
RAT – Real-Time Audio Tools

Arvid Staub

Austria

arvid@gmx.at

Abstract

There is a strong tendency towards using modern Personal Computers for various tasks they are not
designed for. This also includes audio and video processing. Audio and Video data is real-time data. It
needs to be dispatched within predefined and fixed time windows to avoid perceivable lags and dropouts.
Neglecting this very fact, today’s software solutions are built on General Purpose Operating Systems that
do not guarantee any timing behaviour.

Target of this project is creating an open-source versatile real-time capable data aquisition, routing
and manipulation framework. The ”Audio” part in the name refers to the concepts’ suitability for audio
recording.

The goal of the software design is to maximize reliability. No sample must be lost during data
aquisition or manipulation. Of course, one can’t eliminate the possibility of too slow hardware, disk
failure, network packet or connection loss and similar events. In these cases, the software must report an
error immediately.

This paper describes a way to use a hard real-time operating system for the tricky task of reliably
recording and reproducing audio samples and video frames. It relies on a working implementation. This
implementation uses the Linux operating system, extended with real-time capabilities by RTLinux/Free.
It is directed towards software developers with Linux knowledge. The concept described relies on Linux
kernel mechanisms, real-time specific programming and hardware management.

1 The Software Concept

Realtime Audio Tools split the various tasks needed
to aquire and dispatch data by their timely impor-
tance. All critical processing is done in ISRs1 or in
real-time context. On the other hand, storage ac-
cess is left to Kernel Space, user interaction to User
Space.

The result of that is promising: It is no problem
any more to record 10 channels of audio data while
a disk benchmarking software is simultanously try-
ing to measure the I/O throughput of the very same
hard disk rat is writing to.

Almost all modules of rat reside inside the Linux
Kernel. This allows them to share memory easily.
And they do this excessively.

The user interface resides (as the name might
suggest) in Userland. In this stage of develop-
ment, the only existing interface is a non-graphical
command-line tool, which has limited, but sufficient
functionality.

A Message Queue is the communication interface
between the rat -core (which does all the work) and

Userland (which typically just sits and watches what
is going on).

1.1 System Structure

Figure 1 shows the modular structure of rat . The
central module which has total control over every-
thing is the router. It provides registration hooks
for devices and plugins, handles communication to
Userland via a Message Queue and is responsible for
routing the data streams.

The critical section is the transition between
Real-Time Space and Kernel Space. Plugins are
allowed to defer their data handling under certain
cirumstances while still maintaining the clean split
between the ”Spaces” which is required to maintain
system integrity. Without this controlled ”breakage”
of system barriers, it would not be possible to ac-
cess Linux’ I/O subsystem. The interface itself does
not regulate how synchronisation with external re-
sources should be done. Sections 4 (Plugins) and
4.2.1 (Linux File I/O) shows this in detail.

1Interrupt Service Routine

1



Userland

Kernel Space

Real-Time Space

...

device 0

device n

� -

�

� Router

plugin 0

...

deferred data handlingplugin n � -

?

6

Linux I/O

Message Queue Handling

?

6

?

-

-

-

The carefully user-friendlified Control Application

?

6

FIGURE 1: System Overview

1.2 Software Interfaces

To keep track of all known devices and plugins, all
of those need to use a cleanly defined interface to
register their capabilities at the router. There are
currently two defined interfaces:

• UDAI - Unified Data Aquisition Interface for
hardware drivers

• LATIF - Likely Advanced Tool Interface for
router plugins

These interfaces hide the real hardware and pro-
cessing details from the router. By using the abstrac-
tion, any data processing step can be implemented
as a plugin and assigned to data channels at runtime.
Also, the router does not have to know any details
about the underlying hardware that is used to aquire
or dispatch the data.

Plugins can also act as data sources or sinks.
This allows to use them as interface to the Linux
I/O subsystem or networking layer.

