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Abstract

This paper presents the design for the real-time core of a generic real-time signal acquisition, processing
and generation system. The design is generic in the sense that it can be used in a wide variation of
application domains, from the PLC logic of MatPLC, [7], over medical signal processing in the RT-Lab
project, [2], to the robot motion control of the Orocos project, [1]. It’s exactly the functional overlap
between these projects that has stimulated the presented design, in the hope of gaining more critical
mass for the real-time signal processing core of these, and other, projects. The paper only presents the
design of an application-independent real-time signal processing infrastructure, and its implementation
on a Linux RTOS, but not the protocols and plug-in functionality to be provided by the applications, on
top of this infrastructure.

1 Introduction

This text presents the design for a generic real-time
signal processing system. This introduction gives an
overview of the design, the envisaged applications,
and the specifications for its components. The pre-
sented design for a generic real-time signal process-
ing system is “generic” because it covers the needs
of several application areas:

• pure data acquisition, as implemented by
Comedi, [6]. (This design can be seen as an
extension to Comedi; in any case, a seemless
integration with Comedi is a key specification.)

• extended data acquisition and generation, with
pre- and post-processing of the signals. E.g.,
applications which must calibrate equipment
against standards, send specific pulse trains,
detect peaks and abrupt changes, estimate in-
directly observed system parameters, etc.

• feedforward/feedback control, such as in
robotics, or other mechatronic systems.

The presented design is limited to the common
real-time infrastructure needed by all these applica-
tions. Application-specific functionality must be im-
plemented on top of it, via a “plug-in” architecture.
The presented design is also generic in a more tech-
nical sense, in that it is only loosely coupled to the
RTOS it runs on:

• It requires only very minimal support of the
RTOS, and this support is localized in only a
few parts of the system.

• It doesn’t rely at all on the real-time scheduling
behaviour of the RTOS.

• It relies on clearly marked and specifief stubs
to the hardware and RTOS, such that it can
be ported to user space, for example for simu-
lation or non-real-time signal processing.

We call the presented structure the Software Pat-
tern [4] of real-time control: it is the structure that
has proven over the last 50 years to successfully cope
with all control and signal processing applications.
This paper makes this Software Pattern explicit, and
explains its application in various areas. It also
presents the Orocos Framework [3] that implements
this Software Pattern.

2 Components

This Section presents the components that have to be
available in the system, and describes their function-
alities. Figure 1 gives an overview of the components
and their interaction.

2.1 Functional components

In its envisaged applications, the signal generation
and processing takes place in hard real-time, but a
different, time-varying frequency could be used for
each of its constituent components:

• Scanner : measures signals on interface cards.

• Actuator : applies setpoints to interface cards.
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Figure 1: Structure of the real-time core components.

• Generator : generates signal setpoints. It
supports hybrid signals, i.e., discrete signals
(“pulses”), analog signals (in sampled form, of
course), as well as discrete switches between
analog signal forms. In its signal generation,
it can make use of the data that other compo-
nents have available.

In control theory, one calls the functionality
offered by the Generator “feedforward” and/or
“setpoint generation.”

• Observer : reads Generator and Scanner re-
sults, and calculates estimates on these data.
Lots of application-dependent forms of data
observation exist, known under names such
as “filtering,” “transformations,” “data reduc-
tion,” “classification,” etc.

• Controller : reads Generator, Scanner and Ob-
server, and calculates setpoints for the Actua-
tor, in its “control algorithm.”

These are the functional components, i.e., the com-
ponents of which application programmers see the
plug-in interface, and for which they must provide
functional contents, in the form of the signal gener-
ation or processing algorithms of their application.

2.2 Infrastructural components

The design also needs some infrastructural compo-
nents, that run “behind the screens” in order to sup-
port the functional components:

• Execution Engine: is responsible for activation
and configuration:

– activating the functional components re-
specting their individual timing specifica-
tions.

– run-time configuration of the functional
components.

