INTERFACING REAL-TIME LINUX AND LABVIEW

P. N. Daly
National Optical Astronomy Observatories,
950 N. Cherry Avenue, P. O. Box 26732, Tucson, A7 857266732, U S A
pnd@noao.edu

Abstract

Hard real-time Linux variants, RTLinux and RTAI, both use fifos and shared memory to communicate
with user applications. In this work, we describe a new package, lvrtl, which allows LabVIEW Vs to use
these mechanisms in a completely generic way. For the get operations, the incoming data is collected into
a dynamically resized array thus handling scalar and array data for several different data types. There
are symmetric put operations and a complete suite of VIs with which to build LabVIEW applications.
The package also includes extensive test code under RTLinux 2.2 and RTAI 1.3.

1 Introduction

This paper describes a suite of VIs and the associ-
ated shared library source code for interfacing real-
time Linux to LabVIEW 6i/5.1. Code is available
under both RTLinux 2.2 and RTAI 1.3. The code
is freely available so you may modify it as you wish
but please report bugs to the principal author. Note
that only the LabVIEW 6: code will be developed
further.

This package supercedes the earlier fifos package
based upon code interface nodes [1], rather than
shared libraries [2], which has now been withdrawn.
With this new software you can read or write to a fifo
or shared memory segment using fundamental data
types with arbitrary array sizes. The limit on the
size of data passed is either set by the fifo size or the
amount of available system memory.

2 Installing the Software

This code, lvrtl 1.1.51% or lvrtl 1.1.60%, has been de-
veloped and tested using the following infrastructure:
RTlinux 2.23 and RTAI 1.3%, Linux 2.2.14%, mbuff
0.7.1% and fifos 0.57.

Note that, although we use the common mbuff and

lftp:/ /orion.tuc.noao.edu/pub/pnd/lvrtl.1.1.51.tgz
2ftp:/ /orion.tuc.noao.edu/pub/pnd/lvrtl.1.1.60.tgz
3ftp:/ /rtlinux.com/rtlinux/v2/rtlinux-2.2.tar.gz
Aftp:/ /www.aero.polimi.it/RTAT/rtai-1.3.tgz

5ftp:/ /ftp.kernel.org/pub/linux/kernel /v2.2/linux-2.2.14.tar.gz

ftp://crds.chemie.unibas.ch/PCI-MIO-E /mbuff-0.7.1.tar.gz

fifos packages, we believe that this code should work
without modification using a standard RTLinux 2.2
distribution (which includes earlier releases of these
packages).

For native RTAI 1.3, without using the common
mbuff and fifos packages, some modest amount of
re-coding and re-compiling would have to be done to
use the rtai_malloc and rtai_free calls. In this case, a
simple macro definition should suffice in lvrtl.c and
the test code files x.RTAT (although this approach
has never been tested):

#ifdef RTAI
#define mbuff.h rtai_shm.h
#ifdef __KERNEL__
ftdefine mbuff_alloc(n,s) \
rtai_kmalloc (nam2num(n),s)
ftdefine mbuff_free(n,a) \
rtai_kfree (num2nam(n))
ffelse
ftdefine mbuff_alloc(n,s) \
rtai_malloc(nam2num(n),s)
ftdefine mbuff_free(n,a) \
rtai_free(num2nam(n) ,a)
f#tendif
#tendif

Prior to installing the lvrtl package you must have a
working hard real-time Linux system. Furthermore,

"http:/ /www.realtimelinux.org/ CRAN/software/rtai_rtl_fifos-05.tar.gz

we assume you know how to load real-time Linux
modules.

Once you have received a copy of the tarball unpack
it into some suitable directory. Please edit the make-
files to suit your site—principally the location of the
mbuff and fifos include files—and build the shared

library and example code in the usual way:
% make clean all install

The shared library is called lvrtl.so.1.1.51 or
lvrtl.so.1.1.60, both in the /usr/lib directory, and
there are links such as liblvrtl.so etc pointing to
the appropriate library. In this way you can easily
change systems.