1.3 Framework and Helper Functions

Some widely used functionality has been imple-
mented in helper modules. These are:

• Lock-Free ring buffers that are used to pass
data between the modules

• Message Queue implementation for RT-Space,
Kernel Space and Userland

• some minor macros for various purposes

2 The Router

The rat-router is the core which manages the
operation of the system. The kernel module
rat-router.o needs to be loaded before any hard-
ware driver or plugin module can be inserted into the
Linux Kernel.

2.1 Design and Implementation De-

tails

The rat-router is an event-driven data dispatcher.
It needs to be triggered by the underlying device

2



drivers. Whenever a device triggers the router (us-
ing the UDAI’s callback function), it will mark the
routing thread for execution and immediately return
to the caller. This behavior ensures real-time and
ISR safety.

The routing thread will execute the tree-style

routing chains. Every input channel has it’s own
routing tree which itself consists of so-called work
steps. Each work step references a plugin instance
(See Section 4 (Plugins) for details) and a arbitrary
number of chained work steps.

A routing tree could look like depicted in Fig/ 2.

device x

device y

plugin plugin

...

...

...

channel n ring buffer

channel n ring buffer

...

temporary ring buffer

FIGURE 2: Routing tree

The ”plugin” mentioned in the diagram should
rather read as ”plugin instance”. Every plugin must
be capable of creating any number of instances of it-
self. These instances must have their own runtime
data and therefore be completely independent.

The last plugin in a routing chain must reference
a special plugin which acts as a data source or data
sink. It must therefore either have no input channels
or no output channels.

Routing trees and all temporary buffers are
maintained by the rat-router.

Note: Although theoretically possible, the cur-
rent API does not allow a routing tree to span mul-
tiple devices (like shown in the diagram). By now,
all chained channels have to be on the same device
driver.

Plugins do not have to care about in which di-
rection they are used. The router transparently han-
dles the differences between input and output device
routings.

2.2 Splitting Real-Time and Non-

Real-Time operation

The router is entirely executed in Real-Time Space.
Thus, it must not use any Linux Kernel synchro-
nisation primitives, except some very special ones.
Every function call that could possibly invoke the
Linux Scheduler is inherently dangerous and must
be avoided. Therefore, the router designed not to
synchronize with Kernel Space or Userland. One ex-
ception to this rule is the Message Queue. It’s han-
dler is the only part of the router which is executed

from a system call (Kernel Space).

2.3 Extendability

The router alone cannot do anything with the data.
It is a mere dispatching and flow-control unit. Data
handling itself must be implemented as plugins,
which are Linux Kernel Modules themselves. They
become a part of the router by registering their in-
terfaces at load time. Some examples for plugins are:

• File System Access

• Compression

• Mixing

• Sample Rate Conversion

• Filtering

• Stream Mulitiplexing and Demultiplexing

The File System Access plugins for reading and
writing regular files are already implemented and sta-
ble.

2.4 Things Still to be Done

The router is in an already-usable but still far from
complete state. The current implementation can be
considered as a prototype which shows how an im-
plementation could be done. Main issues are:

• No data type, sample type or sample rate
awareness

3



• Plugins are not yet allowed to use the message
queue.

• large work step chains are untested, but should
work

• A lot of cool plugins have to be written

3 Drivers

Hardware device drivers are more or less independent
modules that can do whatever they want, as long as
they stick to the semantics defined in the Unified
Data Aquisition Interface.

3.1 The Unified Data Aquisition In-

terface

3.1.1 Overview

Data is always passed using the lock free ring buffers
defined in include/rat buffer.h.
The UDAI is based on callback functions for both
partners, the router and the driver.

An input (capture) driver has to stuff some data
into the defined ring buffers and then call the ”data-
ready” callback to signal the router that it should do
something with the data.

An output (playback) driver requests additional
data by calling the same callback function.

What really goes on inside a device driver is a
completely different issue. The abstraction layer in-
troduced in this section does not try to standard-
ize hardware access mechanisms. It aims to be as
device-independent as possible. Therefore, any type
of device, be it a parallel port or a high-end data
aquisition card, can be interfaced to the Router.

