
Enhancing Linux/RTAI with Open Source Software Components

Thibault Garcia and Maryline Silly-Chetto

LINA (Laboratoire d’Informatique de Nantes Atlantique)
IUT de Nantes / Dept OGP

La Chantrerie - Rue Christian Pauc BP 50609 - 44306 Nantes cedex 03
France

{garcia,chetto}@iut-nantes.univ-nantes.fr

Abstract

Cleopatre is an open source and flexible real-time operating system, that supports many components,
features and optional dynamics aspects. The Cleopatre components are classified in four groups: the
scheduling components (including static and dynamic schedulers), the synchronization components (in-
cluding priority inheritance and ceiling protocols), the aperiodic tasks servicing components (including
Earliest Deadline Late and Total Bandwidth Servers) and the fault tolerance components (with Deadline
Mechanism and Imprecise Computation).

1 Introduction

General-purpose operating systems are not designed
to meet the timing constraints of real-time pro-
cesses. Since its birth, Linux has undergone exten-
sive growth that has made it one of the most robust
and efficient operating systems and besides a very
good candidate for a potential RTOS.

Recently, we have been working on a RTOS
project, namely Cleopatre1 (Open components for
real-time applications) based on Linux2. One of the
most important reasons for us to choose Linux as the
foundation of our project is due to the open source
policy behind it that allows it to grow constantly.
Several projects have pursued the same goal such as
RT-Linux and RTAI which both implement a small
real-time kernel underneath but outside of the Linux
kernel. Our approach is to add new real-time ca-
pabilities to Linux, yet keep all existing Linux and
RTAI capabilities. Cleopatre can be viewed as a li-
brary of components that provides selectable real-
time facilities and in addition a specific module which
makes it possible to use the components with Linux
through RTAI.

The Cleopatre components are contained in dy-
namic modules of Linux and provide an external in-
terface for the applications. These components have

been tested in the integration phase of the project
and the demonstrator has been a mobile robotic plat-
form. To facilitate the integration of the application
software or additional components, we have devel-
oped several features from the last year[1], which will
be detailed in the paper.

Cleopatre proposes four categories of compo-
nents respectively dedicated to scheduling, synchro-
nization, fault tolerance and aperiodic servicing.
Only the first one is necessary. The other ones are
optional and selectable by the application user. The
main problem encountered during the implementa-
tion of these components was their separation in dif-
ferent Linux dynamic modules.

Stand alone RTAI is not able to support Cleopa-
tre components. To make that possible, RTAI must
be patched with software called Task Control Layer
(TCL). TCL provides an ”internal interface” for the
components, low level mechanisms and data struc-
tures such as the followings:

• Creation and destruction of tasks adapted to
Linux/RTAI,

• Switching to real time mode and getting back
from it,

• Lists of task descriptors,

1work supported by the French research office, grant number 01 K 0742
2http://www.cleopatre-project.org

1

• Watchdog for every task,

• A system clock for generating periodic events.

Native RTAI applications can still run under
Cleopatre environment; nevertheless, tasks that have
been created with the native RTAI interface cannot
use Cleopatre primitives. And tasks issued from the
Cleopatre interface cannot use the native RTAI prim-
itives.

RTAI schedules Linux as a background task.
As a result Linux processes are scheduled whenever
there is no activity from RTAI. And TCL allows
RTAI to run its tasks whenever there is no activity
from Cleopatre.

FIGURE 1: Cleopatre architecture

TCL is the abstraction layer that permits to
make the components as generic as possible. Using
components with other versions of RTAI or other
RTOSes is made possible by only modifying TCL
software. TCLCreateType is a Cleopatre structure
that gathers all the parameters needed to create
tasks for any RTOS. Usually, the components do not
use these data, but they can transmit them to TCL
without loosing genericity.

2 Library of components

2.1 Scheduling

Static and dynamic priority driven schedulers, in-
cluding Deadline Monotonic[2] and Earliest Deadline
First[3] are available in the Cleopatre library. Tasks
may be periodic or not and characterized by a critical
delay less than or equal to the period. Programmers
may change from one scheduler to another in load-
ing the corresponding component without involving
recompilation of their application.

2.2 Semaphores

Three components in this category are easy to imple-
ment: SPP (Super Priority Protocol) that gives a su-
per priority to the task that locks a semaphore, FIFO
which releases the task that wait for a semaphore the
longest, and ”priority” which releases the blocking
task with the highest priority. Moreover, the library

contains a Priority Inheritance Protocol, namely
PIP, usable with a static or a dynamic priority sched-
uler.

