
Shielded Processors:
Guaranteeing Sub-millisecond Response

in Standard Linux

Steve Brosky and Steve Rotolo
Concurrent Computer Corporation

2881 Gateway Drive, Pompano Beach, FL 33069
{steve.brosky,steve.rotolo}@ccur.com

Abstract

There has been significant progress making standard Linux into a more responsive system for real-time appli-
cations. The low latency patches and the preemption patches have allowed guarantees on worst case interrupt
response time at slightly above a millisecond. These guarantees today are only met when there is no network-
ing or graphics activity in the system. The shielded processor concept dedicates selected processors in a sym-
metric multiprocessing system for the real-time components of an application. This paper will describe the
implementation of shielded processors in RedHawk Linux and the benefits of shielded processors. It will also
present the results of benchmarks for both interrupt response and program execution determinism. Interrupt
response time guarantees are significantly below one millisecond and can be guaranteed even in the presence
of networking and graphics activity.
1 Introduction

Concurrent Computer Corporation has had more than a
decade of experience in utilizing the shielded CPU
model for attaining real-time performance under a real-
time version of an SVR4 UNIX-based operating system.
The key benefit of the shielded CPU approach is that it
allows a commodity operating system to be used for
applications that have hard real-time deadlines. Com-
modity operating systems like UNIX or Linux provide a
benefit for these applications because they have large
numbers of programmers that are familiar with the pro-
gramming API, and there is a rich set of development
tools and other application software available for these
operating systems.

Shielded CPUs can provide more deterministic perfor-
mance because the overhead of the operating system is
essentially offloaded onto a subset of CPUs in the sys-
tem. A shielded CPU is therefore able to provide a more
deterministic execution environment. In applying the
shielded processor model to Linux, several nuances
were found which affected the expected behavior of pro-
cesses running on shielded CPUs.

2 The Shielded CPU Model

The shielded CPU model is an approach for obtaining
the best real-time performance in a symmetric multipro-

cessor (SMP) system. This approach does not apply to
uniprocessor systems. The shielded CPU model allows
for both deterministic execution of a real-time applica-
tion as well as deterministic response to interrupts. A
task has deterministic execution when the amount of
time it takes to execute a code segment within that task
is predictable and constant. Likewise the response to an
interrupt is deterministic when the amount of time it
takes to respond to an interrupt is predictable and con-
stant.

When the worst-case time measured for either executing
a code segment or response to an interrupt is signifi-
cantly different than the typical case, the application’s
performance is said to be experiencing jitter. Because of
computer architecture features such as memory caches
and because of contention for shared resources, there
will always be some amount of jitter in measurements of
execution times. Real-time applications are defined by
the fact that they must respond to real world events
within a predetermined deadline. Computations that are
completed after this deadline are considered incorrect.
This means that the worst-case jitter the operating sys-
tem allows determines whether that operating system is
suitable for hosting a given real-time application. Each
real-time application must define the amount of jitter
that is acceptable to that application.

In the shielded CPU model, tasks and interrupts are
assigned to CPUs in such a way as to guarantee a high
1

grade of service to certain important real-time functions.
In particular, a high priority task and a high priority
interrupt are bound to one or more shielded CPUs, while
most interrupts and low priority tasks are bound to other
CPUs. The CPUs responsible for running the high-prior-
ity tasks are shielded from the unpredictable processing
associated with interrupts and the other activity of lower
priority processes that enter the kernel. Thus these CPUs
are called shielded CPUs.

Some examples of the types of tasks that should be run
on shielded CPUs are:

- tasks that require guaranteed interrupt response
time

- tasks the require very fast interrupt response
time

- tasks that must be run at very high frequencies

- tasks that require deterministic execution in
order to meet their deadlines

- tasks that have no tolerance for being inter-
rupted by the operating system

It will be shown that a shielded CPU can be used to
guarantee deterministic execution and deterministic
interrupt response times using a modified Linux kernel
that presents a standard Linux API to the user. The ben-
efit is that real-time applications can be developed using
standard Linux interfaces and standard Linux debugging
tools while still being able to guarantee very determinis-
tic real-time performance.