3.2 The NULL driver

The NULL device driver is a fake driver that can be
used to test rat-core without having any supported
hardware around. The module provides an arbitrary
number of input and output channels which can be
configured to consume or produce a fixed amount of
data per time. This is implemented by simple real-
time threads that fill or empty the associated ring
buffers.

It also contains a very simple watermarking al-
gorithm that can be used to verify the data integrity
of the router. Whenever a data packet is sent to the
NULL comsumer, the watermark is checked an an
error message is issued on failure.

3.3 The Terratec driver

3.3.1 Hardware Overview

This driver is compatible with TerraTec’s Phase 88

and EWS 88 MT Audio Systems. The Phase 88 is
the stripped-down and re-marketed successor of the
EWS88MT. It lacks the AC97 codec, which was use-
less on the EWS88MT anyway. It might have made
sense on the EWS88D which does not have any other
analog outputs aside from this one, but on an 8-
channel analog I/O system it is a complete waste
of ... everything.

But still, these two cards contain some very nice
chips:

• ICE1712 - (a.k.a. envy24) PCI host controller

• CS8405A - 96kHz S/PDIF Transmitter

• CS8413 - 96kHz S/PDIF Receiver

Both cards do not have on-board ADC/DACs.
These are enclosed in a 5 1/4” breakout box, which
contains:

4 AK4524s - 24bit stereo ADC/DACs up to 96kHz

A MIDI Interface - ... which I did not care about
too much

The envy24 is a versatile PCI audio controller.
It can handle data streams up to 10 channels of 24bit
each at 96kHz in full duplex and has a limited on-
chip channel router. In fact, this router is so limited,
that rat would not benefit from using it.

Sadly, the envy24 does not have any on-card
memory. It completely relies on DMA burst transfers
that are issued just-in-time.

Newer PCI devices implement the Minimum

Grant and Maximum Latency registers in the PCI

Configuration Space. By doing so, they tell the
PCI subsystem that their timing is critical within
the given parameters.

The envy24 stupidly hardwires both values to 0.
This would be all right on systems where no other
PCI device has these values implemented.

Nowadays, almost all devices make use of in-
time DMA and timing restrictions, and so the envy24
finds itself on the low-priority end of the PCI bus.

This can lead to problems, imagine the following
situation:

Our audio device streams audio data at
96kHz. So, what do we do with the data?
We write it to a hard disk or a file server.
Both of these operations require DMA
and Interrupts themselves. The down-
side of that is, that most modern network
card and harddisk controllers implement
the timing constraint registers mentioned

4



above. So we can quickly get to the point
where the audio card is not granted PCI
bus access when it needs to transfer a
burst of samples. We lose data. And
there is nothing we can do about this.
Moreover, we won’t even notice, until we
listen to the sound.

The driver was derived from an old version of the
GPL’ed ALSA driver by completely rewriting buffer
and interrupt management.

3.3.2 Theory of Operation

Figure 3 shows the basic operation of the rat with
the ews88mt device driver.

Sound Card

CPU
?

I
R
Q

System Memory

-
�

DMA

-
�

DMA

-
�

DMA

�
6

Hard Disk

...

FIGURE 3: Simplified Theory of Operation

Audio samples are digitized by the ADCs, trans-
ferred via DMA by the envy24 controller, and then
processed by the rat-router - That’s the CPU’s
part in here. Much later on (in a computer’s manner
of speech), the audio stream is written to a file using
the disk writer plugin. This also works the other way
round for playback using the disk reader, of course.

3.3.3 Managing Direct Memory Access

Direct Memory Access (DMA) has become very easy
to use in the 2.4 Linux Kernel series. There are also
a lot of excellent books2 about this issue out there,
so I won’t go into detail here.