Finally, to avoid both deadlocks and prior-
ity inversions, Cleopatre provides priority ceiling
protocols: PCP[4] (Priority Ceiling Protocol) and
DPCP[5] (Dynamic Priority Ceiling Protocol) re-
spectively designed for a static and a dynamic prior-
ity driven scheduler. Both need to know the list of
semaphores possibly locked by the tasks.

2.3 Fault tolerance

Two fault tolerance mechanisms have been imple-
mented in Cleopatre: The Imprecise Computation
and the Deadline Mechanism.

The imprecise-computation technique is a way
to deal with transient overloads. The technique is
motivated by the fact that one can often trade off
precision for timeliness. It prevents missed deadlines
and provides graceful degradation during a transient
overload. A task based on this model consists of two
or more logical parts: a mandatory part and at least
one optional part.

FIGURE 2: Imprecise Computation

The mandatory part should include all the opera-
tions necessary to produce a logically correct result.
The optional part, on the other hand, includes all
the other operations. In other words, operations in-
cluded in the optional part only affect the quality
of result. In order to ensure this, there is a rigid
precedence constraint between these two parts: the
mandatory part must always complete before the
corresponding optional part starts its execution. In
our implementation, a task may have more than one
optional part.

With the Deadline Mechanism[6], each fault-
tolerant task is implemented as two distinct tasks
(primary and backup copy). Hence, whenever a task
tries to execute for an interval of time longer than
its reserved execution time, it is suspended and the
scheduler is able to guarantee the execution of the
backup copy which never executes unnecessarily, us-
ing the so-called Last Chance strategy.

2

FIGURE 3: The Deadline Mechanism

In our implementation, the processor time re-
served for the execution of the backup copy is re-
alized with EDL (Earliest Deadline as Late as pos-
sible) algorithm and is reclaimed as soon as the pri-
mary task executes successfully. This technique,
above all, permits to recover failures coming from
an under-estimated evaluation of the execution time
required by primary tasks or programming errors
which produce unbounded computation times like in-
finity loops.

2.4 Aperiodic task servicing

An aperiodic task server aims to schedule soft and
hard aperiodic tasks together with periodic tasks.
Whenever a hard aperiodic task occurs, an accep-
tance test is performed in order to verify the feasibi-
lity of the resulting schedule. If the aperiodic task is
rejected, a message is printed. Whenever a soft ape-
riodic task occurs, it is scheduled so as to minimize
its response time. Soft aperiodic tasks are served on
a FCFS (First Come First Serve) basis.

Three servers are available in the library: BG
(Background server), EDL[7][8] (Earliest Deadline
as Late as possible server) and TBS[9] (Total Band-
width Server). EDL is based on the dynamic Slack
Stealing approach while TBS is based on the dy-
namic computation of a virtual deadline for the ape-
riodic task. Both EDL and TBS have been proved
optimal in that sense that they minimize the mean
response time for the soft aperiodic tasks and they
maximize the acceptance ratio for the hard aperi-
odic tasks while guaranteeing that periodic tasks still
meet their timing requirements.

3 Cleopatre features

Implementation of additional components and appli-
cation software has been made easy with the follow-
ing facilities: A software automatic stop which per-
mits to safely terminate applications even in emer-
gency situations, a communication mechanism be-
tween user space and kernel space, and aspect ori-
ented programming.

3.1 Software automatic stop

This mechanism registers tasks descriptors,
semaphores descriptors, interrupt handlers and
user safe ending functions. When the primitive
TCL.end() is invoked, the context switches to a safe
environment in which every descriptor is destroyed,
interrupt handlers are unlinked and user safe ending
functions are called.

FIGURE 4: A safe environment(RT1) to
destroy real time tasks - LTT capture

For developers, this mechanism is more reliable
than manually destroying descriptors and unlinking
handlers, since it avoids to forget executing one of
these primitives that often lead to a computer crash.
”TCL.end” can be used in case of emergency stop, as
the watchdog does when it detects an infinite loop.

3.2 Communication between user and

kernel spaces

Applications and components are contained in mo-
dules which are loaded in the kernel space of Linux.
These modules cannot use standard C libraries and
Linux drivers. While RTAI proposes unidirectional
FIFOs to establish communications between user
space and kernel space, bidirectional FIFOs buffers
are proposed in Cleopatre with KLI module (Kernel
Linux Interface).

FIGURE 5: The Kernel Linux Interface

3

KLI offers an interface similar to a Linux driver
(open/close/read/write prefixed by Cleo buf). Each
buffer is identified by a string. LXRT (LinuX Real-
Time) allows Linux processes present in user space
to access to RTAI real-time primitives. LXRT is still
usable with Cleopatre environment, but only with
RTAI interface.

