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Abstract

In space application, it is of great interest the development of autonomous or semi-autonomous robotic
devices that can substitute the astronauts in routine operations in order to free them from repetitive
tasks and reduce mission costs. In this work, an experimental setup based on a 6 degrees of freedom
(dof) manipulator with a 3 dof gripper designed for a possible application within PaT, the Payload Tutor
proposed by ASI (Italian Space Agency), is presented. This system consists of a robotic arm, a vision
system, and a gripper. Since the gripper has to interact with free-floating and irregular objects, the vision
subsystem provides all the information needed for grasping unknown objects in an optimal way.

1 Introduction

Thanks to a constant research and development ac-
tivity in the field of robotics and, more in general,
of automation, reliable and relatively low-cost ma-
chines that can substitute or assist human operators
in repetitive or dangerous tasks are now available. In
robotics, this is particularly true for applications in
structured environment, i.e. when the workspace in
which the robot operates is known with great accu-
racy and precisions. On the other hand, it is obvi-
ously of interest the development of applications in
unstructured or unknown environments. In this case,
control algorithms that can give a sort of “human be-
havior” to the machines are needed: in other words,
the machines should be characterized by a functional
autonomy, i.e. they should be able to modify their
behavior on the basis of information acquired in real-
time from the environment.

It is of great interest to achieve these performances
in space applications where autonomous or semi-
autonomous robotic devices can substitute the as-
tronauts in routine operations in order to free them
from repetitive tasks and reduce mission costs.

In this work, an experimental setup based on a 6
degrees of freedom (dof) manipulator with a 3 dof
gripper designed for a possible application within
PaT, the Payload Tutor proposed by ASI (Italian
Space Agency), is presented. This system consists of

a robotic arm, a vision system, and a gripper. Since
the gripper has to interact with free-floating and ir-
regular objects, the vision subsystem provides all the
information needed for grasping unknown objects in
an optimal way.

The underlying software architecture is based on a
real-time variant of the popular desktop operating
system Linux. This kind of systems provide no-
ticeable performances that, together with availabil-
ity of the source codes, powerful development tools
and, generally, well-done documentation, could be
the starting point for setting up a good develop-
ment environment. Moreover, these operative sys-
tems are distributed under the GNU Public License,
so they are freely available and configurable to meet
desired requirements. According with this develop-
ment model, the RT-Linux [1], [2] and RTAI-Linux
[3], [4] projects took place, both with the aim of giv-
ing Linux the possibility to implement hard real-time
applications.

2 The experimental set-up. An
overview
The robotic arm is a Comau SMART 3-S robot, a

standard industrial 6 dof anthropomorphic manipu-
lator with a non-spherical wrist, equipped with the
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FIGURE 1: Selection of the finger’s target points. According to a first order analysis, the configurations
presented in (a) and (b) are equivalent, but differ if a second order analysis is carried out. Clearly, the

configuration (b) is more stable.

standard controller C3G-9000. Each joint is actuated
by a DC-brushless motor, and its angular position is
measured by a resolver. In our setup, the controller
is only used as an interface between the resolvers and
drives on the robot and a PC running RTAI-Linux.
In each sampling period generated by the controller,
the real-time control system running on the PC ac-
quires the data from the encoders, computes the new
control input for the actuators and sends their values
to the C3G-9000.

This procedure is possible since the C3G-9000 con-
troller is open. In fact, its internal (VME) bus is
connected to the ISA-PCI bus via a pair of Bit3
boards, one inside the robot controller and the other
inside the PC running the control algorithms. A
data exchange between PC and C3G-9000 is possi-
ble via a shared memory area inside the controller
and synchronization can be achieved by an interrupt
signal generated by the controller itself. In this con-
figuration, position and velocity loops managed by
the C3G- 9000 are opened, and all the safety protec-
tions are disabled.

On the robot wrist, both the video-camera and
the gripper are installed. The vision system is
used to provide visual information about the en-
vironment and, in particular, about objects within
the workspace of the robot. These informations
are needed to track an object moving in the robot
workspace, to move the robot in a desired position
in order to grasp it with the gripper and to auto-
matically calculate the optimal grasping configura-
tion. At the moment, the vision system consists of
a monocular camera, connected to a frame-grabber
board installed on the same PC that implements the
robot control algorithms. By properly moving the
robot arm and, at the same time, acquiring images
of the object from different points of view, the vision

algorithm can give a good estimate of the distance
of the object from the robot wrist. This information
is essential to correctly move the robot in order to
grasp the object with the gripper.

Moreover, by means of the vision system, the shape
of the object is recognized in order to calculate the
better grasping points (target points). The object
is caught on these points and the contact forces are
properly controlled. Generally, the target points are
selected on the basis of a kinematic analysis of a first
order model: the resulting points do not depend on
the shape of the object and on the geometric charac-
teristics of the gripper. In our case, the target points
are calculated by means of a kinematic analysis of
a second order model that takes into account also
the shape of the object and of the gripper’s finger:
in this manner, the resulting grasping configuration
is more stable. An example is presented in Fig. 1.
Two grasping configurations that are equivalent if
evaluated according to considerations based on first
order models differ if a second order model is used.