3 Implementation of Shielded
Processors

To create a shielded processor, it must be possible to set
a CPU affinity for every process and every interrupt in
the system. In this way a system administrator can
define which processes and interrupts are allowed to
execute on a shielded CPU. The Linux kernel already
has support for CPU affinity in the form of an entry in
the process structure for storing the CPU affinity and
code in the scheduler that allows processes to run only
on CPUs that are included in their CPU affinity. The
only thing lacking in standard Linux is a user interface
for setting a process’ CPU affinity. Several open source
patches provide this capability. Standard Linux does
support a CPU affinity for interrupts. In this case, the
user interface is already present via the /proc/irq/*/
smp_affinity files.

These two CPU affinity capabilities can allow a system
administrator to set up a shielded processor, but it would
require all processes and users in the system to honor

the shielded processor by not explicitly changing their
processor affinity to run on the shielded CPU. A less
fragile mechanism for setting up a shielded CPU is
desirable.

In addition, there are some interrupts that cannot be
assigned a CPU affinity. The local timer interrupt inter-
rupts every CPU in the system, by default at a rate of
100 times per second or once every 10 milliseconds.
This interrupt is generally the most active interrupt in
the system and therefore it is the most likely interrupt to
cause jitter to a real-time application. The local timer
interrupt provides functionality such as the accounting
of CPU execution time, system profiling and CPU
resource limits. The shielded processor mechanism
allows this interrupt to be disabled. Some of the func-
tionality, such as CPU time accounting, can be accom-
plished via other techniques. Other functionality more
geared towards debugging and performance analysis,
such as profiling, is simply lost when this interrupt is
disabled.

A new set of /proc files was added to a new directory,
/proc/shield, to allow the system administrator to spec-
ify a bit mask of CPUs that should be shielded. It is pos-
sible to shield a CPU from both interrupts and
processes. Separate files control shielding a CPU from
processes, interrupts that can be assigned to a CPU and
the local timer interrupt. It is possible to shield a CPU
from all of these activities or just a subset.

Because we do want the ability to have some processes
and some interrupts active on a shielded CPU, it was
necessary to create a semantic for the interaction of pro-
cess and interrupt affinity with the shielded CPU mask.
In general, the CPUs that are shielded are removed from
the CPU affinity of a process or interrupt.

The only processes or interrupts that are allowed to exe-
cute on a shielded CPU are processes or interrupts that
would otherwise be precluded from running unless they
are allowed to run on a shielded CPU. In other words, to
run on a shielded CPU, a process must set its CPU affin-
ity such that it contains only shielded CPUs.

When one of the /proc files that controls CPU shielding
is modified, the shielded CPU is dynamically enabled.
This means that the affinity masks of all processes and
interrupts are examined and modified accordingly. The
processes currently assigned to the shielded processor
will no longer be allowed to run on that processor and
will be migrated to other CPUs. Because the affinity
mask associated with interrupts is also modified, the
shielded CPU will handle no new instances of an inter-
rupt that should be shielded. Optionally, the local timer
2

interrupt may also be disabled on a shielded CPU. The
ability to dynamically enable CPU shielding allows a
developer to easily make modifications to system con-
figurations when tuning system performance.

4 RedHawk Kernel

Before describing the test scenarios that were used, it is
necessary to describe the RedHawk Linux kernel, which
was used for running benchmark tests that show the
effect of shielded processors. The RedHawk kernel used
was version 1.3. RedHawk is a Linux kernel based on
kernel.org 2.4.20. Various open source patches have
been applied to this kernel to augment both real-time
functionality and real-time performance including the
MontaVista preemption patch, Andrew Morton’s low-
latency patches, Ingo Molnar’s 0(1) scheduler patch and
the POSIX timers patch. Other changes have also been
incorporated by Concurrent for improving real-time per-
formance. This includes further low-latency work and
the implementation of shielded processors. In addition,
support was added for the Concurrent manufactured
Real-time Clock and Interrupt Module (RCIM) PCI
card. The RCIM provides the ability to connect external
edge-triggered device interrupts to the system and also
supports additional high-resolution timers. It will be
shown how the RCIM driver is an important part of the
RedHawk strategy for supporting deterministic interrupt
response under Linux.

