
QoS and Aperiodic Tasks Scheduling

for Real-time Linux Applications

Audrey Marchand and Maryline Silly-Chetto
LINA (Laboratoire d’Informatique de Nantes Atlantique)

Rue Christian Pauc, 44300 Nantes cedex 03, France
{audrey.marchand, maryline.chetto}@iut-nantes.univ-nantes.fr

Abstract

There has been increasing interest in the real-time community for Quality of Service (QoS) based
systems, such as multimedia and telecommunication systems. In this paper, we deal with scheduling
components integrating new QoS functionalities under Linux/RTAI (Real-Time Application Interface)
[Rta04]. The work relies on a periodic task model which allows occasional deadline violations, together
with soft aperiodic tasks. This model discards selected task instances in such a way that the overall
performance of the real-time system remains acceptable even in case of overload. The key objective is to
exploit the skips in order to minimize the response time of soft aperiodic requests, using the EDL (Earliest
Deadline as Late as possible) server, which is a dynamic slack stealing algorithm. The level of QoS, i.e.
the skip factor, is fixed by the application programmer. Simulation results show the performance of two
algorithms, namely EDL-RTO and EDL-BWP. Both the mean reponse time of aperiodic requests and the
ratio of periodic tasks completions are considered. We also provide results to estimate the preemption
cost induced by these algorithms. Finally, integration of these QoS scheduling strategies has been done
in the open-source library of CLEOPATRE 1, a patch to Linux/RTAI.

1 Introduction

A real-time control application usually involves tasks
which produce results under deadline constraints.
Traditional classification of real-time systems stands
for three classes to characterize the real-time require-
ment of such systems : hard, soft and firm. In hard
real-time systems, all instances must be guaranteed
to complete within their deadlines. For soft systems,
it is acceptable to miss some of the deadlines oc-
casionally. In firm systems, tasks are also allowed
to miss some of their deadlines. Typical illustrating
examples of systems with firm real-time requirements
are multimedia and automotive control systems.

In recent years, many new real-time applications
have emerged in which it is not necessary to meet
all the task deadlines as long as the deadline viola-
tions are adequately spaced. These new scheduling
techniques can deal with the problem of maintaining
satisfactory performance under overload conditions.

The Skip-Over model was introduced by Koren
and Shasha [10] with the notion of skip factor s. If
a task has a skip factor of s, it will have one invo-

cation skipped out of s. It is a particular case of
the (m,k)-firm model [9] where m = k − 1. They re-
duce the overload by skipping some task invocations,
thus exploiting skips to increase the feasible periodic
load. This approach gives a solution to the schedu-
ling problem of overloaded systems, while represen-
ting a system Quality of Service requirement for real-
time applications. Broadly speaking, the Skip-Over
scheduling algorithms guarantee the timing correct-
ness of the real-time application.

In [3, 4], Caccamo and Buttazzo follow this work
by scheduling hybrid task sets consisting of skippable
periodic and soft aperiodic tasks. They propose and
analyze an algorithm, based on a variant of Earliest
Deadline First (EDF) scheduling, in order to exploit
skips under the Total Bandwith Server (TBS).

The scope of the paper is here to minimize the
response time of the soft aperiodic tasks in the pre-
sence of periodic tasks with skips. Our approach
tends to distribute the spare time saved by skips for
enhancing the response time of aperiodic requests.
The paper is organized as follows : the next sec-
tion introduces the CLEOPATRE project. Section

1work supported by the French research office, grant number 01 K 0742

1

2 is a background about dynamic scheduling of pe-
riodic tasks with skips and dynamic servicing of soft
aperiodic requests. We show in Section 3 how to
schedule periodic tasks with skips together with soft
aperiodic requests, using the EDL server. And we
present simulation results to evaluate the perfor-
mance of this dynamic scheduling approach in terms
of response time, ratio of tasks completions and tasks
preemption rate.

