
 1

RealBOX,
 A Novel Approach to MiniRTL Implementation for Instrumentation And

Control Applications

N.Akdeniz, T. Aydın
 Havelsan A.Ş.

06520, Ankara, Turkey
{ nurpinar, taydin }@ havelsan.com.tr

Abstract
realBOX is a PC104 form factor computer, based on a 486DX2 processor with 8MB RAM and 8MB Disk-On-Chip Millennium.
MiniRTL operating system boots from Disk-On-Chip and expands itself to RAM when the power is applied to the box. Our initial
aim and the motivation behind our work were to have an embedded system with the following critical requirements which were
fulfilled: -real-time scheduler, -operation without Hard Disk, -small footprint (so a solid state memory preferably the Disk-on-
Chip), -no file system checks when power goes off and comes again.

Keywords: Real-time Operating Systems, Embedded Systems, Disk-On-Chip, Instrumentation

1 Introduction

Presented in this paper is a rugged computing and
control box with an embedded hard real-time
operating system. PC104 based CPU and Data
Acquisition boards constitute the realBOX hardware
while MiniRTL operating system along with the
application modules reside in Disk-On-Chip. This
hardware and software combination stands as a
reasonable substitute to expensive embedded control
hardware running with high-royalty real-time
operating systems. We have applied this approach to
an instrumentation project, which can be qualified as
a hard real-time application and got satisfactory
results. In fact what makes this approach original is
embedding the MiniRTL (the minimized version of
the spreading Real-time Linux) into a solid-state
memory like Disk-On-Chip.

Trade-off factors considered while choosing the
MiniRTL and the PC104 type computer hardware, a
brief description of how the operating system was
embedded into the Disk-On-Chip and a simple
evaluation application for the proposed system are
described within the following sections.

2 RTLinux and PC104
Combination

Embedded computer systems differ from the desktop
computing platforms in that they are more likely to be
subjected to harsh environmental conditions and they
are usually supposed to do their job without any
operator intervention for extremely long periods of
time. Apparently, those additional performance
requirements are what make them expensive. It
should be noted that the price to pay will increase
when real-time responsiveness is expected from the
embedded system.

In a quest for a cheap and optimal embedded software
and hardware combination, Linux and the PC104 are
the arrival points for us. Linux became an attractive
alternative to commercial real-time operating systems
by pragmatic efforts to add real-time behavior to it.
Advantages of using a real-time operating system
based on Linux are clearly explained in further by
N.Mc.Guire.[1] Among Linux based real-time
operating systems available, we have selected
MiniRTL, a minimized version of the Real-time
Linux, which is a hard real-time kernel running the
Linux as its lowest priority thread. The distinctive
features of the MiniRTL are its minimal size (it can

 2

fit into a 1.44 MB floppy) and that it completely runs
from RAM memory by expanding itself from a static
record on boot time. Especially the later feature is
vital for an embedded system having a power on/off
button as the only user interface. No fsck operations
are initiated, so no need to interact with the box
during boot process after when power goes off and
comes again. Startup scheme of such a system is
depicted in FIGURE 1.

For the hardware part, PC104 form factor computer
and peripheral boards are used for their compactness,
stack through expandability, modularity and their
price performance ratio over VME hardware that we
have used for our applications so far. In addition,
most PC104 CPU board manufacturers reserve an
expansion socket for solid-state memory devices like
Disk-On-Chip into which we have planned to embed
the operating system along with the application code.
By using a rugged modular housing like the IDAN
system from the Real-time Devices Inc. now we have
a real real-time computing and control box; realBOX
as we called it.

As a result, combination of the x86 based PC104
hardware and MiniRTL formed a cheap and
applicable solution for most real-time embedded
control applications.

3 MiniRTL on Disk-On-Chip

MiniRTL was originally developed to boot from
floppy or from flash-disk with some minor
modifications.[2] Using a solid-state memory like
Disk-On-Chip instead of the floppy to keep the
operating system with the eventual application code,
would be a more applicable approach. Because,
expecting the floppy to function without giving a
failure after an unlimited number of on/off cycles
during the lifetime of the system is impractical and
what we need is an install-and-forget type embedded
computer. Using flash-disk on the other hand seems
more reasonable but has some cost and reliability
related concerns as well.

Disk-On-Chip is a solid-state memory with full hard-
disk emulation. The one that we used in our
configuration is an 8 MB Disk-On-Chip Millennium.
[6] It has a 1.4Mbyte/sec read rate and it is observed
that the start-up time for the Disk-On-Chip version of
the MiniRTL is 3 times shorter than booting from
floppy. That is another advantage of booting
MiniRTL from Disk-On-Chip.

FIGURE 1: System startup scheme

3.1 Building the New Kernel Image
Kernel 2.2.20 was preferred because all the required
patches are applicable for only this version. In order
to extract the compressed file system into RAM disk
during boot time, initrd and linuxrc patches were
applied to Kernel 2.2.20. Inter-module and mtd
patches were also applied, so that we could select the
memory technology device as Disk-On-Chip
Millenium with other complementary options.[5]
Certainly, the last patch applied was RTLinux3.1.

To reduce the size of modules, debug option was
unchecked when making menuconfig to RTLinux.
RTLinux modules were replaced by those exist in
MiniRTL to make the kernel versions be compatible.
All the kernel modules in original MiniRTL were
deleted since they are linked statically in Kernel
2.2.20. By doing so, the new image takes only 490
KB.