5 Determinism in Execution

Determinism refers to a computer system’s ability to
execute a particular code path within a fixed amount of
time. The extent to which the execution time for the
code path varies from one instance to another indicates
the degree of determinism in the system. Determinism
applies not only to the amount of time that is required to
execute a time-critical portion of a user’s application,
but also to the amount of time that is required to execute
system service code in the kernel.

The standard Linux kernel has already addressed some
of the primary causes of non-deterministic execution.
For example Linux supports the ability to lock an appli-
cation’s pages in memory, preventing the jitter that
would be caused when a program first accesses a page
not resident in memory and turning a simple memory
access into a page fault. Linux also supports strict prior-
ity-based scheduling so that the highest priority real-
time processes are guaranteed to get as much CPU time
as they require without having their priority eroded by
scheduling fairness algorithms. Finally, the 0(1) sched-

uler, which was adapted in the Linux 2.5 series, provides
scheduling overhead which is both constant and mini-
mal.

Previous experience with creating a real-time variant of
UNIX showed that the primary remaining cause of inde-
terminism in program execution is interrupts. Because
interrupts will preempt the execution of even the highest
priority task, interrupts are essentially the highest prior-
ity activity in the system. An interrupt can occur at any
point in time because it is asynchronous to the operation
of the programs executing in the system. This means
that interrupts can cause significant jitter to a real-time
application because they cause delays in program exe-
cution at unpredictable points in time.

5.1 Execution Determinism Test

For this test, the system used was a dual processor
1.4GHz Pentium 4 Xeon with 1GB of RAM and a SCSI
hard drive.

Because we are measuring CPU execution determinism,
it is desirable to have an application which is CPU
bound for this measurement. The determinism test sim-
ply measures the length of time it takes to execute a
function using double precision arithmetic to compute a
sine wave. The sine function is called in a loop such
that the total execution time of the outer loop should be
around one second in length. Before starting this loop,
the IA32 TSC register is read and at the end of the loop
the TSC register is again read. The difference between
these two high-resolution times represents the amount
of time required to perform this CPU-bound loop. The
test locks its pages into memory and is scheduled under
the SCHED_FIFO scheduling policy.

The base time for the determinism test is based on the
ideal case of running the CPU-bound loop and was
determined by running the test on an unloaded system.
Both kernels under test were tried in an unloaded state.
The best time was measured under RedHawk on a
shielded CPU.

Subsequently, the test was run under various kernel con-
figurations with a load on the system. Any run of the
CPU-bound loop that took more time than the ideal case
was considered to have been impacted by indeterminism
in the system. The difference between the worst-case
time it took to run the CPU-bound loop and the ideal
case represents the amount of jitter.

To measure jitter, the background workload run on the
system should generate significant interrupt traffic. Two
shell scripts were used to create Ethernet and disk inter-
3

rupts. The first script was run on a foreign system and it
copies a compressed kernel boot image over the Ether-
net to the system being tested:

while true
do

scp bzImage wahoo:/tmp
done

The second test generates disk traffic on the system by
running a shell script that recursively concatenates files:

dir=/tmp/disknoise$$
trap ’rm -rf $dir; exit 1’ 1 2 15

mkdir $dir
cd $dir

echo boo >9
cnt=0

while true
do

for f in 0 1 2 3 4 5 6 7 8 9
do

cat * >$f 2>/dev/null
done

sleep 1
cnt=‘expr $cnt + 1‘
if [$cnt -ge 3]
then

rm *
echo boo >9
cnt=0

fi
done

Note that while this workload will generate interrupt
traffic, it is not a particularly interrupt-intensive burden
on the system.

5.2 Execution Determinism Results

The determinism test was first run on a standard Linux
kernel (kernel.org 2.4.20-rc1). The figure below graphs
the amount of variance from the ideal case in millisec-
onds. This means that a deterministic run would have a
graph that has the majority of its data points on the left
hand side of the graph. Also of interest is the worst-case
time observed executing the computational loop. The

results for the kernel.org kernel are summarized in Fig-
ure 1. The results are also summarized in terms of the
ideal time it took to execute the code path, maximum
time and the amount of jitter. The jitter reported is the
difference between the maximum amount of time it took
to run the computational loop and the ideal time it took
to run the computational loop, expressed in both sec-
onds and as a percentage of the ideal case.

 ideal: 1.147132sec
 max: 1.447316sec
 jitter: 0.300184sec (26.17%)

Clearly there was significant variance in the amount of
time it took to run the computational loop on a standard
Linux kernel when the system is busy with a load that
causes interrupt traffic. In the worst case, the computa-
tional loop, which should have taken 1.15 seconds, took
an additional 300 milliseconds to complete.

