– Increase the number of possible
product applications by providing a
customizable development platform.

• Use free, downloadable development
tools so you could customize my prod-
uct without spending thousands of
dollars on software.

Selecting the Right FPGA
When I started to think about the new cam-
era design, my only FPGA experience was
with anti-fuse devices of up to 60K gates. So,
I was open to consider different FPGAs that
matched my design goals. (At that point, I
was not even sure it was possible.)

Soon I came upon a good candidate. It
was the largest (at that time) member of the
Xilinx Spartan-IIE family – a 300K-gate
XS300E.

To find out if the XS300E was
capable of handling JPEG com-

pression of 1.3 megapixel images
at 15 fps, I “window-shopped”
for commercial IPs that per-
formed similar tasks. I was able
to find some device utilization

specs that indicated that I would
have enough room to implement

all the functions I needed: frame buffer
SDRAM control, image fixed patter noise
elimination, color space conversion, and
CPU interfacing.

Summer 2003 Xcell Journal 00

Figure 1 - Model 313
Elphel network camera

GNU/Linux operating system. The
processor has multiple embedded
peripherals, including a network MAC.

• 10/100 Mb Ethernet PHY
(BCM2521A4KPT, Broadcom).

• 16 MB (4Mx32) SDRAM system
memory (MT48LC4M32LFFC-8,
Micron).

• 8MB (4Mx16) flash memory
(MT28F640J3FS-12, Micron) used to
store GNU/Linux, applications, Web
pages, configuration files, as well as
bitstreams for the FPGA configuration.

• Spartan-IIE, 300K-gate, reconfig-
urable FPGA (Xilinx XC2S300E-
6FT256) used to control
image acquisition, pro-
cessing, frame storage in
SDRAM, image compres-
sion, and transfer to the
system memory using the
processor DMA channel.
The FPGA is configured
using JTAG pins con-
nected to the general-
purpose parallel port of
the processor.

• Image memory, 16 MB
(8Mx16) SDRAM
(MT48LC8M16LFFF-8,
Micron) connected direct-
ly to the FPGA so that
accesses do not interfere
with the system bus. This
memory is dedicated to
the image frame buffer
that is used to store both
the uncompressed image
data as well as calculated
coefficients for the on-

the-fly FPN (fixed pattern noise) elimi-
nation (subtraction of the background
frame and multiplying each pixel by its
reverse sensitivity).

• 3-PLL programmable clock generator
(CY22393FC, Cypress). This part pro-
vides fixed frequencies that have to be
available during system startup (20
MHz processor PLL input and 25
MHz for the network PHY). It also
generates two programmable clocks
that add extra flexibility for FPGA
operation (in other words, it is possible
to compare simulation results with the
actual maximal operation frequency for
any particular module).

• IEEE 802.3af compliant power over
LAN uses an isolated DC-DC convert-
er to supply 3.3V from the input 48
VDC. An additional converter pro-
vides 1.8V to the Spartan core.

FPGA Code
Most of the system functionality is imple-
mented in the Xilinx Spartan-IIE FPGA.
The code is written in Verilog HDL and is
available for download at my Elphel website
under the GNU/GPL (general public
license) license. It is designed around a four-
channel SDRAM controller that uses
embedded block RAM modules as “ping-
pong” buffers to provide quasi-simultaneous
block access for the following data sources
and receivers:

• Image data from the sensor, either
processed or raw, one- or two-bytes per
pixel, arranged as 256 (128) pixel lines

• Calibration data to the FPN elimination
module prepared by software in advance,
128x16-bit blocks

• Data to the JPEG compressor, arranged
as square blocks of 16x16 bytes

00 Xcell Journal Summer 2003

Figure 2 - Main PCB of Model 313 camera

Figure 3 - The importance of the JPEG encoder in the Spartan-IIE dwarfs the other components on the PCB.

• CPU access to the SDRAM (normally
used to read raw sensor data and write
back the calibration data for the FPN
elimination).

