Graphical Programming of Realtime Applications with LabVIEW

for Linux RTAI

Thomas Leibner and G. Schmitz
Science and Engineering Application Datentechnik GmbH
Linder Hohe, D-51147 Koln
Germanythomas.leibner@sea-gmbh.com

Abstract

The programming of real-time applications nowadays involves multitasking using timing demands
with microsecond resolution, inter task messaging including semaphores for synchronization of multiple
running tasks. For solving this task efficiently a programmer likes to use graphical visualization methods
for program flow, messaging and priority dependencies. Instead of using graphical methods only for
debugging and schematic overviews and the analysis of problems typical for real-time and multitasking,
we show here the use of a graphical programming environment for producing the whole code related to a
hard realtime programming example.

The programming environment LABVIEW (tm) by National Instruments provides state-of-the-art tools
for solving programming tasks by just doing graphical formulation of algorithms and data flow. One major
disadvantage of LABVIEW, not being able to be used as programming environment for hard real-time
in Linux kernel space, could be eliminated using the user space API LXRT of the RTAI ’Real Time
Application Interface’ for Linux.

It is shown, that by implementing a generalized call interface to the LXRT subsystem of RTAI, the user
space API of RTAI could be integrated into LABVIEW for Linux. By this extension it is now possible to
perform with hard real-time using graphical user space programming. The visual data flow programming
of LABVIEW easily visualizes timing and synchronization dependencies.

Although the full LXRT API hasn’t been implemented into LABVIEW yet, a basic set of timing and
data acquisition functions for hard real-time are shown to be working. A jitter as low as five microseconds
on a Pentium ITI/500MHz makes it possible to have 20 kHz loops with sophisticated computing, e.g. PID
closed loop control and audio filtering, by just doing graphical programming. This is another example of
the power of the LXRT user space API of the Real Time Application Interface for Linux, giving us the
possibility to do hard real-time from user space.

1 Introduction

This talk’s intention is to explain the mechanisms
behind an example program, which can be found in-
side the labview section of the RTAI CVS tree[l].
The program is build of two tasks:

1. A feeder task reads sound data from a file and
puts it into a realtime communication FIFO.
Also, a power spectrum of the chunk of data
is computed and graphically displayed. This
task runs in normal linux user space context
without realtime capabilities.

2. A player task reads sound data from the com-
munication FIFO, decodes them to 1-bit sound

and toggles the I/O bit connected to the
speaker. This player task also runs in linux

user space, but switches itself to hard realtime
mode utilizing the RTAI/LXRT realtime APL

Further, the feeder task starts the player task and
listens to a semaphore giving a ’ready’ sign from
the player task. On the other hand, the player task
checks a semaphore signalling ’stop’ by the feeder
task. In case of an empty sound data FIFO (when
feeder task ist delayed) the player task toggles the
speaker bit, producing an 8kHz beep (useful for scope
timing measurements)

2 Dataflow Programming

The program is completely build using a language
called G, or better known as LABVIEW. Program-
ming in G means to depict the dataflow of an appli-
cation by graphically connecting data sources with
data sinks. The connections are done by drawing
wires. The color of the wire shows the data type,
while its thickness represents the dimension (scalar,
array of dimension 1, 2,...) of the data virtually trav-
eling along the wire. Subroutines are represented by
building blocks with data inputs (equal to data sinks)
and data outputs (equal to data sources). User in-
puts (e.g. button, value, string) are considered to
be data sources and outputs to the user are used
similar to data sinks (from the program’s point of
view). While the wiring of data sources and sinks is
done on a sheet called block diagram or back panel,
the ’connection’ to the user with buttons, numerical,
graphical, and string elements (input and output) is
done via the so called front panel. The set of a front
panel and a block diagram is named wvirtual instru-
ment, or shortened: VI. Each VI can be used as a
subroutine as well as it can be run (and visually de-
bugged) stand alone. For passing parameters to a
VI being used as a subroutine, data elements of the
front panel representing parameters and return val-
ues are marked and then appear as connector pads
on the VI’s iconified representation. These iconified
versions of the VI will then be used (wired) inside
the block diagram of a calling VI.

3 LabView Sound Example

This article, although planned to be a full text ex-
planation of the complete solution, will serve as a
handout for the talk beeing held at the RTWS 2002,
Boston. Come, listen to the talk and ask questions
to gain full understanding of what is going on inside

the example. Those with dataflow programming ex-
perience (so called LabViewers) will wonder how to
do microsecond timing from within LabView. Have
a look at the back panel of the hard realtime player
task. You will find sub-VIs called '"Make Period’ and
"Wait Period’. These adjust the timing to the desired
8kHz period and perform a ’wait until next period’
inside the loop which reads the communication FIFO
and controls the speaker bit.