The test was next run on the RedHawk 1.3 kernel, on a
shielded processor. Figure 2 graphs the amount of vari-
ance from the ideal case with a summary of the results
in the legend below the graph.

FIGURE 1: kernel.org 2.4.20-rc1 Results
4

 ideal: 1.147132sec
 max: 1.168630sec
 jitter: 0.021498sec (1.87%)

As expected, a shielded processor provides a significant
improvement in the amount of variance that we see from
the ideal case. In the worst case, the computational loop,
which should have taken 1.15 seconds, took an addi-
tional 21milliseconds to complete. This jitter is assumed
to be due to memory contention in an SMP system.

To be sure that the improvement in determinism was due
to shielding and not other differences in the system, the
test was next run on the RedHawk 1.3 kernel on a non-
shielded processor. Figure 3 graphs the amount of vari-
ance from the ideal case with a summary of the results
in the legend below the graph.

 ideal: 1.147132sec
 max: 1.317151sec
 jitter: 0.170019sec (14.82%)

The test confirmed that the interrupt load on an
unshielded processor does indeed cause greater jitter in
the execution time for executing a computational load.

However, the determinism on a non-shielded CPU was
still significantly better than standard Linux. Why were
the standard Linux results as bad as they were? It was
theorized that the cause was the fact that this version of
Linux enables hyper-threading. Note that hyperthread-
ing is disabled by default in RedHawk. A final version
of the test was run on the standard Linux kernel with
hyperthreading disabled via the GRUB prompt. Figure 4
graphs the amount of variance from the ideal case with a
summary of the results in the legend below the graph.

FIGURE 2: RedHawk 1.3 Shielded CPU Results FIGURE 3: RedHawk 1.3 Unshielded CPU Results
5

 ideal: 1.147132sec
 max: 1.298005sec
 jitter: 0.150873sec (13.15%)

This test clearly identifies hyper-threading as the culprit
for even greater non-deterministic execution. While
hyper-threading does offer a performance boost for a
multi-threaded application by enabling parallelism at
the instruction unit level, this chip feature causes
another layer of indeterminism for real-time applica-
tions. This is because with hyper-threading enabled, the
execution unit itself has become a point of contention
between the processes that are executing on the virtual
processors of a single CPU.

6 Interrupt Response

Because real-time applications must respond to real
world events and those events are communicated to the
computer via an interrupt, determinism in responding to
an interrupt is an especially important metric for a real-
time operating system.

There are existing open source patches that address
some of the issues in the standard Linux kernel for
achieving good interrupt response. One such patch is the
kernel preemption patch. This patch allows one process
to preempt another process currently executing inside

the kernel. Prior to this patch when one process did a
system call, no other process could execute inside the
kernel until that process either blocked or completed its
system call. This has the potential to lead to very long
delays when trying to wake a high-priority process that
is awaiting an interrupt when there is currently a non-
preemptible task executing in the kernel.

Even with the preemptible kernel patch there are
remaining issues with preempting a process that is exe-
cuting inside the kernel. When a process makes a system
call, that process might enter into one of the Linux ker-
nel’s critical sections. A critical section is an area of
code that accesses a shared kernel data structure.
Because the data structure is shared, it might be simulta-
neously accessed by another process that is executing
inside the kernel. To prevent the shared data from being
corrupted, a critical section requires synchronization
primitives that allow only one process at a time to
access the shared data. The preemptible kernel patch
does not allow a process to be preempted while it is
inside a critical section, since the preempting process
might try to modify the shared data of the pending criti-
cal section, causing the shared data to be corrupted.

Because the kernel’s critical sections cannot be pre-
empted, the length of the critical sections inside the ker-
nel is significant when considering worst-case interrupt
response. In the Linux 2.4 series, there are many very
long critical sections. Other open source patches collec-
tively known as the “low-latency patches” address the
longest critical sections in the kernel by rewriting the
algorithms involved so preemption can be disabled for a
shorter period of time. The combination of the preemp-
tion patch and the low-latency patch sets was used on a
Red Hat based system to demonstrate a worst-case inter-
rupt response time of 1.2 milliseconds [1].