The third component of our setup is the A.S.I. Grip-
per, [7]. It has three degrees of freedom, and is
particularly suited for no-gravity manipulation tasks
(i.e. in space applications), since it can interact
with free-floating and irregularly shaped objects. Its
control algorithms are executed on a custom DSP
board (based on the TMS320C32 chip). For this
board, a loader and a DSP-monitor have been de-
veloped under Linux, together with some drivers for
the DSP board. Once the object distance and the
target points are calculated, the gripper is correctly
positioned in the workspace with respect to the ob-
ject. Then, the fingers are closed and the object is
grasped on the target points. At this point, the DSP
board executes the control algorithm in order to as-
sure proper contact forces.
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FIGURE 2: The real-time modules and user-space applications. Organization and communications channels.

3 Control of Comau robot with
RTAI-Linux

The software developed for the control of the Co-
mau SMART 3-S is divided into two distinct mod-
ules: a real-time module, which executes the control
algorithms and communicates directly with the plant
(robot), and a set of non real-time applications that
exploit all the functionalities provided by the real
time module. Clearly, some communication mecha-
nisms exist to provide an information exchange be-
tween the two parts. The real-time module is pe-
riodically activated by an external interrupt signal
generated by the C3G-9000 controller.

The adopted real-time Linux variant is RTAI, al-
ready successfully used in other robotic applications
developed in the past within LAR, [5, 9]. A no-
ticeable experimental activity has been carried out
in this context, also comparing the performances
of control system based on RTAI-Linux with other
commercially available OS, such as QNX, [12].

In order to create a modular and flexible software
structure for a quick test of new control algorithms
and fast implementation of new robot applications,
the code is divided into three main sub-modules, pro-
viding:

e communication with robot SMART 3-S;
e security tests;

e implementation of the robot control algo-
rithms.

The communication module is used for reading and
writing data on the shared memory area in the C3G-
9000 controller. In particular, this module reads the
six joint positions and writes six current set-points
for the DC drives. Moreover, it implements the drive
on/off function. This is the only module that gets
access to the shared area inside the C3G-9000 con-
troller. A schematic representation of the software
structure is presented in Fig. 2.

The security module implements software range de-
limiters (saturation), limits the joint speeds, checks
if some of the joints is blocked and, if necessary, sat-
urates the current set points the maximum allowed
value. In particular, the last two tests are needed to
prevent drives damages.

The control module implements the control algo-
rithms and, in particular it is responsible for tra-
jectory planning, both in joint and Cartesian space,
and for robot regulation. The sub-module that im-
plements the regulation algorithms may change ac-
cording to the control scheme under development.
e.g. decentralized control, multi- variable centralized
control, and so on.

Since in most of the application (e.g. with the vi-
sion system) the desired trajectory is not known
before the execution of a task, we have implemented
a trajectory generator using a non- linear filter with
constraints on maximum speed and acceleration,
6, 8].

All these real-time functions are compiled in a kernel
module and dynamically linked to the real-time ker-
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FIGURE 3: Screen-shot of the vision software.

nel of the operating system. Since the user needs to
interact with the robot, some communication chan-
nels between kernel space and user space are needed.
Each module can exchange data with the user space
applications by its own channels. Since in all the sit-
uations the amount of data that we send from/to the
kernel module is not relevant, we decided to imple-
ment all the communication channels using FIFOs.
This solution provides robustness and a built-in coor-
dination/synchronization mechanism between sender
and receiver.

From the user space it is possible to send the drive
on/off command to the communication module of the
real time process, and it is possible to change in run-
time some parameters in the security module (this is
a function that must be disabled when testing new
control schemes). Concerning the control module, it
can receive commands from user space applications
and send back to them information about internal
variables of the robot (e.g. joint positions and drive
currents). In this manner, it is possible to move the
robot with a keyboard, a mouse, a joystick or a wvir-
tual teach pendant, to interface it with other applica-
tions for state-tracing or for movements under vision
system control. More details can be found in [9].

4 The vision system
The vision system consists of a monocular video-

camera mounted on the robot’s wrist. The related
software runs as a user-space application and com-

municates with the real-time (kernel) module by
means of a set of commands in order to make the
robot to execute specifics tasks/movements.

In Fig. 3, a screen-shot of the vision software with
main window Robotic Vision is presented. More-
over, the TP window is the Virtual Teach Pendant
mentioned above, while Pos:Giunti is another tool
that allows the user to move the robot acting on each
joint separately. The scene framed by the video-
camera is reproduced in the COMAU’ s eye window.

A typical task for this system is to automatically
grasp a user selected object within the robot’s work-
space by using the gripper mounted on the robot’s
wrist. Moreover, the grasp has to be optimal and
stable. This procedure consists of two main steps:

e the evaluation of the object distance from the
robot wrist;

e the determination of the best grasping config-
uration.