The JPEG encoder uses two-thirds of the
FPGA resources, as shown in Figure 3. The
encoder consists of the chain of the process-
ing modules, some of which use block RAM
for data buffering and table storage:

– Bayer-to-YCbCr converter

– 8x8 DCT based on the Xilinx
XAP610, modified to provide block-
asynchronous operation and to
increase dynamic range

– Quantizator and zigzag encoder

– RLL encoder

– Huffman encoder

– Bit stuffer.

The output data is transferred to the sys-
tem memory using the CPU DMA channel.

Results
Since the Elphel Model 313 reconfigurable,
high-resolution network camera was first
described in the LinuxDevices online maga-
zine Dec. 3, 2002 (and Dec. 4, in Slashdot),
many of the inquiries I received have been
about its open nature as a user-customizable
platform.

There are four possible kinds of cus-
tomization of the camera. Three of them are
inherited from the previous Model 303 cam-
era and are related to the open software:

1. Modification of the user interface with
Web design tools

2. Addition of new applications (or modi-
fication of existent ones) that can be
downloaded to the camera

3. Modification of the kernel (Linux) to
add new drivers.

However, only the use of the Xilinx
reconfigurable FPGA – supported by the
free-for-download ISE WebPACK develop-
ment tools – made it possible to increase the
camera performance nearly 100 times. This
hardware/software customization turned out
to be the most powerful of the four possible
types of customization:

4. Modification of the “heart” of the cam-
era – the Spartan-IIE XS300E FPGA.

As of now, the camera has only a baseline
JPEG compression algorithm implemented
in the FPGA, which can serve still JPEG
images and Apple Quicktime movies that are
made of a sequence of the JPEG-encoded
frames.

By adding new software to the camera
processor and HDL code to the FPGA, you
can use the camera for experiments with
advanced image/video compression algo-
rithms – such as 2000JPEG for better
size/quality still images or MPEG (-1, 2, 4)
for video. Additionally, you could program
the camera processor and FPGA for motion
detection, pattern recognition, particle dis-
crimination — or whatever else you may
think of.

Conclusion
So how did the FS/OSS approach help me to
create the Elphel Model 313 camera? Maybe
it did not cut my FPGA development time in
the same proportion as it did for the software
development – the area where it is really
mature. But the overall FS/OSS co-design
technique really worked:

• I used free Xilinx 2-d DCT imple-
mentation that utilized about 30% of
the chip resources. It did not meet
exactly the requirements of my design
– but this is where the advantage of
free code is obvious: I could modify
the code in a way I liked. With closed
proprietary IPs you can’t do this.

• The resultant product has unique fea-
tures that I was desperately looking for
as a customer. I wanted a camera I
could modify to fit my needs. In many
cases, the required modifications I
wanted were really minor – but still
impossible in a proprietary camera.

On several occasions I was asked, “Isn’t
that scary to open your design? What if
somebody will use it and get all the
money?”

• First of all, the license used for the
Elphel products (GNU/GPL) is
not exactly the same as the public
domain. Any company that wants to
manufacture cameras based on Elphel
designs will have to play by the same
rules – the GPL legal protection is no
weaker than that of closed source
proprietary licenses.

• It is actually impossible to steal this
kind of an open design. Even if some-
one in some far-away country (where
there are no copyright laws and GPL is
not enforceable) manufactured a deriv-
ative closed product, it would lack the
critical feature of Elphel cameras –
their custom reconfigurability with
Spartan FPGAs.

• Elphel has more cameras under devel-
opment, and I would consider wider
availability of the products based on
the Model 313 design as free promo-
tional material for my company.

Summer 2003 Xcell Journal 00

URLs for more information:

• www.xilinx.com/spartan2e/ – Spartan-IIE FPGA family

• www.xilinx.com/ise/webpack5/ – latest free ISE WebPACK software

• www.xilinx.com/xapp/xapp610.pdf – Application Note XAPP610
“Video Decompression Using IDCT”

• www.elphel.com – schematics and software for Model 303 and 313 network cameras

• developer.axis.com/products/etrax100lx/ – Axis ETRAX 100LX platform

• www.fsf.org – Free Software Foundation

• www.opensource.org – Open Source™ Initiative

• www.linuxdevices.com – previous articles on network cameras.