Experience working with a real-time variant of UNIX
showed that when trying to guarantee how long it will
take to respond to an interrupt, the biggest problem is
the critical sections that disable preemption. Consider
the case where a low priority process enters the kernel to
process a system call and that process enters a critical
section where preemption is disabled. If a high priority
interrupt becomes active at this point, the system will
process that interrupt. But when the interrupt routine
wakes the process that is awaiting the interrupt, that pro-
cess will not be able to run until the execution of the
critical section is complete. This means that the worst-
case time to respond to an interrupt is going to be at
least as long as the worst-case time that preemption is
disabled in the kernel.

FIGURE 4: kernel.org 2.4.20-rc1 (no hyperthreading)
 Results
6

In a symmetric multiprocessor system that supports
CPU shielding, it is possible to prevent low priority pro-
cesses from running on a CPU where a very fast
response to interrupt is required. While this means that
some CPU resources will be underutilized, it does allow
a very firm guarantee for processes that require a high
degree of interrupt response.

6.1 Interrupt Response Test

The system used for the test was a dual 933MHz Pen-
tium 3 Xeon with 2GB of RAM with a SCSI disk drive.
Two different kernels were measured under the same
load conditions.

To measure interrupt response time, the realfeel bench-
mark from Andrew Morton’s website was initially used.
This test was chosen because it would allow results to
be compared between a standard Linux kernel and a
RedHawk system. This test operates by measuring the
response to an interrupt generated by the Real Time
Clock (RTC) driver. This driver is set up to generate
periodic interrupts at a rate of 2048 Hz. The RTC driver
supports a read system call, which returns to the user
when the next interrupt has fired. The clock used to
measure interrupt response is the IA32 TSC timer. To
measure interrupt response time, the test first reads the
value of the TSC and then loops doing reads of /dev/rtc.
After each read the test gets the current value of the
TSC. The difference between two consecutive TSC val-
ues measures the duration that the process was blocked
waiting for an RTC interrupt. The expected duration is
1/2048 of a second. Any time beyond the expected dura-
tion is considered latency in responding to an interrupt.
The test locks it pages into memory and is scheduled
under the SCHED_FIFO scheduling policy.

To measure worst-case interrupt response time, a strenu-
ous background workload must be run on the rest of the
system. The workload chosen was the same as that used
in Clark William’s paper on Linux Scheduler Latency
[1]. This workload is from the Red Hat stress-kernel
RPM. The following programs from stress-kernel are
used:

NFS-COMPILE
TTCP
FIFOS_MMAP
P3_FPU
FS
CRASHME

The NFS-COMPILE script is the repeated compilation
of a Linux kernel via an NFS file system exported over
the loopback device. The TTCP program sends and

receives large data sets via the loopback device.
FIFOS_MMAP is a combination test that alternates
between sending data between two processes via a FIFO
and operations on an mmap’d file. The P3_FPU test
does operations on floating point matrices. The FS test
performs all sorts of unnatural acts on a set of files, such
as creating large files with holes in the middle, then
truncating and extending those files. Finally the
CRASHME test generates buffers of random data, then
jumps to that data and tries to execute it. Note that while
no Ethernet activity was generated on the system, the
system did remain connected to a network and was han-
dling standard broadcast traffic during the test runs.

6.2 Interrupt Response Results

The first kernel used was a standard Linux (kernel.org
2.4.20-rc1). Note that this kernel does not contain the
low-latency patches or the preemption patch. After start-
ing the stress-kernel program, realfeel was run for
60,000,000 samples at 2048 Hz. The test was terminated
before the full eight-hour run completed because we
already had enough data showing poor interrupt latency
on this kernel. Figure 5 graphs the interrupt response for
a standard Linux kernel. Note that the y axis is a loga-
rithmic scale. This graph is summarized in terms of his-
togram buckets below the graph.