The Kernel handles everything down to mem-
ory allocation and address translation, so everything
left to do is to allocate some DMA-capable memory
and stuff the required values into the device regis-
ters. These registers are described fairly well in the
envy24 datasheet. Three values are required for a
successful DMA operation:

• Base Address - tells the controller where to put
the data in memory

• Terminal Count - tells the controller when to
issue an interrupt request to the processor

• Buffer Size - tells the controller when to reset
the running address pointer

One problem regarding the envy24’s DMA trans-
fer characteristics is the interleaved buffer structure.
Each sample weights 4bytes (whereas 24bits are re-
ally used), and each burst transfers one sample per
channel3. In the end, this leaves us with an inter-
leaved buffer that has to be taken apart by the driver.
This driver does buffer dissection and assembly in in-
terrupt context, when servicing the device interrupt.

3.3.4 Interrupt Control and Handling

The Register Terminal Count decrements during
the DMA transfers, and once it reaches zero an in-
terrupt request is generated.

2For example, ”Linux Device Drivers” by Alessandro Rubini and Jonathan Corbet
3The envy24 supports 8 analog and 2 digital channels of playback as well as 8 analog and 2 digital channels of recording +

2 ”return path” channels, which come from the internal digital mixer. So we have 10 playback and 12 recording channels.

5



rat uses an RT-Linux ISR4. Otherwise the ISR
would only be executed as an emulated interrupt,
which do not have a suitable priority.

Everytime an interrupt occurs, the ISR queries
the Base Address register to see how much data has
already been transferred by the audio controller.

The contents of this register indicates where the
last transfer has been made. By comparing this value
to the ”old” value from the last interrupt, the driver
determines how much data was output or input since
the last interrupt. Using this value, the buffer is
interleaved or de-interleaved and the router’s data-
ready callback is called.

3.4 The Frame Grabber Driver

This driver is compatible with the BrookTree
BT8(4,7)8[A] series of video decoder chips. These
can be found on almost all Hauppauge WinTV cards
and on some older Miro frame grabbers. It was orig-
inally written by Wayne E. van Loon Sr. and later
ported to rat . The current version is intended a
tech-demo only. It is not optimized in any way.

The BT8x8 chip has a very interesting mode of
operation. It features an on-chip RISC engine, which
is used to control the data flow to system memory.
Apart from that, things are simple. There is an in-
put mulitplexer, so theoretically 4 video sources can
be selected via software. Unfortunately, mainstream
TV cards only use a TV tuner and a single video
input connected to the multiplexer.

Opposed to the envy24 described earlier, this
PCI controller chip implements the PCI timing con-
straint registers maximum latency and minimum

grant. It also incorporates a FIFO mechanism to
survive bus stalls without data loss. In the very un-
likely case of FIFO overflow and data loss, it can
report this error to the host system, indicating that
the PCI configuration and/or hardware has to be
modified.

There are two types of DMAs involved when
tranferring data from the frame grabber to memory.

Data DMA is controlled by the RISC program,
which runs in the BT878 itself. The RISC program
is located in main memory and it is also accessed via
DMA. The driver has to set up a memory location
where the RISC instructions are prepared. The in-
structions in this program specifies the memory loca-
tion to which image data is written during grabbing.

The BT878 supports very flexible interrupt con-
trol. Every statement in the RISC program can be
marked to generate an interrupt request. Addition-
ally, numerous other conditions can be programmed

to generate interrupts as well. These include video
sync changes and error conditions. rat uses most of
these interrupt sources to be informed about hard-
ware status changes when they occur.

4 Plugins

4.1 The Plugin Interface

The Plugin Interface is called LATIF5. Every plu-
gin must maintain a structure of general definitions,
which contains the possibility to create and release
instances of itself. These instances are managed by
the rat-router.

In general, a plugin module has to provide the
following features:

• A rat plugin struct

• Mechanisms to create and destroy instances of
itself

• Module Use Count Management

For most tasks, a plugin must also implement it’s
own runtime data structure.