This is the only component that knows how the
other components should interact, and it trig-
gers other components to execute their func-
tionality. By localizing the application logic in
one single component, the system is much eas-
ier to understand, program, adapt, and make
deterministic. The core of the Execution En-
gine is a finite state machine (or any other
“decision making” engine that the application
builder wants to use), whose outputs are trig-
gers (“events”) for the other components; for
the pacing of its state machine, the Execution
Engine relies on basic timer functionality of the



(RT)OS, but only indirectly (see HeartBeat be-
low).

• Command Interpreter : this is not a hard real-
time component, because it receives commands
(configuration, action specification, etc.) from
user space (in whatever protocol the applica-
tion uses), parses them, checks their consis-
tency, fills in the configuration data structures
for the other components, and signals the Exe-
cution Engine when a complete and consistent
new specification for the real-time system is
available. It has to make sure that its commu-
nication with the real-time Execution Engine
is atomic: either the whole new specification is
transferred, or nothing. “Swinging buffers” are
a possible RTOS IPC primitive to implement
this atomicity, but certainly not the only one.

• Reporter : collects the data that the other com-
ponents want to send to the user, and takes
care of the transmission.

• HeartBeat : fires events (Sect. 3.2) at speci-
fied times, in order to “schedule” the activi-
ties of the other components in the framework.
The time can be virtual, which is useful for
scaling up or down an application’s execution,
and even mandatory for a distributed appli-
cation, [5]. The Execution Engine configures
the HeartBeat, because it knows what must be
done at any given time in the application.

Only the Scanner and Actuator interact with the
hardware, or rather, with a device driver library such
as Comedi. Only the Reporter and the Command
Interpreter interact with the user space application.
Only the Execution Engine interacts with the operat-
ing system. (Also the device driver library interacts
with the hardware and the operating system, but this
is not visible anymore at the interface that Scanner
and Actuator use.) Generator, Observer and Con-
troller can be designed fully independently of RTOS
and user, because they interact only with Scanner,
Actuator, Reporter and Execution Engine.

2.3 Using the components

Application programmers don’t have to use all func-
tional components. For example, one application
needs only signal generation; another one monitors
an incoming signal and executes an alarm when cer-
tain signal properties are observed; etc. For every
components they do use, they have to provide a plug-
in function (Section 5). That is, each component has
a number of data structures and method calls, whose
existence and programming interface is defined by

the design, but whose concrete implementation de-
pends on the application. The specification of this
user-interaction API (Application Programming In-
terface) and message protocols, however, is beyond
the scope of this paper.

2.4 Flexibility

The system must be flexible, i.e., it must allow dif-
ferent ways to map the above-mentioned architecture
onto the hardware to be used:

• each component could be a separate thread, or
even running on a separate processor.

• the whole system could run as one single task,
implementing one or more of the five functional
components.

• the system could have any structure in be-
tween.

The whole system’s specifications are ambitious, in
the sense that it is difficult to start from an existing
software project that implements part of the applica-
tions (e.g., ECC signal processing), and extend it to
cover all the specifications. The basic difficulty lies
in the fact that so many components must cooperate
in so many different configurations, without loosing
performance. This goal can be reached by decou-
pling, from the start, the functional components via
mediator classes, Section 3.

3 Mediator classes

The concept of a mediator class is the key behind
the envisaged flexibility. Instead of letting all compo-
nents interact with each other directly, they interact
with the mediator. Hence, the complexity of provid-
ing the code for all possible interactions, is reduced
to the code to connect each component to a small
number of mediators. These latter interconnections
can be made smaller, more uniform and more config-
urable, if one designs the mediators with the whole
scope of the generic application in mind. Further
complexity reductions emerge by using the specific
structure that the system exhibits (Section 4).
The presented design is built around the following
three key mediator classes:

• The general-purpose mediator classes
Producer-consumer (Section 3.1) and events
(Section 3.2). The producer-consumer is for
data exchange, and the event for synchroniza-
tion.



• The system-specific Execution Engine media-
tor. This one decouples and localizes the log-
ical interaction and synchornization between
all other functional and infrastructural compo-
nents.