2 CLEOPATRE : a patch to
Linux/RTAI

The work presented here is part of a French na-
tional project, CLEOPATRE (Software Open Com-
ponents on the Shelf for Embedded Real-Time Appli-
cations) [2]. The objective is first to create a library
of free software components for the development of
real-time systems and second, to participate in the
evolution of an opened community standard, Linux.
Cleopatre produces a RTOS that is composed by a
Linux kernel together with a modified Linux/RTAI
(Real-Time Application Interface) extension.

In CLEOPATRE project, we are concerned
about providing a framework which permits to de-
velop hard, soft and firm applications using a li-
brary of selectable components dedicated to dynamic
scheduling, resource control access, fault-tolerance
and QoS management. The different modules are
completely independent of each other. The kernel is
fully modular in terms of scheduling policies, ape-
riodic servers, and concurrency control protocols.
All modules are dynamically loadable, thus allowing
the user to easily fulfil its specific needs for the
development of a real-time application. Note that
the proceeded changes keep the compatibility with
the Linux/RTAI based applications.

In this paper, we are interested in the enrichment
of existing shelves with Quality of Service facilities.
These QoS facilities rely on RTO and BWP algo-
rithms of the Skip-Over model [10], described in the
following section.

3 Background material

3.1 Dynamic scheduling of periodic
tasks with skips

We are here interested in the problem of scheduling
periodic tasks which allow occasional deadline viola-
tions (i.e. skippable periodic tasks), on a uniproces-
sor system. We assume that tasks can be preempted
and that they do not have precedence constraints.

A task Ti is characterized by a worst-case computa-
tion time ci, a period pi, a relative deadline equal to
its period, and a skip parameter si, which gives the
tolerance of this task to missing deadlines. The dis-
tance between two consecutive skips must be at least
si periods. When si equals to infinity, no skips are
allowed and Ti is equivalent to a hard periodic task.
One can view the skip parameter as a QoS metric
(the higher si, the better the quality of service).

A task Ti is divided into instances where each
instance occurs during a single period of the task.
Every instance of a task can be red or blue. This
is the colorful terminology introduced by Koren and
Shasha [10]. A red task instance must complete be-
fore its deadline; a blue task instance can be aborted
at any time. When a task misses its deadline, we say
that the task (or deadline) instance was skipped.

The first algorithm proposed by Koren and
Shasha is the Red Tasks Only (RTO) algorithm. The
red instances are scheduled according to EDF, while
the blue ones are always rejected. In the deeply red
model where all tasks are synchronously activated
and the first si−1 instances of every task Ti are red,
this algorithm is optimal. As illustrated in Figure 1,
we can see that the distance between every two skips
is exactly si periods.

FIGURE 1: RTO scheduling (si = 3)

The second algorithm studied is the Blue When
Possible (BWP) algorithm which is an improvement
of the first one. Indeed, BWP schedules blue ins-
tances whenever their execution does not prevent the
red ones from completing within their deadlines. In
that sense, it operates in a more flexible way. Fi-
gure 2 shows an example of the possible sequence of
instances of a BWP task.

FIGURE 2: BWP scheduling (si = 3)

2

3.2 The EDL server for servicing soft
aperiodic requests

The EDL (Earliest Deadline as Late as possible)
server [5, 12] is a dynamic scheduling algorithm
which is able to deal with the arrival of aperiodic
tasks in the presence of periodic tasks. The objec-
tive is to minimize the response time of aperiodic
tasks while ensuring that the deadlines of periodic
tasks are always guaranteed. We assume that ape-
riodic tasks are served on a FCFS (First Come First
Serve) basis.

The EDL server consists in processing the pe-
riodic tasks as soon as possible when no aperiodic
activity is present. Whenever an aperiodic request
occurs, all periodic tasks are executed as late as pos-
sible, while ensuring that all deadlines are met. More
precisely, when an aperiodic request occurs, the EDL
sequence is constructed on-line, and idle times com-
puted in the EDL sequence are then exploited to exe-
cute the aperiodic tasks. Note the EDL sequence is
constructed only at time instants corresponding to
the arrival of a new aperiodic request while no other
one is present.