References

[1] RTAI CVS web interface: http://cvs.rtai.org

List of Figures

1 LabVIEW realtime sound playing ex-
ample. Normal priority user space
* au file playback with simultaneously
spectral analysis (base drum & sythe-
sizer rhythm of ’Axel F.”)
2 Hard realtime sound player task
with passed parameters: FIFO and
semaphore references & error message
structureso L. 4
3 Dataflow coding of the non-realtime
LabVIEW sound playing example .. 5
4 Non-realtime wrapper task for initial-
ization of the hard realtime sound
player task
5 Non-realtime wrapper task: Dataflow
coding 6
6 Dataflow coding of hard realtime
player task. Shown is case for empty
communication FIFO with semaphore
checking, 6
7 Dataflow coding of hard realtime
player task. Shown is case for pending
FIFOdata. 7

| labviewsound.vi |
File Edit Operate Tools Browse ‘Window Help

We Feed the data of sound .an into a realtime fifo unkil | STOF | or you et [~ only once

A realtime task (rt_processvi, called by Iv_process vid then decodes and plays the data from the fifo
Copyright (o 2002 Thomas Leibher <leibner@t-online.de: . Licensed under Gru Public License.

Plat 0
200000,0-
175000,0-
150000,0-
125000,0-
100000,0-
75000,0-
50000,0-
25000,0-

0,0 1 1 1 1 1
0,0 S00,0 1,0k 1,5k 2,0k 2.5k 3,0k 3,5k
Tirne

Amplitucle

Figure 1: LabVIEW realtime sound playing example. Normal priority user space *.au file playback with
simultaneously spectral analysis (base drum & sythesizer rhythm of ’Axel F.”)

Figure 2: Hard realtime sound player task with passed parameters: FIFO and semaphore references & error
message structures

| »
0414 Bef Jagad 900 Ul U0JING d03s J0) 42940 1P pag) pue pead o4l
L= el Jaded ooy oo STRR SIS Apead yeel aded, FRMLOM e, Al
yee) Jadeid o) 404 et e pue Lado adouycewag apeala punos uada
Weaeubs N B [Esmm
METE Eu %um__ﬁm Mm.w_. Wwbhmh : [i2g8000d ™Al maincey | gayeaopeny T aude]
ApeadiNI s
Nl w
501 ILTIM
HIS0d HIS0d eredodid
Enye}s e
- | ﬁmﬂ 0l : . PO DEEEN N ER T
= = i TSI | N T EEE

PRRETOT

952

"PELIADNT DNGNd MUY JSEUN PASURIT © <80 auluo-1aliaugia)s Jaudia seuow] 2007 (a0 wbusdog

0 &9 [5][n]@][&]

| weibelg 1A punosmalage] |

digH MOpul, asmodg soo] ajedadn Jp3 &M

ing example

Dataflow coding of the non-realtime LabVIEW sound play

Figure 3

Ip. | Iv_process.vi |]]
File Edit Operate Tools Browse ‘Window Help

»=|[@[n] R

Copyright (o) 2002 Thomas Leibner <leibner@t-online de > . Licensed under Gru Fublic Licens

ulavwy ? el Hardrealtime? .

Figure 4: Non-realtime wrapper task for initialization of the hard realtime sound player task

| lv_process.vi Diagram | I

File Edit Operate Tools Browse ‘Window Help

B[] @[n][9] LT of

Copyright {c) 2002 Thomas Leibner <leibneri@t-online.de: . Licensed under Gnu Fublic License.

Trug =

@FIF0Data [T
errar in {no etror) |[e s Beesememememeeeeer) Ltk || SEMReady

ulaw?

Exit Lab\/IEW?]

Hardrealtime ?

Figure 5: Non-realtime wrapper task: Dataflow coding

I \
File Edit Operate Tools Browse ‘Window Help

ri_speaker.vi Diagram |

T False]

Slesp ns [1,000E+3] Tme=

Tl Falze]|

Feriod ns| 125,000 E+3IRAEr SEMT:
eriod ns + FIFOData EFTT

error in {no errd FIF d
1 it L LT frmemen

error out

continue? E

Copyright 2002 Thomas Leibner <leibner@t-online.de> Licensed under Gru Public License

Figure 6: Dataflow coding of hard realtime player task. Shown is case for empty communication FIFO with
semaphore checking

N0 dodda

25UA217 2Ngnd DU Japun pasuai]

4 AnUILUIoD Jaeads 04 0 puag pue Jag

| 9+] 1004 4aqeads

<A aLuo-1E@l0aUgE) > Jaugia] sewoy] Fo0z Ifuddog

ereq041d4

C+3000°1 | su dasg

Apeay s

AMIEEA+3 000" 1| &1 fejaq

¢ g

(L || 4=URRIReH
‘amE(E+3000°52 1| su poliad

Dua 0L Ul JoJa

| wesbeig 1nseyeads |

digy aopuy, 2smoug soo] sfessdg HEg Ely

Figure 7: Dataflow coding of hard realtime player task. Shown is case for pending FIFO data