These mediators are classes in the object-oriented
programming sense of the word: they encapsulate
data structures that are shared between the com-
ponents, and take care of the synchronized (“race-
free”) access to these data. This localization and uni-
formization of the IPC interactions between compo-
nents facilitates understanding of the design and the
implementation, and hence also porting, scaling and
configuration. This flexibility is further enhanced by
the fact that only two different general-purpose me-
diator classes are used, whose implementations are
shared by all components.

3.1 Producer-consumer

This mediator takes care of the data exchange be-
tween two components. The “producer” component
generates data, in its own pace; the “consumer” com-
ponent uses the data, also in its own pace. The
mediator makes sure that both components don’t
have to worry about each other, and even don’t have
to know each other. The mediator implements the
mechanism of the data exchange, i.e., the functional-
ity of access to the encapsulated data: shared mem-
ory, circular buffer, non-blocking FIFO, etc. So, the
producer-consumer mediator class consists of the fol-
lowing data and methods:

• Data. The data structures exchanged by pro-
ducer and consumer. In order to reduce data
copying, the mediator may offer the service of
letting producer and consumer share the same
data structure inside the mediator. The medi-
ator takes care of the specified form of access
synchronization.

• Methods. The classical read, write, clear.

This is the mediator’s interface to the producer and
consumer components. The mediator, however, also
has an interface to the infrastrucure component of
the system. This interface is used for configuration
of the mediator: memory allocation, policy setting,
etc.

3.2 Event

This mediator takes care of the synchronization be-
tween two components. Every component can regis-
ter a function as its handler for a particular event;
multiple components can register handlers for the

same event. When one component “fires” that event,
the mediator executes all the registered handlers.
One distinguishes between two types of handlers:

• Listeners. These handlers are executed imme-
diately after the event fires, and are not inter-
rupted by a possible new firing of the event.

• Completers. These handlers are executed at
some later time, after all listeners have finished.

The semantics of listeners and completers is exactly
like that of Interrupt Service Routines (ISR) and De-
ferred Service Routines (DSR) for interrupts. The
event class has the following data and methods:

• Data. Linked lists for registered handlers.
Bookkeeping data for event policy implemen-
tation: What to do with an incoming event, if
the processing of the same event is still going
on? What about cancelling a previous event?
Etc.

• Methods. Registration and de-registration of
handlers. Event firing. Event handling (listen-
ers and completers).

The event is a very powerful mediator, with which
one can build more complex mediators, such as, for
example, a finite state machine. The state machine
is an important synchronization mediator in infras-
tructure part of the signal acquisition and generation
system. Advantages of the event concept are:

• Events can be implemented with very limited
RTOS functionality: the minimally required
support is a mutex. (For atomic access to the
various lists that the event has to manage.)

• Events improve loose coupling between compo-
nents, especially when one provides the func-
tionality of running only some of the core com-
ponents.

• Events allow straightforward scaling, not only
in size, but also in distribution over a network.

• The event concept is perfectly compatible with
hardware and software interrupts: events and
interrupts are both asynchronous, and have im-
mediate and deferred handlers (Interrupt Ser-
vice Routine + Deferred Service Routine for
interrupts; listeners and completers for events).

• Events allow different components to be
“timed” independently and varying over time.
Even to work with a “virtual” time, in order to
interactively slow down or speed up the signal
processing rate (see the HeartBeat below).



• Events offer a more direct way than classi-
cal RTOS primitive (such as static priorities
of threads) to implement the synchronization
logic of components.

• Events can be implemented in different ways:
as method calls on an event object; running
its own thread; internally multi-threaded (e.g.,
one thread for each handler); and even dis-
tributed over a network. Hence, the appropri-
ate level of efficiency can be chosen.

4 System architecture

This Section describes in more detail the functional
contents of the components. The description uses
an object-oriented terminology, which hints at the
implementation design covered in Section 6. The
producer-consumer and event mediators are used
everywhere. All components can run at different
rates, or act completely event-driven, triggered by
the HeartBeat.