3.3 Aspect Oriented Programming

AOP[10] (Aspect Oriented Programming) is a re-
cent software engineering technique that facilitates
maintenance of large programs. AOP is able to add,
modify or even remove some functionalities from a
program, following rules.

For example, a security aspect can be weaved to
a web server application to encode every messages
send, even if the sending primitives are dispatched
in most of its modules.

Technically, in our case, every component con-
tains a data structure that gathers the addresses of
its primitives. To call a primitive, an application or
another component refers to these structures.

An aspect is a Linux module. When this module
is weaved to a component, the structure addresses
are modified to refer to substitute primitives from
the aspect module itself. Most often, these substi-
tute primitives call the primitive they replace, after
adding new functionalities as logging or measuring
time.

The Cleopatre system contains logging aspects
that can be weaved to trace both tasks executions
and calls to Cleopatre real-time primitives. Other
utilisations have been also considered.

4 Example

The application described in this part aims to count
the number interruptions generated by the mouse.
This example gathers the fourth main features useful
to implement a real-time application: periodic tasks,
aperiodic tasks, interruptions and semaphores.

FIGURE 6: Example - general view

An interruption handler is linked to the mouse
signal to release an aperiodic task. This aperiodic

task keeps up to date a variable that contains the
number of interruptions. A periodic task read this
variable every second to report it. The variable is
protected by a mutual exclusion semaphore.

4.1 Source code

To compile the application, a programmer needs to
include every component headers.

/* ----- Components interfaces ----- */

#include <TCL.h> /* Task Control Layer */

#include <Dsch.h> /* Scheduler */

#include <sem.h> /* Semaphore */

#include <irq.h> /* Interrupt management */

Parameters are declared with #define directive.
The stack and the heap are memories to store local
variables and for dynamic memory allocation. The
FPU (Floating Point/Processor Unit) is the arith-
metic processor that the computer uses to perform
arithmetic operations with floating point data.

/* ----- Parameters ----- */

#define TIMERTICKS 1e6 /* Timer period: 1ms */

#define irq 12 /* Mouse interrupt */

#define HEAP 0 /* Heap size */

#define STACK 2000 /* Stack size */

#define NO_FPU 1 /* 0 to use FPU */

Task, semaphore and interruption descriptors are
declared as global and static variables.

/* ----- Descriptors ----- */

static DSchTaskType t_mouse; /* Tasks */

static DSchTaskType t_report;

static irqType irq_mouse; /* Interrupt */

static SemType sem_nb; /* Semaphore */

A global variable must be protected by a
semaphore if it is used by several tasks (for exam-
ple, nb is protected by sem nb)

/* ----- variables ----- */

static unsigned nb; /* Interrupt’s number */

static unsigned i=0; /* report number */

Infinite loop and explicit ”wait next period”
primitive aren’t needed to implement periodic tasks
with the Cleopatre system, because they are directly
present in the scheduler itself. As a result, the pro-
gram is easier to read and understand, but it spends
a little time for the missing primitives (about 10ns
with a 1.7GHz Pentium). To get this time back, a
programmer has to add an infinite loop around the
code of the task and a Dsch.wait() primitive just be-
fore the end of the loop.

4

/* ----- Periodic report task ----- */

void report() {

sem.P(&sem_nb); /* variable nb protected */

print("report %4i: %u\n",++i,nb);

sem.V(&sem_nb);

}

Infinite loop and semaphore aren’t required
to program aperiodic tasks too. To save time,
a programmer can add an infinite loop and the
Dsch.wait() primitive just before the end of the loop
as in periodic tasks. The Dsch.wakeup() primitive
releases aperiodic tasks without semaphore to avoid
spending time in managing semaphore descriptors.

/* ----- Aperiodic count task ----- */

void mouse() {

sem.P(&sem_nb); /* variable nb protected */

nb++;

sem.V(&sem_nb);

}

Cleopatre real-time handlers begin with the
macro-command IRQ begin and end with IRQ end.
These macro-commands protect handlers from new
occurrences of their interruptions during executions
and give hand to Linux handlers if needed.

The following handler just releases the aperiodic
task.

/* ----- Interrupt Handler ----- */

void handler() {

IRQ_begin(&irq_mouse);

Dsch.wakeup(&t_mouse,TCL.time);

IRQ_end(&irq_mouse);

}

Linux runs the init module() function when the
application is loaded into the kernel by the ins-
mod command. This function creates tasks, initia-
lizes semaphores, attaches handlers to interruptions,
switches the system to real-time mode, sets the
watchdog timer and releases periodic tasks for their
first execution.

TCLCreateType gathers all the parameters
needed to create tasks adapted to the Linux/RTAI
environment.