3 Command Line Interface

Both real-time fifos and shared memory can be tested
from the command line to verify your real-time
Linux installation (independent of LabVIEW). The
modules (test_rfifo and test_rmem) and applications
(test_ufifo and test_umem) can handle 9 distinct data
types in either read or write mode. Note that to
maintain compatibility with LabVIEW | we have used
the LabVIEW data type codes as shown in Table 1.
Data types not handled are floatFExt since Linux has
no ‘16-byte double double’ representation and the set
of {emplz64, cmplz128, cmplzEzt} data types since
these are just a pair of floats, doubles or extended
precision doubles anyway.

C-type DTYPE Value Code
signed char int8 1 0x01
signed short int16 2 0x02
signed int int32 3 0x03
unsigned char uint8 5 0x05
unsigned short uint16 6 0x06
unsigned int uint32 7 0x07
float float32 9 0x09
double float64 10 0x0A
char * string 48 0x30
TABLE 1: LabVIEW Data Type Codes

Both sets of modules have a frequency of 1 Hz (which
you can change if you wish).

3.1 Real-time Fifos

The module test_rfifo accepts five command line pa-
rameters and the user application test_ufifo four pa-
rameters as shown in columns 1 and 2 of Table 2

respectively. Note that for the user application, one
can specify the mode as read-only (-mread), write-
only (-mwrite) or a non-blocking read (-mnoblock).

Module Application Interpretation
fifo —f Fifo number
size Fifo size
dtype —d LabVIEW Data Type
nelm -n Number of elements
mode -m Access mode
TABLE 2: command line parameters

For example, to put a single signed 8-bit integer onto
fifo 0 from the real-time kernel and read that value
from the user application, use:

% rmmod test_rfifo
% insmod test_rfifo fifo=0 size=1024
dtype=1 nelm=1 mode="write"

% ./test_ufifo -f0 -d1 -nl1 -mread
test_ufifo.c: fifo=0, dtype=1,

nelm=1, mode=read
test_ufifo.c: opening /dev/rtf0 read-only
test_ufifo.c: opened fifo /dev/rtf0 0K
test_user: received int8 (0x01) msg=1 value=1
test_user: received int8 (0x01) msg=2 value=1
test_user: received int8 (0x01) msg=3 value=1

And one can verify the data using the dmesg utility:

% dmesg

test_rfifo.c: fifo=0, size=1024, nelm=1,
dtype=1, mode=write

test_rfifo.c: known data type 0x01, mode=w

test_rfifo.c: created fifo, status=0

test_rfifo.c:

test_rfifo.c: made thread periodic, status=0

test_rtl: sent int8 (0x01) msg=1 value=1

test_rtl: sent int8 (0x01) msg=2 value=1

test_rtl: sent int8 (0x01) msg=3 value=1

created thread, status=0

A more complicated example would reverse the op-
eration and write, say, 5 floating point number to the
real-time core:

% rmmod test_rfifo

% insmod test_rfifo fifo=0 size=1024
dtype=9 nelm=5 mode='"read"

% ./test_ufifo -f0 -d9 -n5 -mwrite

The data generated in this case is created in the
test_data_init function and is related to data type.
It is left as an exercise for the interested reader to
confirm that the data is passed correctly.

3.2 Shared Memory

The module test_rmem and the user application
test_umem accept four command line parameters as
shown in columns 1 and 2 of Table 3 respectively.

Module Application Interpretation
sname -8 Memory Name
dtype —d LabVIEW Data Type
nelm -n Number of elements
mode -m Access mode
TABLE 3: command line parameters

For example, to put a single signed 8-bit integer into
shared memory from the real-time kernel and read
that value from the user application, use:

% rmmod test_rmem
% insmod test_rmem sname='"myint8" dtype=1
nelm=1 mode="write"
% ./test_umem -smyint8 -d1 -nl -mread
test_umem.c: sname=myint8, dtype=1,
nelm=1, mode=read
test_umem.c: created sname, pointer=0x40014000
test_umem: received int8 (0x01) msg=1 value=1
test_umem: received int8 (0x01) msg=2 value=1
test_umem: received int8 (0x01) msg=3 value=1

And one can verify the data using the dmesg utility:

% dmesg
test_rmem.c: sname=myint8, nelm=1,

dtype=1, mode=write
test_rmem.c: created sname, pointer=d0846000
test_rmem.c: created thread, err=0
test_rmem.c: made thread periodic, err=0

mbuff_rtl: sent int8 (0x01) msg=1 value=1
mbuff_rtl: sent int8 (0x01) msg=2 value=1
mbuff_rtl: sent int8 (0x01) msg=3 value=1

A more complicated example would reverse the op-
eration and write, say, 5 floating point number to the
real-time core:

% rmmod test_rmem

% insmod test_rmem sname="myfloat" dtype=9
nelm=5 mode="read"

% ./test_umem -smyfloat -d9 -nb -mwrite

The data generated in this case is created in the
test_data_init function and is related to data type.
It is left as an exercise for the interested reader to
confirm that the data is passed correctly.

4 The LabVIEW Interface

Before we discuss the implementation under Lab-
VIEW, it is useful to discuss how LabVIEW handles
data. In the cintools directory there is an include
file, extcode.h, which defines a string handle:

typedef struct {

int32 cnt; /* number of bytes to follow */
uChar str[1]; /* cnt bytes */
} LStr, *LStrPtr, **LStrHandle;

#define LStrBuf (sp) \
(&((sp))->str[0])

#define LStrLen(sp) \
(((sp))->cnt)

#define LStrSize(sp) \
(LStrLen(sp)+sizeof (int32))

We see, then, that the canonical LabVIEW LStrHan-
dle 1s no more complicated than a Pascal-type string
definition which is an integer length followed by the
address of the first character. The macro LStrBuf
points to the first character in the string, LStrlen
gives the length of the string and LStrSize gives the
total allocation for the string.

There are no other such definitions in eztcode.h but
our lvrtl.h defines the others, such as the one for a
32-bit signed integer in an analagous manner:

typedef struct {
int32 cnt; /% number of int32s */
int32 num[1]; /* start of array */

} Lint32, LI32, *Lint32Ptr,
*LI32Ptr, **Lint32Handle, **LI32Handle

#define Lint32Buf (sp) \
(&((sp))->str[0])

#define Lint32Len(sp) \
(((sp))->cnt)

#define Lint32Size(sp) \
(Lint32Len(sp)+sizeof (int32))

#define LI32Buf (sp) \
(&((sp))->str[0])

#define LI32Len(sp) \
(((sp))->cnt)

#define LI32Size(sp) \
(LI32Len(sp)+sizeof (int32))

Using such handles, we can dynamically manipulate
data.

= Call Library Function =]
Library Mame or Path [/usilibAiblvrtlso Browse
Function Name |nf_get_int32 =] [Funinur =]
Farameter ‘I:l
Type | MNumeric _vl Add a Parameter Before
Data Type Signed 32-bit Integer -
2 I d L =l Add a Parameter after
Pass [Fointer to Value =]
Delete this Parameter
Function Pratotype:
long rif_get_int32(long *fd, unsigned long “nelm, Array1DLong “data); |
FIGURE 1: C(all Library Function Panel
= Call Library Function =]
Library Mame or Path [/usilibAiblvrtlso Browse
Function Name |nf_get_int32 =] [Funinur =]
Farameter-l ‘I:l
Type [Array =l Add a Parameter Before
Data Type Signed 32-bit Integer -
2 I d L =l Add a Parameter after
Dimensions |1
Array Format | Array Handle = 4”8‘&18 s Parameter
Function Pratotype:
long rif_get_int32(long *fd, unsigned long “nelm, Array1DLong “data); |
FIGURE 2: C(all Library Function Panel

For example, we can design a VI called rtf_get_int32
consisting of two numeric controls (file descriptor, fd,
and number of data elements, nelm) and an array
indicator (data). We can configure the Call Library
Function panel to pass fd (and nelm) as pointers to
values as shown in Figure 1 and the data array as
an array handle as shown in Figure 2. Note that the
function prototype is built as:

long rtf_get_int32(long *fd,
unsigned long *nelm, ArrayiDLong **data);

This ArraylDLong * is, in effect, identical to our
Lint32Handle defined above so our library code
would look like this:

long rtf_get_int32 (

long *fd, // file descriptor
ulnt32 *nelm, // number of elements
Lint32Handle data // data array