The EDL server has been proved to be optimal
in terms of average response time of aperiodic tasks
[12]. In the next section, we show how to adapt the
EDL server to periodic tasks with QoS constraints,
i.e with a skip factor.

We give here an illustration of the EDL server
(see Figure 3) applied for a hybrid set of basic pe-
riodic tasks and soft aperiodic tasks. We consider a
set T = {T1, T2} of two periodic tasks T1 = (3, 10)
and T2 = (3, 6). Periodic tasks are executed as soon
as possible by the EDF (Earliest Deadline First) al-
gorithm up to the arrival of a soft aperiodic task, say
at time τ = 5. The aperiodic task requires 4 units
of execution time. At the time of arrival, the EDL
schedule is computed on-line so as to determine the
localization and the duration of the idle times, thus
postponing the execution of the periodic tasks.

FIGURE 3: Illustration of the EDL server

In this example, the dynamic idle time vectors
obtained in executing all the periodic tasks as late

as possible from time τ = 5, gives an optimal res-
ponse time to the aperiodic request, provided they
are executed in the EDL schedule produced at time
τ = 5. The aperiodic request does indeed receive
service for 4 units.

4 Scheduling periodic tasks

with skips and soft aperiodic
requests

4.1 Theoretical fundation

We study here the EDL server adjustment to periodic
tasks with skips defined according to the Skip-Over
model. We remind that a QoS level defined by the
user, has always to be guaranteed for periodic tasks.

Let us consider periodic tasks with skips Ti (ci,
pi, si) where ci represents the worst-case compu-
tation time, pi the period, and si the skip factor
of the task, according to the Skip-Over model pre-
viously defined. In order to integrate skips, we have
to proceed to the determination of the idle times lo-
calization and duration on the basis of the Red Tasks
Only (RTO) model, so as to maximize the spare time
saved by the skipped instances. The key idea to take
skips into account in the EDL server, is to integrate
the skip factor si in the original EDL formulae for
the localization and duration of idle times. Let as-
sume that an aperiodic request occurs at time τ . Idle
times computed from time τ , are then recorded in a
deadline vector K constructed only from the distinct
deadlines of red instances. In other words, every ins-
tant ki corresponds to the deadline of a red task. Idle
times for RTO and BWP models, are then computed
on-line from an extension of the recurrent relations
used with a basic periodic model.

Figure 4 shows the EDL-RTO server behavior
with a set T = {T1(2, 6, 2), T2(2, 4, 2)} of two pe-
riodic tasks with skips.

FIGURE 4: Idle times computation with
EDL-RTO

3

When there are no aperiodic tasks within the sys-
tem, periodic tasks are scheduled as soon as possible,
that is to say up to time τ = 7, where an aperiodic
request occurs. Then, idle times are determined by
scheduling red tasks as late as possible. Afterwards,
the aperiodic request will receive service within these
idle times intervals, so as to have an optimal response
time.

Let us consider now the EDL-BWP server (see
Figure 5) applied to the same set of periodic tasks
with skips. At time t = 4, T2 blue instance attempts
to execute and completes successfully at time t = 6,
thus introducing a shift (equal to exactly one period)
in the idle times sequence computed at time τ = 7.
Note that the immediate idle time starting at time
kτ is larger than the one observed with EDL-RTO.
In this case, aperiodic requests with worst-case exe-
cution time larger than 4 units, will have a better
response time under EDL-BWP.