4.1 Data flow architecture

Figure 1 sketches the data flow in the system, and
this shows the inherent structure that each Producer-
Consumer mediator has only one writer. Hence:

• The specification of the data structure classes
in the system is nicely localized, to one single
mediator at a time.

• There is a natural sequential order in the logic
flow of the system: the Execution Engine must
activate the functional components in the fol-
lowing order: (1) Scanner, (2) Observer, (3)
Generator, (4) Controller, (5) Actuator, and
(6) Reporter. This adds the extra inherent
structure that all activity in the system is most
optimally executed sequentially, and that one
gains nothing from running different functional
components in parallel threads. (This does not
necessarily imply that parallel threads are not
needed for, for example, the device drivers, or
for the infrastructural components of reporting
and command interpretation.)

• In multi-threaded versions of the design,
read/write locks are the most appropriate lock-
ing mechanism to be used in the internals of
the mediator, because data only flows in one
direction.

The Producer-Consumer mediators are the basic in-
frastructure for the data flow. Running everything

serialized in one single thread has an enormous con-
sequence on their efficiency: they don’t need any mu-
tual exclusion or context switches! Hence, the imple-
mentation of the presented generic system gets the
efficiency of existing, special-purpose and less flexible
systems.

4.2 Logic flow architecture

The Event mediators are the basic infrastructure for
the logic flow. In the case of a single thread im-
plementation, one could also get rid of these Event
mediators, and replace the logic flow by a single loop
in the Execution Engine, much like the classical PLC
architecture: during every loop, the functional com-
ponents are called in sequence, unless their timing
indicates that they don’t have to be called during
that specific loop.
Leaving the Event mediators in makes the system
easier to distribute, and the design remains un-
changed over whatever scale it is applied. The cost of
the Event mediators corresponds roughly to two ex-
tra function call indirections (times six components):
one for firing the event, and that event in turn calls
each of the registered handlers.

5 Plug-in API

The previous Section described the inherent struc-
ture in the architecture of the system. That is, all
those parts that remain invariant between all en-
visaged applications. The fortunate consequence of
such an invariant structure is that the names, num-
bers, and semantics of all components and mediators
are fixed. What is not fixed can easily be parameter-
ized, as explained in the following sections.
This Section explains how application programmers
use the framework presented in the previous Sec-
tions. They have to do the following things:

• To fill in the functionality of the functional
components.

• To configure the logic flow, i.e., the Event me-
diators.

• To fill in the data structures to be managed by
the Producer-Consumer mediators.

• To configure the timing with which the Execu-
tion Engine must execute the various compo-
nents. (Only the functional components, be-
cause the application programmers don’t “see”
the infrastructural components.)

• To configure the protocol and semantics of the
messages the Command Interpreter will have
to work.



The following subsections give examples of what sort
of API is needed to fulfill the above-mentioned needs.
(The given function calls should not be considered to
be complete or optimal.)

5.1 Functionality

plugin(component, function);

where component is one of these: scanner,
actuator, generator, observer, or controller.
The function is the algorithm to be executed in the
component; it should be dynamically linked into the
system runtime.

plugin_configure(component, data_structure);

5.2 Logic flow

This configuration is simple: select which of the
available events in the generic system are needed for
the application. This corresponds to telling the Ex-
ecution Engine about which components to activate,
and to connect to their mediators. This doesn’t need
more than a simple

plugin(component, status);

where status can be “on” or “off.”

5.3 Data flow

The data flow inputs are clearly localized in each of
the Producer-Consumer mediators. So, the applica-
tion programmers must just fill in the application-
specific contents of these generic “containers.” A
pseudo-code version of these calls is:

plugin(mediator, data_structure);

mediator is (see Fig. 1) one of inputs, estimates,
setpoints, or outputs. (The syntax above is “C”-
like, but, of course, a similar OO method call can
be used.) The data structure should be of a for-
mat which offers the application programmers flags
for the parts they want to be reported. These flags
can be raised and lowered with function calls such
as:

plugin_configure(mediator,
data_structure_flag,
status);

5.4 Timing

The timing could be as simple as setting desired
frequencies; but it could be made more flexible in
several ways:

• Allow don’t care specification of the timing. In
which case the Execution Engine will fill this
in.