) {

// initialize some local variables
int err = 0, fb = (*nelm) * sizeof (uInt32);

// return if fd is invalid

if (%£d<0) return (xfd);

// return if nelm is invalid
if (*nelm<=0) return (-1L);

// resize array to hold nelm values
err=NumericArrayResize (

iL, // signed longs (int32)
1, // 1 dimension
(UHandle *)&data, // address

*nelm) ; // number of elements

if (err'=noErr) return (-err);

// clear the re-sized array
ClearMem((UPtr)*data,Lint32Size(*data)) ;

// read some data from fd
err=read (*fd,Lint32Buf (¥data) ,fb) ;
if (err<=0]| |err!=fb) return (-err);

// set the length
Lint32Len(*data)=*nelm;

// return any error
return (long)err;

}

Note how we have used the LabVIEW functions
ClearMem and NumericArrayResize [2] and the
macros Lint32Buf, Lint32S5ize and Lint32Len to read
the fifo.

5 The LabVIEW VIs

The tarball provides 78 VIs for accessing real-time
fifos and shared memory. These can be broken down
as follows:

rtf_open.vi This is the open VI for real-time fifos;
rtf_close.vi This is the close VI for real-time fifos;

rtf_get DTYPE.vi These are the get VIs for the
DTYPE specified in column 2 of Table 1. For
example, to get a signed 8-bit integer off a fifo,
the appropriate VI is rtf_get_int§.

rtf_put DTYPE.vi These are the put VIs for the
DTYPE specified in column 2 of Table 1. For
example, to put an unsigned 32-bit integer onto
a fifo, the appropriate VI is rtf_put_int32.

rtf read DTYPE.vi These VIs bundle the open,
read-loop and close VIs into an example for
each specified DTYPE.

rtf write DTYPE.vi These VIs bundle the open,
write-loop and close VIs into an example for
each specified DTYPE.

mbuff open.vi Thisis the open VI for shared mem-
ory.

mbuff_close.vi This is the close VI for shared mem-
ory.

mbuff_get DTYPE.vi These are the get VIs for
the DTYPE specified in column 2 of Table 1.
For example, to get a single precision float-
ing point from memory, the appropriate VI is

mbuff_get_float32.

mbuff_put DTYPE.vi These are the put VIs for the
DTYPE specified in column 2 of Table 1. For
example, to put a string into shared memory,
the appropriate VI is mbuff_put_string.

mbuff read DTYPE.vi These VIs bundle the open,
read-loop and close VIs into an example for
each specified DTYPE.

mbuff_ write DTYPE.vi These VIs bundle the open,
write-loop and close VIs into an example for
each specified DTYPE.

test_1fifo.vi, test lmem.vi These are the VIs that
handle all data types for testing purposes.
Make sure the front panel input parameters
match those invoked by the real-time module
msmod command or memory corruption can
occur. These VIs are only available with the

LabVIEW 6: tarball.

Note that the rtf_put_string and mbuff_put_string VIs
are the only two that add a NULL byte before the
data transfer. The real-time core must be set up to
accept the NULL byte also (just as the test code is).

5.1 Real-time Fifo VlIs

The rtf_open VI requires a fifo name and access mode
as input parameters and returns the file descriptor of
the opened fifo or a negative number on error. This
error should be trapped in G-code. The rtf_close VI
accepts a file descriptor input, closes the file and re-
turns the status.

The rtf_get DTYPE VI accepts the file descriptor in-
put and a number of elements. It reads the fifo for
the requested number of elements of the known data
type and returns the file descriptor, a status value (-1
on error or number of bytes read on success) and the
data in an array of the appropriate data type. Note
that the data array is dynamically re-sized to hold all
the incoming data so that the VI can hold a single
value or a complete array of values. To re-iterate,
the return value on success is the number of bytes
read from the fifo and not the number of elements
read.

Symmetrically, the rtf_put_ DTYPE accepts the file de-
scriptor input, the number of data elements and an
array of values of the appropriate data type and
writes them to the fifo. It returns the file descrip-
tor and a status value (-1 on error, number of bytes
written on success) which should be checked in G-
code. Note that an input of 0 into the Number of
FElements control is ignored and the whole data set
is sent. For the rtfput_string VI a NULL terminat-
ing byte is also added to the data transfer.