3.2 Burning the Disk-On-Chip
In order to inform the system about the boot record
location, following devices were created by means of
the root.dev.mk script:

/dev/nftla
/dev/nftla1

where the device name of the Disk-On-Chip is nftla1.

In syslinux.cfg file “boot=/dev/fd0” line is modified
as “boot=/dev/nftla1”, since we want to boot from
Disk-On-Chip instead of floppy and Disk-On-Chip
was made bootable by syslinux.

 3

Finally following files in compressed form were
transferred to Disk-On-Chip:
root.rtl, etc.rtl, modules.rtl, log.rtl, local.rtl,
syslinux.cfg, bzimage.

It’s worth to mention that the Disk-On-Chip must be
formatted with the doc42.exb to properly boot from.

After resetting the box, following message related to
the Disk-On-Chip was displayed;

M-Systems DiskOnChip driver. (C) 1999 Machine
Vision Holdings, Inc.
Using configured probe address 0xe8000
DiskOnChip Millennium found at address
0xE8000
Flash chip found: Manifacturer ID: 98, Chip
ID: E6 (Toshiba TC58V64AFT/DC)
1 flash chips found. Total DiskOnChip size:
8Mbytes
M-Systems NAND Flash Translation Layer
Driver. (C) 1999 MVHI
$Id: nftl.c,v 1.57 2000/12/01 17:51:54 dwmw2
Exp $
Partition check:
nftla: nftla1

3.3 Running The User Modules and
Application

User modules and the application were compiled on a
development computer having Kernel 2.2.20 and
glibc2.0.7. Compiled module shall be included in
modules.rtl. As for the application executable to run
at start-up, inittab file was modified.

4 Sample Application

Developed control application consists of a real-time
thread module and a user space application
communicating with each other via a real-time FIFO.
Real-time module reads the sensor outputs
periodically from PC104 compliant interface boards
and sends these readings to the user space application
through a real-time FIFO. Upon receiving the sensor
data, user space application prepares a UDP packet
consisting of the received sensor data and posts it to a
central host where the sensor data is replayed with
giving an almost real-time impression. An
architectural diagram of the sample application is
given in FIGURE 2.

FIGURE 2: Sample application architecture

Simplified source code for RTLinux module is given
below ;

#include <asm/io.h>
#include <rtl.h>
#include <time.h>
#include <pthread.h>
#include <rtl_fifo.h>

#define DAQ_X_BASE 0x320
#define DAQ_Y_BASE 0x340
#define PERIOD_MS 50
pthread_t thread;

void * start_routine(void *arg)
{
 struct sched_param p;
 p . sched_priority = 1;
 pthread_setschedparam (pthread_self(),
 SCHED_FIFO, &p);
 pthread_make_periodic_np (pthread_self(),
 gethrtime(), PERIOD_MS*1000000);
 while (1)
 {
 unsigned x,y;
 char buff[20];
 pthread_wait_np();

 x=inw(DAQ_X_BASE);
 y=inw(DAQ_Y_BASE);

 sprintf(buff,"%5d %5d \n",x,y);
 rtf_put(1, buff, sizeof(buff));
 }
 return 0;
}

int init_module(void)
{
 rtf_destroy(1);
 rtf_create(1, 4000);
 return pthread_create (&thread,

NULL, start_routine, 0);
}

 4

void cleanup_module(void)
{
 rtf_destroy(1);
 pthread_cancel (thread);
 pthread_join (thread, NULL);
}

At the other end user space application opens the real-
time fifo (/dev/rtf1) with a simple open system call;

open("/dev/rtf1", O_RDONLY);

then polls the output of the real-time module (so the
FIFO) and sends the received sensor data as UDP
packets to server host infinitely .

5 Conclusion

A particular and complete MiniRTL configuration,
which works on PC104 x86 hardware platform
without any magnetic disks, have been developed to
act as an embedded and real-time system for control
applications.

Main advantages of the system are the off-the-shelf
availability of the low price hardware platform and
the royalty free real-time operating system with the
complementary Linux reliability, open source,
applicability of standard APIs and highly preferable
price/performance ratio.

Described system is now completely in use for an
instrumentation application and it performs well
enough.

For code development, a normal RTLinux terminal
can be used as the host and/or development station.

Debugging and development can be done on this host
and the finalized modules and user space applications
can be transferred to the Disk-On-Chip with
accompanying file system items and boot image for a
stand-alone operation. In a modular structure like
PC104, it is even possible to use a cooking hard disk
layer for development phase. This layer can be
removed when everything is done and the file system
with the kernel image has transferred to Disk-On-
Chip, which will be ready to boot from when the
power is applied to the box.

With the availability of the mini-http server in
original MiniRTL configuration it will be possible to
monitor the detailed status of the box and the
controlled process by simple cgi-scripts. Using
multiple partitions on Disk-On-Chip will allow
developers to have a read/write solid state memory
space to log process data and store system parameters.

6 References

[1] Nicholas Mc. Guire, MiniRTL Hard real-time
Linux for embedded systems
[2] Nicholas Mc. Guire, miniRTL – A Minimum
Real-time Linux System
[3] Real Time Devices Inc., 2000, CPU Module
User’s Manual
[4] FSM Labs Inc., Getting Started with RTLinux,
[5] David Woodhouse, 2000, MTD internal API
documentation
[6] www.m-sys.com/