FIGURE 5: Idle times computation with
EDL-BWP

4.2 Simulation results

In this section, we summarize the results of simula-
tion studies which compare the performance of the
EDL server to that of the Background server (BG
server) for soft aperiodic tasks. Experiments tend to
evaluate the response time performance for the four
models EDL-RTO, EDL-BWP, BG-RTO and BG-
BWP. We simulated these algorithms throughout 3
hyperperiods. The results obtained are the averages
over a group of 100 sets of 5 periodic tasks having
periods ranging from 10 to 60. Deadlines are equal
to the periods and greater than or equal to the com-
putation times. Request times of aperiodic tasks are
randomly generated. The aperiodic load was varied
by changing the average execution time. The EDL
server is evaluated with respect to the BG server.
The latter is a conventional joint scheduling algo-
rithm which simply consists in scheduling aperiodic
requests when there is no periodic activity. Applied
to RTO periodic tasks, the BG server schedules the
aperiodic tasks when there is no red tasks ready for

execution. Used with BWP periodic tasks, it of-
fers the same behavior while blue tasks are executed
when there is neither red tasks, nor aperiodic tasks
to execute. The BG server is interesting thanks to
its efficient implementation.

For the first experiment, the periodic load was
held constant (Us = 40%) while the aperiodic load
was increased from 20% to 110%. Skip value was
fixed to si = 2. Results are described on Figure 6.

FIGURE 6: Mean aperiodic response time
varying aperiodic load (si = 2)

Results show that the EDL algorithm offers
significant performance improvements, in terms of
enhancement of the aperiodic response times, over
the BG algorithm. We note that the higher the pe-
riodic load, the wider the performance advantage of
the EDL server over the BG server. Moreover, the
two servers offer better performance when used with
the BWP model.

In the second experiment, we fixed the periodic
load (Up = 40%) while varying the aperiodic load
from 5% to 80%. Results reinforce again the EDL
server’s advantage over the BG server and show its
capacity to enhance aperiodic responsiveness (see
Figure 7).

FIGURE 7: Mean aperiodic response time
varying periodic load (si = 2)

4

For the third experiment, we evaluate the level
of QoS for the periodic skippable tasks, according to
the tolerated losses of deadlines, when the periodic
and aperiodic loads vary.

FIGURE 8: Success rate of periodic tasks
under EDL-RTO (si = 6)

FIGURE 9: Success rate of periodic tasks
under EDL-BWP (si = 6)

We note that the BWP model outperforms the
RTO model in which the level of QoS is still constant
whatever are the periodic or aperiodic loads applied.
For si = 6, the QoS remains constant at a rate of
5/6=83%. The QoS relating to BWP tasks is better
than the one observed for RTO tasks as long as the
total load (taking skips into account) remains lower
than 1. Beyond that point, QoS measurements are
identical for RTO and BWP.

Finally, we study the preemption rate induced
by those algorithms, varying the periodic load.

FIGURE 10: Preemption rate of tasks
varying periodic load (si = 2)

FIGURE 11: Preemption rate of tasks
varying periodic load (si = 6)

The results of the study are as follows: for a
low QoS level (i.e. small value of si), EDL-BWP
presents the highest preemption rate among all the
algorithms, while BG-RTO offers the best perfor-
mance from this point of view. Nevertheless, for a
high QoS level (i.e. high value of si), EDL-RTO and
BG-RTO present a low preemption level, while BG-
BWP suffers from the highest number of preemp-
tions.

4.3 Integration to CLEOPATRE li-
brary

The CLEOPATRE library offers different classes of
services. Scheduling components offer two schedu-
ling algorithms: Deadline Monotonic (DM) and Ear-
liest Deadline First (EDF). Concerning the shelf that
provides aperiodic tasks servicing, three servers have
been implemented, in order to cope with soft and
hard aperiodic tasks arrivals: Background server,
Total Bandwidth server (TBS) [6], and Earliest
Deadline as Late as possible server (EDL). Five re-
source management protocols are available: FIFO
(First In First Out), Priority, SPP (Super Priority
Protocol), PIP (Priority Inheritance Protocol) and

5

PCP (Priority Ceiling Protocol) [13]. Two fault-
tolerance mechanisms have been implemented: the
Deadline Mechanism [11] and the Imprecise Com-
putation model [7]. Dynamic scheduling of periodic
tasks with skips, namely RTO and BWP algorithms,
have been added into the shelf of scheduling compo-
nents.