=l rtf_read_float32vi Diagram 1]
File Edit Operate Tools Browse ‘Window Help E
[2[@] @ [m]]3] bal]os 106t Appiication Font |~ 2o 1[5a~][¢0-] E
Tl Falset i

g

@'a, Number of Elements . >

o o S R
| o Wdﬂ
FIGURE 3: rtfread_float32 Diagram

=] rtf_read_float3z.ui I
File Edit Operate Tools Browse Window Help =
=

10pt Application Font |'IM ﬁvl\ﬁ'

fdewtfl I

£ PGS
s |

FIGURE 4: rtfread_float32 Front Panel

For example, let us write 5 single precision floating
point numbers from the kernel to user space. For
this we can use the bundled up rtf-read_float32 VI.
The (LabVIEW 6i) code for this example is shown
in Figure 3 and the front panel is in Figure 4. As
we can see, the G-code traps errors returned by the
rtf_open and rtf_get_float32.

To execute this example from LabVIEW first insert
the (test) module:

% rmmod test_rfifo
% insmod test_rfifo fifo=0 size=1024
dtype=9 nelm=5 mode='"write"

Then run the VI in the usual way. The values in the
output array should become 9.00, 18.00, 27.00, 36.00
and 45.00 respectively. The put or write VIs do the
opposite of the get and read VIs respectively.

5.1.1 Non-Blocking Reads

We provide no explicit traps for non-blocking reads
but the library accepts that fifos can be opened in
such a way. Such reads, typically, return a negative
number when no data is available. In Figure 5 we
show the LabVIEW code for a non-blocking read of
a single 8-bit integer from fifo 0. The associated front
panel is in Figure 6. Note how we trap the return
and indicate data is ready when the return value is
positive.

= rtf_read_int8_noblock.vi Diagram 0 =T
File Edit Operate Tools Browse Window Help E
O[] [] [salmPlos [10pt Appiication Fort |-][2o~ | -][#5-] E
el Falset i
Number of Elements]
e f_open.v]
Flagsogl ™ = W Trie b7 =
Li@ .
(18]
o 2> g
e mﬁd
FIGURE 5: rtfread_int8 Diagram
=] rtf_read_int8_noblock.vi =]

File Edit ©Operate Tools Browse ‘Window Help

|
£
[]=] |@|£| [10pt Application Font [~ [2o~ |[Gs ~|[#5~] ‘

Fifo Data
[jgevi ol [
Flags Data &vailable
+J|O_RDONLY | O_NOMBLOCK 3 [|

Mumher of Elements Ahort
c I [EmoE]

oF

FIGURE 6: rtfread_int8 Front Panel

We can run this VI after inserting the test_rfifo mod-
ule:

% rmmod test_rfifo
% insmod test_rfifo fifo=0 size=1024
dtype=1 nelm=1 mode="write"

If you try this, note that the Data Available flag
beats with a 1 Hz frequency in synchronization with
the real-time module.

5.2 Shared Memory VlIs

The mbuff-open VI requires a section name, data
type and number of elements (of the given type). The
memory is allocated and the pointer to the memory is
returned as a value into the integer Memory Pointer
argument (not the address) since LabVIEW cannot
return pointers per se. If the allocation fails, a neg-
ative number is returned in Error Qut otherwise it
is zero. Note that the internal pointer is declared as

a static variable creating a possible race condition.
This effect is mitigated by making the VI re-entrant
and requiring that calls to mbuff-open are sequential
wherever possible.

All other VIs, decode the input integer address and
cast it to a pointer of the correct type so that the soft-
ware knows the start address of the memory area.
For the mbuff_close VI, the memory section name
and the address are the only inputs and the memory
is released via mbuff_free. Since this function returns
a void, no status check is possible so mbuff_close al-
ways returns 0.

The mbuff_-get DTYPE VI accepts the address input
and decodes 1t for the appropriate data type. It also
accepts two other inputs: the offset from the start
of the memory section and the number of data ele-
ments to read from the memory section. It returns a
status (-1 on error, number of bytes read on success),
the input address and the data. The data array is
dynamically re-sized to accept all the values read.