After that, the robot is automatically moved in or-
der to position the gripper such that the object can
be cached in the most suitable way. In the following
subsection, a detailed description of these two main
steps is presented.

4.1 Distance evaluation

The first step is to move the robot in order to frame
the object that has to be cached by the gripper with
the video camera. Once the object is selected by
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FIGURE 4: Calculation of the best grasping configuration. From the image framed by the video-camera, to

the finger contact points.

the operator, its geometric gravity center (GGC) is
calculated and, by sending proper pitch and yaw
commands to the real-time module that controls the
robot, the video-camera optic axis is aligned with the
GGC.

Since the vision system is not stereo, an estimation of
the actual distance between object and end-effector
is calculated by moving the robot along the direction
camera-object and taking (at least) two pictures of
the object itself. The first picture is taken in the ac-
tual position of the robot, while the second one after
a negative approach is executed. This is necessary
since the distance from the object is unknown. From
a comparison of the same object framed from two dif-
ferent but aligned points of view, a first estimation
of the unknown distance is calculated.

Analyzing some experimental results, it has been de-
termined that the best performances can be achieved
if the distance between video-camera and object is
about of 35¢m. For this reason, performances can
be improved by taking (if necessary) more than two
pictures of the same object. In particular, if the
first estimate provides a distance between 32.5 and
37.5cm then this estimation is assumed to be correct.
If it is not the case, the robot executes an approach in
order to move the camera at a (estimated) distance
of 35¢m from the object and the previous procedure
is repeated. The result is assumed to be correct if it
belongs to the range 32.5 <+ 37.5cm.

Once the position of the object with respect to the
video-camera, and clearly from the gripper, is deter-
mined, a first approach is executed in order to posi-
tion the video-camera at 20cm from the object. At
this point, a procedure that analyzes the object and
calculates the best contact points in order to catch

the object with the gripper is started. More details
are in the next subsection.

By now, assume to know how the object has to be
grasped. Then, by means of normal and slide com-
mands, the center of the gripper is aligned with the
GGC of the object. Finally, the gripper is rotated
and its fingers can grasp the object in the desired
contact points. More details in [13].

4.2 Evaluation of the optimal grasp-
ing configuration

The only informations the system owns about the ob-
ject to be grasped are provided by the video-camera.
A typical situation is represented in Fig 4(a). The
first step is to extract the contour of the object by
means of the well-known Canny’s algorithm and to
calculate its GGC. Since the Canny’s algorithm pro-
vides only a bitmap describing the object contour,
it is necessary to ordinate these points in order to
obtain a discrete parametrization of the border of
the object. This procedure is called edge tracking:
more detail about the one we implemented can be
found in [14].

Given the border parametrization, it is possible to
extract the all the geometric informations that are
useful for the determination of the best grasping con-
figuration, that is the set of tangent and normal vec-
tors and its curvature at a given point. The vector ¢;
tangent to the point P; of the border is assumed to
be the line passing from P; and P, 1, while the nor-
mal vector n; and the curvature r; are determined by
calculating the circumference passing through P;_1,
Pi and Pi+1-

Starting from this set of geometrical parameters that



describes the border of the object, the algorithm is
able to provide the three contact points for which
an index describing the performances of the corre-
sponding grasp is maximum. Clearly, the result-
ing contact points have to be compatible with the
mechanical characteristics of the A.S.I. gripper. In
particular, since the contacts with the grasped ob-
ject can occur along three intersecting lines equally
spaced of 120°, the resulting configuration has to re-
spect this mechanical constraint. In Fig. 4(b), the
best grasping configuration calculated for the object
of Fig. 4(a) using only the informations provided by
the video-camera are presented. The contact points
are compatible with the mechanical architecture of
the gripper.

The mathematical details can be found in [10, 11]
and are summarized in [14].

5 Conclusions and future work

In this work, an experimental setup based on a 6
degrees of freedom (dof) manipulator with a 3 dof
gripper designed for a possible application within
PaT, the Payload Tutor proposed by ASI (Italian
Space Agency), has been presented. This system
consists of a robotic arm, the Comau SMART3-S
industrial manipulator, a monocular vision system,
and the A.S.I gripper. In this set-up, the gripper
has to interact with free-floating and irregular ob-
jects and all the informations needed for grasping
unknown objects in an optimal way are provided
by the vision subsystem. Once an unknown object
inside the robot’s work-space is selected by the user,
the robot is able to grasp it in an optimal way using
only the informations provided by the vision sub-
system.

Moreover, our future work will be aimed at improv-
ing performances of the current system, in particular
introducing a stereo-vision system in order to easily
obtain informations about the position of the object
within the environment so that an object tracking
can be implemented. Other activities will be devoted
to further study the real-time performances of the
several real-time variants of Linux, to compare them
to commercial products, and to develop applications
for high-dynamic motion-control systems.
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