4.1.1 Data Exchange

Payload data is always exchanged via rat buffers.
The rat buffer is designed to be re-entrant and

lock-free. It’s read and write methods and safe to
be preempted by complementary operations. They
deliberately don’t perform locking to enforce a clean
system design and avoid priority inversions. This
allows them to be used to pass data between the
”Spaces”, like from real-time space to kernel space
and vice versa.

4.1.2 Constraints to Functionality of Plugins

The Plugin interface specifies a callback function,
which the router executes whenever there is some
data to process. The router will ensure that all
needed input or output channels really contain data
before the callback function is triggered.

The callback function must be RT-Safe.
This restriction makes it very difficult to use high

level Linux Kernel resources (File I/O, network ser-
vices and the lot). A trick can be used that allows
plugins to leave the Real-Time Space. Linux Kernel
Threads can be synchronized to Real-Time threads
using Soft Interrupts (Tasklets). The Disk Reader
and Disk Writer plugins use this method to pump
data into kernel space and back again.

4Interrupt Service Routine
5L
¯
ikely A

¯
dvanced T

¯
ool I

¯
nterf

¯
ace

6



4.2 Implemented Plugins

4.2.1 Linux File I/O

The rat reader and rat writer plugins are based
on a common Linux VFS access module, which pro-

vides the File Access and Tasklet Synchronisation
services.

Figure 4 shows how the escape from Real-Time
Space is done.

Kernel Space

RT-Space

plugin-function

channel ring buffer

temporary ring buffer

Tasklet function

Kernel-Thread VFS

-

-�

?

�

?

6

?

FIGURE 4: Escape from Real-Time Space

The plugin function is required to be RT-Safe.
Thus, it cannot directly access the VFS, because
this could put the calling process to sleep. The
workaround uses a ”buddy kernel thread” which is
synchronized to the plugin function. Again, the plu-
gin function can not directly interact with the ker-
nel thread, because the Linux Kernel synchronisa-
tion primitives (like the wait queues used here) are
likely to invoke the Linux Scheduler. To overcome
this problem, a Tasklet is used to synchronize the
Kernel Thread. The Tasklet can be scheduled for
execution from real-time space.

The rat reader and rat writer plugins are
used to read and write data from and to any mounted
device. They copy the ”real-time” data to or from a
large temporary buffer, from where it can be lazily
read or written.
This method is used to overcome the unpredictability
of the Linux Kernel by simply buffering the data.

If the O STREAMING kernel patch is present,
this optimisation will also be used.

5 The Closing

5.1 A Look Ahead

The open system design makes rat suitable for a very
wide field of applications. Everything from a simple

(but highly reliable) audio player up to complex data
aquisition and processing or even real-time control
applications can be built on top of the rat -core.

The core system of rat is planned to become a
live recording application. It will be used to record
any number of audio and video channels simul-
tanously.Future versions of rat will therefore take
advantage of multiple processors.

6 List of Acronyms

ADC - A
¯
nalog to D

¯
igital C

¯
onverter

ALSA - A
¯
dvanced L

¯
inux S

¯
ound A

¯
rchitecture

BTTV - B
¯
T 8x8 T

¯
eleV

¯
ision card

DAC - D
¯
igital to A

¯
nalog C

¯
onverter

DMA - D
¯
irect M

¯
emory A

¯
ccess

GNU - G
¯
NU’s N

¯
ot U

¯
nix

GPL - G
¯
NU General P

¯
ublic L

¯
icense

ISR - I
¯
nterrupt S

¯
ervice R

¯
outine

LKM - L
¯
inux K

¯
ernel M

¯
odule

MIDI - M
¯

usical I
¯
nstrument D

¯
igital I

¯
nterface

RAT - R
¯
ealtime A

¯
udio T

¯
ools

RT - R
¯
eal T

¯
ime

S/PDIF - S
¯
ony /

¯
P
¯
hilips D

¯
igital I

¯
nterF

¯
ace

VFS - V
¯
irtual F

¯
ile S

¯
ystem

7