An additional layer named TCL (Task Control
Layer) which has been added as a dynamic mo-
dule in $RTAI DIR/modules/TCL.o, represents an en-
hancement of the legacy RTAI scheduler defined
in $RTAI DIR/modules/rt sched.o. TCL interfaces
all the new scheduling components. It is respon-
sible for managing low-level TaskType (extended
RTAI RT TASK task descriptor) tasks through va-
rious functions (TCL CREATE, TCL DESTROY, TCL KILL,

TCL READY, TCL BLOCK and TCL SCHEDULE) [8].

4.3.1 Data Structures

The basic data structure of the two QoS schedu-
lers, named RTO and BWP, is the task descrip-
tor, defined in $RTAI DIR/include/QoS.h as struct

QoSTaskStruct. This one contains seven fields for
every task: (*fct)(QoSTaskType) which points to the
task function, TCL task which is the low-level task
descriptor, critical delay which defines the criti-
cal delay of the task, period its period of activa-
tion, release time the time at which the task is re-
leased, max skipvalue the static skip parameter and
current skipvalue the dynamic skip parameter.

typedef struct QoSTaskStruct QoSTaskType;

struct QoSTaskStruct{

void (*fct) (QoSTaskType *);

TaskType TCL_task;

TimeType critical_delay;

TimeType period;

TimeType release_time;

unsigned int max_skipvalue;

unsigned int current_skipvalue;

};

The user interface for the QoS schedulers is given
in Table 1.

QoS functions Description

QoS create create a new real-time task
QoS resume resume a real-time task
QoS wait wait till next period
QoS delete delete a real-time task

TABLE 1: QoS schedulers’ interface

At initialization time, the user has to set the
usual parameters for all tasks (period pi, critical de-
lay di,...) and also the additional skip parameter si

for all QoS tasks.

4.3.2 Algorithms

The scheduling of RTO and BWP tasks is performed
in the QoS schedule() function. The scheduling oc-
curs on timer handler activation (each 8254 inter-
rupt). In our implementation, the scheduler main-
tains three linked lists: waiting list, red ready list

and blue ready list.

• waiting list: List of waiting tasks. All tasks
are sorted in increasing order of deadline

• red ready list: List of red scheduled tasks
sorted in increasing order of deadline

• blue ready list: List of blue scheduled tasks
sorted in increasing order of deadline

At QoS schedule() time, the currently running
task is the default candidate to run next. A task
is considered schedulable if it is not already running
and it is enabled for dispatch on the CPU.

In RTO module, the QoS schedule() routine at-
tempts to release tasks from the waiting list list. If
a task is found with a release time parameter lesser
than or equal to current time, then it is put into the
red ready list list.

The scheduling decision is in the worst-case in
O(N2), where all the N tasks have to be released at
the same time . The algorithmic description of RTO
is given in Figure 12.

FIGURE 12: Algorithmic description of
RTO

The QoS schedule() routine of BWP (see Fi-
gure 13) operates in two distinct phases. In the first
phase, it examines blue ready list in order to abort,
if necessary, blue tasks whose deadlines are greater
than or equal to current time. The waiting list list

6

is scanned in the second phase so as to resume tasks
whose release time is lesser than or equal to current
time.

FIGURE 13: Algorithmic description of
BWP

4.4 Measuring overhead

4.4.1 Description

We have made some experiments with the implemen-
tation to make a quantitative evaluation of the over-
head introduced by the QoS schedulers.

Theses tests consist of measuring the overhead
introduced when scheduling different number of tasks
(1, 10, 20, 30,...) with periods of 10 milliseconds each
one. Periods of all tasks are harmonic, leading up to
a hyperperiod of 3360 ticks. Measurements were per-
formed over a period of 1000 seconds on a computer
system with a 1,7 Ghz Pentium 4 processor with 512
Mo RAM.

4.4.2 Results

The overhead we show for RTO and BWP schedu-
ling components, indicates the amount of time spent
performing scheduling tasks. As it can be seen from
Figure 14, the overhead of the QoS schedulers scales
with the number of installed tasks.