lo
g

60
00

00
00

 S
am

pl
es

FIGURE 5: kernel.org 2.4.20-rc1 Interrupt Response
 Results
7

measured 44759417 rtc interrupts
max latency: 92.3ms

44374681 samples < 0.1ms (99.140%)
44594353 samples < 0.2ms (99.631%)
44687849 samples < 1.0ms (99.843%)
44702467 samples < 2.0ms (99.872%)
44719462 samples < 5.0ms (99.910%)
44732301 samples < 10.0ms (99.939%)
44742797 samples < 20.0ms (99.962%)
44748489 samples < 30.0ms (99.975%)
44753080 samples < 40.0ms (99.985%)
44756536 samples < 50.0ms (99.993%)
44759250 samples < 60.0ms (99.999%)
44759363 samples < 70.0ms (99.999%)
44759402 samples < 80.0ms (99.999%)
44759416 samples < 90.0ms (99.999%)
44759417 samples < 100.0ms (100%)

While the majority of the responses to the interrupts
occurred in less than 100 microseconds, for a real-time
application the most important metric is the worst-case
interrupt response. This graph shows that standard
Linux, without the patches that implement minimal real-
time performance gains, has very poor guarantees on
interrupt response. At 92 milliseconds, the worst-case
interrupt response is completely unacceptable for the
vast majority of real-time applications. These results are
expected.

The second kernel tested was the RedHawk 1.3 kernel
described above. After starting the stress-kernel pro-
gram, realfeel was run for 60,000,000 samples at 2048
Hz. This run was approximately 8 hours in length.
While the length of this run may seem like overkill,
early results showed us that on a shielded CPU the
worst-case numbers might not occur until several hours
into the run.

In this test, CPU 1 was set up as a shielded processor.
The RTC interrupt and realfeel have their CPU affinity
set such that they run on shielded CPU 1. The stress-ker-
nel test is run without any CPU affinity set. The results
of the interrupt response test for a RedHawk shielded
processor are presented in Figure 6. Again, the results
are also summarized in histogram form below the graph.

measured 60000000 rtc interrupts
max latency: 0.565ms

59999983 samples < 0.1ms (99.99997%)
 8 samples < 0.2ms
 5 samples < 0.3ms
 2 samples < 0.4ms
 1 samples < 0.5ms
 1 samples < 0.6ms

The initial tests run under RedHawk on shielded CPUs
showed worse results than expected. The problems dis-
covered resulted in several additional fixes to the Linux
kernel to allow us to achieve a more optimal interrupt
response on a shielded processor. The primary problem
was due to critical sections that are protected by spin
locks that do not disable interrupts. It is not necessary
for these spin locks to disable interrupts because the
critical section is never locked at interrupt level. When
interrupts are not disabled, it is possible for an interrupt
routine to preempt a critical section being protected by a
spin lock. Because interrupt routines are relatively short,
this should not be a big issue. The problem was in the
bottom-half interrupt routines that would run on return
from interrupt. These interrupt bottom halves sometimes
executed for several milliseconds of time. If the process
used to measure interrupt response on the shielded pro-
cessor attempts to lock the contended spin lock (which
had been preempted by interrupts and bottom-half activ-

lo
g

60
00

00
00

 S
am

pl
es

FIGURE 6: RedHawk 1.3 Interrupt Response
 Results
8

ity) during the read of /dev/rtc, then the response to the
interrupt could be delayed by several milliseconds.

Because the /dev/rtc mechanism works via the read()
system call, a process that wakes up after the interrupt
fires must now exit the kernel through various layers of
generic file system code. Embedded in this code are
opportunities to block waiting for spin locks. The /dev/
rtc interface is therefore not ideal for achieving a guar-
anteed interrupt response.

6.3 A Second Interrupt Response Test

While the initial experiment did succeed in reducing
interrupt latency below one millisecond, the results were
not as good as expected for shielded CPUs. It was theo-
rized that these mediocre results were due to the fact
that the realfeel test uses /dev/rtc, whose API is consid-
ered less than optimal, as described above. Therefore a
new interrupt response test was designed. In this test the
real-time timer on the Real-time Clock and Interrupt
Module (RCIM) PCI card was utilized as the interrupt
source.