• Allow the specification of a dependence on the
timing of another component. For example,
the Actuator should wait for the Controller
to generate a new result before it updates the
hardware.

5.5 Command interpreter

The API above consists of multiple configuration
commands for the real-time system core. Of course,
these commands do not go directly to the functional
components, or to the mediators: it’s the job of the
Command Interpreter to do the bookkeeping of all
configuration requests, and check their consistency.
At a certain moment, the application program sig-
nals the Command Interpreter that all configuration
calls given up to now should be applied to the sys-
tem, as a whole and atomically. At that moment,
the Execution Engine switches to its reconfiguration
state, which fires events for each of the functional
components, asking them to reconfigure themselves
according to the specifications collected and checked
by the Command Interpreter. (In this reconfigura-
tion state machine, getting completion events back
from the components is a useful (but not indispens-
able) application of the Event mediator principle.

6 Implementation overview

This Section describes how to implement the real-
time signal core presented in the previous Sections.
Various different implementations can be imagined,
corresponding to the various ways in which the me-
diator classes can be implemented. This document
presents the simplest, most efficient approach for a
uni-processor system. A more complex approach
(and more detailed descriptions) can be found on
http://www.orocos.org/documents/ipc.pdf.
The Execution Engine runs on a timer, whenever any
of the components in the whole system requires ac-
tivation. Its internal algorithm is a state machine,
that scans the events to be fired for each of the other
components. Each of these components can also be a
state machine. The most obvious candidates are the
Generator (especially for hybrid signals), the Con-
troller (for switching control algorithms, as wel as for
running through its control loop), and the Reporter.
This implementation is indeed extremely simple, and
hence also efficient: the functionality of all com-
ponents is executed as function calls issue by the
Execution Engine, which is itself the only one that
needs more support from the operating system. The



efficiency comes from the fact that the design im-
plements its own, application-specific “scheduling,”
which will perform better than the general-purpose
RTOS scheduler, because the latter doesn’t profit at
all from the inherent structure of the application.
The implementation is straightforwardly supported
by the timer functionality of the real-time Linux op-
erating systems. RTAI offers even a more versatile
primitive, in the form of its tasklets, which can, for
non real-time use, be replaced by the Linux tasklets
with similar semantics. The C++ support of RTAI is
also a plus, because it allows to use the event library
developed for the Orocos project.
Implementations for more complex systems than a
uniprocessor system just need to replace the event
and producer-consumer mediator implementations.
For example, the producer and consumer can reside
on different computers and have to talk to each other
through a network. In this case, the data exchange
and event internals of the producer-consumer medi-
ator are easily distributed, without having to change
anything to the application clients.

7 Conclusions

Our major experience that underlies the writing of
this paper is that advances in real-time applications
will not in the first place be driven by more features
in the RTOS, but, on the contrary, by investigat-
ing each particular application area and looking for
(i) the intrinsic structure of the application’s activi-
ties, and (ii) the minimum amount of RTOS features
needed to implement a generic solution.
Real-time cores for a wide variety of signal processing
applications can all be implemented on the basis of a
quite straightforward design, as soon as an appropri-
ate decomposition in component modules is made.
This paper indentified the following components as
necessary and sufficient for building a generic real-
time signal processing core: the functional compo-
nents of the Scanner, Actuator, Generator, Con-
troller, and Observer; and the infrastructural com-
ponents of Execution Engine, Command Interpreter

and Reporter. The connection between all compo-
nent can be localized into a low number of mediator
classes (Producer-Consumer, Event, and Execution
Engine), which are all well understood, can be im-
plemented efficiently, and, most importantly, which
guarantuee a loose coupling between all functional
and infrastructural components.
However, various applications still have to provide
their own policy on top of the common and generic
real-time core mechanism presented in this paper.
Also, the problems of user interfacing have not been
discussed in this paper.
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