Symmetrically, the mbuff_put_DTYPE accepts the en-
coded address input, the offset, the number of data
elements and an array of values of the appropriate
data type and writes them to the memory section.
Let us be clear as to what it writes and where: the
input data array is read from 0 up to delm values
(the number of data elements) and those values are
written to the shared memory section starting at the
offset from the base input address. Note that there
is no checking the memory section upper boundary
so putting values at a high offset where the number
of data elements to put exceeds the end of the mem-
ory section could result in memory corruption. The
VI returns the file descriptor and a status value (-1
on error, number of bytes written on success) which
should be checked in G-code. Note that an input of 0
into the Number of Elements control is ignored and
the whole data set is sent. For the mbuff_put_string
VI a NULL terminating byte is also added to the
data transfer.

= mbuff_write_string.vi Diagram B
File Edi_Operale Tools Browse Window Fielp
BI=] 6 (][] ol 105 Appicstion Fomt =1 E-[[malE] =

W[Faise bf i
o]
bt 3

—L'j

FIGURE 7: mbuff_write_string Diagram

= mbuff_write_stringyi
File Edit Operate Tools Browse Window Help

@E [10pt Application Font [« /2o~][4 ~][#5+]

Name of Memory Section “bort
tystring

Data Type
.’-) generic character string 8

Mumber of Elements
o 5o

Offset from Array Origin
Jo

Mumber of Array Elements
Jes

data

This is atest of Lab¥IEW and real-time Linux via vl

Front

FIGURE 8:
Panel

For example, let us write a string to the real-
time core. For this we can use the bundled up
mbuff_write_string VI. The LabVIEW diagram for
this example is shown in Figure 7 and the front panel
is in Figure 8. As we can see, the G-code traps errors
returned by the mbuff_open and mbuff_put_string.
To execute this example from LabVIEW| first insert
the (test) module:

mbuff_write_string

% rmmod test_rmem
% insmod test_rmem sname="mystring" dtype=48
nelm=50 mode="read"

Then run the VI in the usual way. Although the in-
put data string is ‘This is a test of LabVIEW and
real-time Linux via lvrtl’; only the first 25 charac-
ters are sent to the real-time core. Thus the real-
time core gets the string ‘This is a test of LabVIEW’
only. If we increment the Offset from Array Origin,
we move this substring along in the memory buffer.
This can be verified with dmesg.

The put or write VIs do the opposite of the get and
read VIs respectively.

6 Structured Data

The VIs described above are generic inasmuch as
they handle fundamental data types and dynamically
re-size arrays to handle multi-valued data. The ques-
tion remains, though, as to structured data. Clearly,

if the structure contains elements of a single data
type, this is handled by the appropriate data type
VI, specifying the number of elements in the struc-
ture as the number of elements to get off the fifo.
What, though, about dissimilar data types in a struc-
ture? Consider the following structure which is to be
put on a fifo:

struct mystruc {
int myint;

float myfloat;
char mychar[40];

}

There are two approaches. First, one could write
one’s own VI and add code to the shared library. We
believe that there is enough detail in the documen-
tation [3] and the examples given with this software
to do this.

Alternatively, one could wire together the three VIs
rtf_get_int32, rif_get_float32 and rif_get_string with
appropriate inputs. Clearly, this requires three reads
of the fifo to completely obtain the structured data.

Acknowledgements. Linux is a registered
trade mark of Linus Torvalds. LabVIEW is a trade
mark of National Instruments Corporation. NOAQ
is operated by the Association of Universities for Re-
search in Astronomy Inc. (AURA), under coopera-
tive agreement with the National Science Foundation

(NSF).

References

[1] Daly, P. N., Schumacher, G., Mills, D. and Ashe,
M. C. 1999, Real Time Linuz at the NOAO, Proc.
1st Real-time Linux Workshop, Vienna.

[2] Other, A. N. 2000, Using Ezternal Code in Lab-
VIEW, July 2000 Edition, National Instruments
Corporation, Part # 370109A-01. Vienna.

[3] Daly, P. N. 2000, Interfacing Real-time Linuzx
and LabVIEW, Real Time Linux Documentation
Project, 1, P. N. Daly and J. Kupper, eds., Real
Time Linux Community Press.