To block waiting for the RCIM’s timer to interrupt, the
user makes an ioctl() call rather than a read() system
call. In addition, the Linux kernel was modified to cor-
rect one of the issues found with this interrupt response
test. Linux locks the BKL spin lock before entering a
device driver’s ioctl routine. This is to protect legacy
drivers that are not properly multithreaded from having
issues on an SMP system. The problem is that the BKL
spin lock is one of the most highly contended spin locks
in Linux and attempting to lock it can cause several mil-
liseconds of jitter.

A change was implemented to the generic ioctl support
code in Linux so it would check a device driver specific
flag to see whether the device driver required the Big
Kernel Lock (BKL) to be held during the driver’s ioctl
routine. This allows a device driver that is fully multi-
threaded to avoid the overhead of the BKL. Since the
RCIM driver is multithreaded, it does not require the
BKL to be locked during its ioctl routine.

Like realfeel, the RCIM interrupt response test measures
the amount of time it takes to respond to an interrupt
generated by a high-resolution timer. When the RCIM is
programmed to generate a periodic interrupt, the length
of the periodic cycle is stored in the RCIM’s count reg-
ister. The count register is decremented until it reaches
zero, at which time an interrupt is generated. When the
count reaches zero, the RCIM will also automatically
reset the count register to its initial value and begin dec-
rementing the count register for expiration of the next
periodic cycle.

The RCIM interrupt response test operates by initiating
a periodic interrupt on the RCIM and then, in a loop,
issuing the ioctl to block until an interrupt is received.
When the test is awakened after receipt of the interrupt,
it immediately reads the value of the count register on
the RCIM. Because this register can be directly mapped
into the program, the overhead of this read is minimal.
The test can then calculate the time since the interrupt
fired by subtracting the current value of the counter reg-
ister from the initial value loaded into the count register
at the beginning of each periodic cycle. The test locks its
pages into memory and is scheduled under the
SCHED_FIFO scheduling policy.

In this test scenario the workload was significantly
increased from that used during the realfeel benchmark-
ing above. The same stress-kernel load was used, but in
addition, the X11perf benchmark was run on the graph-
ics console and the ttcp network performance bench-
mark was run, reading and writing data across a
10BaseT Ethernet connection.

The test was run on a dual processor 2.0 GHz Pentium 4
Xeon with 1GB of RAM and SCSI disks. The Ethernet
controller is the 3Com 3c905C-TX/TX-M. The graphics
controller is the nVidia GeForce2 MXR.

Because this interrupt response test requires the RCIM
driver, which is not a part of standard Linux, no num-
bers were gathered for a standard Linux kernel. The
results for running this test on RedHawk 1.3 are shown
in Figure 7. Note that the numbers in this thin bar histo-
gram represent microseconds, not milliseconds. The y
axis is a logarithmic scale.
9

measured 28800882 RCIM interrupts
minimum latency: 11 microseconds
maximum latency: 27 microseconds
average latency: 11.3 microseconds

28800870 samples < 0.02ms (99.99999%)
12 samples < 0.03ms

This test demonstrates that the issues seen with the real-
feel test have to do with the multithreading issues of

/dev/rtc. When the RCIM driver is used to generate a
high-resolution timer interrupt, a shielded processor is
able to provide an absolute guarantee on worst-case
interrupt response time of less than 30 microseconds.

7 Conclusion

It has been demonstrated that processes executing on
shielded processors on a standard Linux kernel substan-
tially improve the determinism in the time it takes to
execute a user-level application. Enabling hyperthread-
ing on the Xeon chip causes another level of contention
between the processes that are executing on the virtual
CPUs provided by hyperthreading and causes a decrease
in program execution determinism.

It has also been demonstrated that when an interrupt and
the program that responds to that interrupt are run on a
shielded processor, it is possible to guarantee interrupt
response of less than 30 microseconds. This guarantee
can be made even in the presence of heavy networking
and graphics activity on the system. This interrupt
response guarantee rivals the guarantees that can be
made by much smaller and much less complex real-time
kernels. There are remaining multithreading issues to be
solved in the Linux kernel to achieve this level of inter-
rupt response for other standard Linux application pro-
gramming interfaces which generate interrupts.

References

[1] Clark Williams, 2002, Linux Scheduler Latency, Red
Hat web cast.

FIGURE 7: RCIM Interrupt Response Results
10