/* ----- Application initialization ----- */

int init_module(void) {

/* Linux/RTAI specific parameters */

TCLCreateType creat = {HEAP,STACK, NO_FPU,0};

/* Creations: Tasks, semaphore, interrupt */

Dsch.create(&t_report,report,1000,1000,creat);

Dsch.create(&t_mouse, mouse, 0, 0,creat);

sem.create(&sem_nb,1);

IRQ.create(&irq_mouse,12,handler);

/* Run periodic task */

Dsch.wakeup(&t_report,1000);

TCL.begin(TIMERTICKS,20); /* Real time */

return 0;

}

Linux runs the cleanup module() function when
the application is removed from the kernel by the
rmmod command.

The TCL.end() function deletes every descrip-
tor safely. The interrupt descriptor is used here to
detach the handlers from their interruption.

/* ----- Application deletion ----- */

void cleanup_module(void) {

TCL.end();

}

Every primitive name is composed by two words
separated by ”.”. The first word identifies the com-
ponent to which the primitive belongs and the se-
cond word identifies the primitive itself. For exam-
ple, TCL.begin is the TCL component begin primi-
tive.

Technically, TCL is a C structure that gathers
the addresses of every TCL component primitive.
These addresses may be modified by aspects dur-
ing their weaving to add new functionalities before
and/or after TCL primitives.

4.2 Results

The application produces two kinds of results: Text
result and graphical result throw LTT (Linux Trace
Toolkit). LTT shows the execution of every task and
system calls thanks to a graphical interface.

FIGURE 7: LTT - Aperiodic task execu-
tion

The periodic task prints text reports. These re-
sults can be viewed with the dmesg Linux command.

5

FIGURE 8: dmesg - The periodic task re-
ports

This application shows that a mouse is able to
generate about 300 interruptions per second. But,
this result is not as important as the way to get it.

5 Conclusion

We have implemented a modular and flexible RTOS
based on Linux/RTAI in the framework of a na-
tional R&D project, Cleopatre, which will end
in June 2005. It is public, freely downloading
(http://www.cleopatre-project.org/) and protected
by the GNU/LGPL licence.

Components have been designed so as to be in-
dependent from any RTOS and compatible with a
RTOS by adapting a software module called TCL.
Cleopatre components have been tested on a mobile
robotic platform, an Automated Guided Vehicle that
executes orders which are transmitted through wire-
less communications.

FIGURE 9: Cleopatre system demonstra-
tion mobile robotic platform

In the future, we aim first to adapt LXRT to
Cleopatre and second, to develop Cleopatre compo-
nents for multiprocessor architectures.

References

[1] T. Garcia, A. Marchand, M. Silly-Chetto, 2003,
CLEOPATRE: A R&D Project for Providing
New Real-Time Functionalities to Linux/RTAI,
Proceedings of the Fifth Real-Time
Linux Workshop

[2] J.Y.T. Leung, M.L. Merril, 1980, A note on pre-
emptive scheduling of periodic real-time tasks, In-
formation processing letters, vol. 20 n3
pp. 115-118.

[3] C. Liu, J.W. Layland, 1973, Scheduling algo-
rithms for multiprogramming in a hard real-time
environment, Journal of ACM, vol.20

[4] R. Rajkumar, 1991, Synchronization in real-
time systems : a priority inheritance approach,
Boston : Kluwer Academic Publishers,
ISBN: 0792392116.

[5] M.I. Chen, K.J. Lin, 1990, Dynamic Prio-
rity Ceilings: A Concurrency Control Protocols
for Real-Time Systems, Real-Time Systems
Journal, 2(4), pp. 325-346.

[6] A.L. Liestman, R.H. Campbell, 1986, A
fault tolerant scheduling problem, IEEE Trans.
on software engineering, vol.12 pp.1089-
1095.

[7] H. Chetto, M. Chetto-Silly, 1989, Some
results of earliest deadline scheduling algorithm,
IEEE Trans. on SW Eng., 18(8), pp.736-
748.

[8] J.P. Lehoczky, L. Sacha, Y. Ding, 1992, An
optimal algorithm for scheduling soft-aperiodic
tasks in fixed-priority pre-emptive systems, Pro-
ceedings of the IEEE Real-time Systems
Symposium, pp.110-123.

[9] M. Caccamo, G. Lipari, G. Buttazzo, De-
cember 1999, Sharing Resources among Perio-
dic and Aperiodic Tasks with Dynamic Dead-
lines, Proceedings of the IEEE Real-Time
Systems Symposium, Phoenix, Arizona. n1
pp.46-61.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, W.G. Griswold, 2001, An
Overview of AspectJ, European Conference
for Object-Oriented Programming.

6