FIGURE 14: Dynamic overhead of RTO
and BWP schedulers

It can be observed that the overhead introduced
by RTO scheduling runtime increases in O(N 2)
where N is the number of tasks in the system. Also,
we note that BWP scheduling runtime overhead
tends to be twice RTO runtime overhead, when the
number of scheduled tasks increases. The relating
explanation is that the BWP scheduler examines all
blue runnable tasks on each activation. If necessary,
it has to abort some of them and to put them back in
the list of waiting tasks which is sorted in increasing
deadlines. Therefore, the mean runtime execution
is obviously increased by the amount of time spent
managing blue tasks.

5 Conclusion

This paper pointed out the need of more flexi-
ble scheduling solutions for systems involving both
periodic and soft aperiodic tasks, due to the increa-
sing interest for real-time applications dealing with
multimedia and active monitoring systems. We des-
cribed a new hybrid approach based on dynamic
slack stealing, using the EDL server applied to
the Skip-Over model. From the results, it can be
stated that EDL exploits the spare time saved by
skipped instances to minimize aperiodic response
times. Through the examples we saw the impact of
the skip parameter on responsiveness for aperiodic
requests.

These new QoS functionalities are available un-
der Linux/RTAI as CLEOPATRE components which
can be dynamically loaded. The application pro-
grammer has just to set the scheduler with the ad-
ditional parameter si in order to make use of QoS
facilities.

References

[1] http://www.aero.polimi.it/rtai/

7

[2] http://www.cleopatre-project.org

[3] G. C. Buttazzo, M. Caccamo, 1999, Minimizing
Aperiodic Response Times in a Firm Real-Time
Environment, IEEE Trans. Software Eng.,
Vol.25, No.1, pp22–32

[4] M. Caccamo and G. Buttazzo, 1997, Exploiting
skips in periodic tasks for enhancing aperiodic
responsivess, In Proceedings of the 18th

IEEE Real-Time Systems Symposium

[5] H. Chetto and M. Chetto, 1989, Some results
of the earliest deadline scheduling algorithm, In

Proceedings of the IEEE Transactions

on Software Engineering, Vol.15, No.10,
pp1261–1269

[6] M. Caccamo, G. Lipari and G. Buttazzo, 1999,
Sharing resources among periodic and aperiodic
tasks with dynamic deadlines, In Proceedings

of the 20th IEEE Real-Time Systems Sym-

posium

[7] J-Y. Chung, J-W-S. Liu and K. Lin, 1990,
Scheduling periodic jobs that allow imprecise re-
sults, In Proceedings of the IEEE Trans-

actions on Computers, Vol.39, No.9, pp1156–
1174

[8] T. Garcia, A. Marchand and M. Silly-Chetto,
2003, Cleopatre: a R&D project for providing new

real-time functionalities to Linux/RTAI, In Pro-

ceedings of the Fifth Real-Time Linux

Workshop

[9] M. Hamdaoui and P. Ramanathan, 1995, A dy-
namic priority assignment technique for streams
with (m,k)-firm deadlines, IEEE Transactions

on Computers, Vol.44, No.4, pp1443–1451

[10] G. Koren and D. Shasha, 1995, Skip-Over al-
gorithms and complexity for overloaded systems
that allow skips, In Proceedings of the 16th

IEEE Real-Time Systems Symposium

[11] A-L. Liestman and R-H. Campbell, 1986, A
fault tolerant scheduling problem, In Proceed-

ings of the IEEE Transaction on Soft-

ware Engineering, Vol.12, No.10, pp1089–
1095

[12] M. Silly, 1999, The EDL server for schedul-
ing periodic and soft aperiodic tasks with re-
source constraints, The Journal of Real-

Time Systems, Kluwer Academic Publish-

ers, Vol.17, pp1–25

[13] L. Sha, R. Rajkumar, and J-P. Lehoczky, 1990,
Priority inheritance protocols: An approach to
real-time synchronization, In IEEE Transac-

tions on Computers, pp1175-1185

8

